Datasets:
Tasks:
Text Generation
Modalities:
Text
Sub-tasks:
language-modeling
Languages:
English
Size:
100K - 1M
License:
(* ========================================================================= *) | |
(* The fundamental theorem of arithmetic (unique prime factorization). *) | |
(* ========================================================================= *) | |
needs "Library/prime.ml";; | |
prioritize_num();; | |
(* ------------------------------------------------------------------------- *) | |
(* Definition of iterated product. *) | |
(* ------------------------------------------------------------------------- *) | |
let nproduct = new_definition `nproduct = iterate ( * )`;; | |
let NPRODUCT_CLAUSES = prove | |
(`(!f. nproduct {} f = 1) /\ | |
(!x f s. FINITE(s) | |
==> (nproduct (x INSERT s) f = | |
if x IN s then nproduct s f else f(x) * nproduct s f))`, | |
REWRITE_TAC[nproduct; GSYM NEUTRAL_MUL] THEN | |
ONCE_REWRITE_TAC[SWAP_FORALL_THM] THEN | |
MATCH_MP_TAC ITERATE_CLAUSES THEN REWRITE_TAC[MONOIDAL_MUL]);; | |
let NPRODUCT_EQ_1_EQ = prove | |
(`!s f. FINITE s ==> (nproduct s f = 1 <=> !x. x IN s ==> f(x) = 1)`, | |
REWRITE_TAC[IMP_CONJ; RIGHT_FORALL_IMP_THM] THEN | |
MATCH_MP_TAC FINITE_INDUCT_STRONG THEN | |
ASM_SIMP_TAC[NPRODUCT_CLAUSES; IN_INSERT; MULT_EQ_1; NOT_IN_EMPTY] THEN | |
ASM_MESON_TAC[]);; | |
let NPRODUCT_SPLITOFF = prove | |
(`!x:A f s. FINITE s | |
==> nproduct s f = | |
(if x IN s then f(x) else 1) * nproduct (s DELETE x) f`, | |
REPEAT STRIP_TAC THEN COND_CASES_TAC THEN | |
ASM_SIMP_TAC[MULT_CLAUSES; SET_RULE `~(x IN s) ==> s DELETE x = s`] THEN | |
SUBGOAL_THEN `s = (x:A) INSERT (s DELETE x)` | |
(fun th -> GEN_REWRITE_TAC (LAND_CONV o LAND_CONV) [th] THEN | |
ASM_SIMP_TAC[NPRODUCT_CLAUSES; FINITE_DELETE; IN_DELETE]) THEN | |
REPEAT(POP_ASSUM MP_TAC) THEN SET_TAC[]);; | |
let NPRODUCT_SPLITOFF_HACK = prove | |
(`!x:A f s. nproduct s f = | |
if FINITE s then | |
(if x IN s then f(x) else 1) * nproduct (s DELETE x) f | |
else nproduct s f`, | |
REPEAT STRIP_TAC THEN MESON_TAC[NPRODUCT_SPLITOFF]);; | |
let NPRODUCT_EQ = prove | |
(`!f g s. FINITE s /\ (!x. x IN s ==> f x = g x) | |
==> nproduct s f = nproduct s g`, | |
GEN_TAC THEN GEN_TAC THEN REWRITE_TAC[IMP_CONJ] THEN | |
MATCH_MP_TAC FINITE_INDUCT_STRONG THEN | |
SIMP_TAC[NPRODUCT_CLAUSES; IN_INSERT]);; | |
let NPRODUCT_EQ_GEN = prove | |
(`!f g s t. FINITE s /\ s = t /\ (!x. x IN s ==> f x = g x) | |
==> nproduct s f = nproduct t g`, | |
MESON_TAC[NPRODUCT_EQ]);; | |
let PRIME_DIVIDES_NPRODUCT = prove | |
(`!p s f. prime p /\ FINITE s /\ p divides (nproduct s f) | |
==> ?x. x IN s /\ p divides (f x)`, | |
GEN_TAC THEN REWRITE_TAC[IMP_CONJ; RIGHT_FORALL_IMP_THM] THEN | |
DISCH_TAC THEN MATCH_MP_TAC FINITE_INDUCT_STRONG THEN | |
SIMP_TAC[NPRODUCT_CLAUSES; IN_INSERT; NOT_IN_EMPTY] THEN | |
ASM_MESON_TAC[PRIME_DIVPROD; DIVIDES_ONE; PRIME_1]);; | |
let NPRODUCT_CANCEL_PRIME = prove | |
(`!s p m f j. | |
p EXP j * nproduct (s DELETE p) (\p. p EXP (f p)) = p * m | |
==> prime p /\ FINITE s /\ (!x. x IN s ==> prime x) | |
==> ~(j = 0) /\ | |
p EXP (j - 1) * nproduct (s DELETE p) (\p. p EXP (f p)) = m`, | |
REPEAT GEN_TAC THEN ASM_CASES_TAC `j = 0` THEN ASM_REWRITE_TAC[] THENL | |
[ALL_TAC; | |
FIRST_X_ASSUM(SUBST1_TAC o MATCH_MP (ARITH_RULE | |
`~(j = 0) ==> j = SUC(j - 1)`)) THEN | |
REWRITE_TAC[SUC_SUB1; EXP; GSYM MULT_ASSOC; EQ_MULT_LCANCEL] THEN | |
MESON_TAC[PRIME_0]] THEN | |
ONCE_REWRITE_TAC[GSYM CONTRAPOS_THM] THEN | |
REWRITE_TAC[EXP; MULT_CLAUSES] THEN REPEAT STRIP_TAC THEN | |
MP_TAC(ISPECL [`p:num`; `s DELETE (p:num)`; `\p. p EXP (f p)`] | |
PRIME_DIVIDES_NPRODUCT) THEN | |
ANTS_TAC THENL [ASM_MESON_TAC[divides; FINITE_DELETE]; ALL_TAC] THEN | |
REWRITE_TAC[IN_DELETE] THEN ASM_MESON_TAC[PRIME_1; prime; PRIME_DIVEXP]);; | |
(* ------------------------------------------------------------------------- *) | |
(* Fundamental Theorem of Arithmetic. *) | |
(* ------------------------------------------------------------------------- *) | |
let FTA = prove | |
(`!n. ~(n = 0) | |
==> ?!i. FINITE {p | ~(i p = 0)} /\ | |
(!p. ~(i p = 0) ==> prime p) /\ | |
n = nproduct {p | ~(i p = 0)} (\p. p EXP (i p))`, | |
ONCE_REWRITE_TAC[ARITH_RULE `n = nproduct s f <=> nproduct s f = n`] THEN | |
REWRITE_TAC[EXISTS_UNIQUE_THM] THEN | |
MATCH_MP_TAC num_WF THEN X_GEN_TAC `n:num` THEN REPEAT DISCH_TAC THEN | |
ASM_CASES_TAC `n = 1` THENL | |
[ASM_REWRITE_TAC[TAUT `a /\ b <=> ~(a ==> ~b)`] THEN | |
SIMP_TAC[NPRODUCT_EQ_1_EQ; EXP_EQ_1; IN_ELIM_THM] THEN | |
REWRITE_TAC[FUN_EQ_THM; NOT_IMP; GSYM CONJ_ASSOC] THEN CONJ_TAC THENL | |
[EXISTS_TAC `\n:num. 0` THEN | |
REWRITE_TAC[SET_RULE `{p | F} = {}`; FINITE_RULES]; | |
REPEAT GEN_TAC THEN STRIP_TAC THEN | |
X_GEN_TAC `q:num` THEN ASM_CASES_TAC `q = 1` THEN | |
ASM_REWRITE_TAC[] THEN ASM_MESON_TAC[PRIME_1]]; | |
ALL_TAC] THEN | |
FIRST_X_ASSUM(MP_TAC o MATCH_MP PRIME_FACTOR) THEN | |
REWRITE_TAC[divides; RIGHT_AND_EXISTS_THM; LEFT_IMP_EXISTS_THM] THEN | |
MAP_EVERY X_GEN_TAC [`p:num`; `m:num`] THEN | |
DISCH_THEN(CONJUNCTS_THEN2 ASSUME_TAC SUBST_ALL_TAC) THEN | |
FIRST_X_ASSUM(MP_TAC o SPEC `m:num`) THEN ANTS_TAC THENL | |
[ASM_MESON_TAC[PRIME_FACTOR_LT]; ALL_TAC] THEN | |
RULE_ASSUM_TAC(REWRITE_RULE[MULT_EQ_0; DE_MORGAN_THM]) THEN | |
FIRST_X_ASSUM(CONJUNCTS_THEN ASSUME_TAC) THEN ASM_REWRITE_TAC[] THEN | |
MATCH_MP_TAC MONO_AND THEN CONJ_TAC THENL | |
[DISCH_THEN(X_CHOOSE_THEN `i:num->num` STRIP_ASSUME_TAC) THEN | |
EXISTS_TAC `\q:num. if q = p then i(q) + 1 else i(q)` THEN | |
ASM_REWRITE_TAC[] THEN MATCH_MP_TAC(TAUT `a /\ (a ==> b) ==> a /\ b`) THEN | |
CONJ_TAC THENL | |
[MATCH_MP_TAC FINITE_SUBSET THEN | |
EXISTS_TAC `p INSERT {p:num | ~(i p = 0)}` THEN | |
ASM_SIMP_TAC[SUBSET; FINITE_INSERT; IN_INSERT; IN_ELIM_THM] THEN | |
MESON_TAC[]; | |
ALL_TAC] THEN | |
DISCH_TAC THEN CONJ_TAC THEN ASM_REWRITE_TAC[] THENL | |
[ASM_MESON_TAC[ADD_EQ_0; ARITH_EQ]; ALL_TAC] THEN | |
FIRST_X_ASSUM(SUBST_ALL_TAC o SYM) THEN | |
MP_TAC(ISPEC `p:num` NPRODUCT_SPLITOFF_HACK) THEN | |
DISCH_THEN(fun th -> ONCE_REWRITE_TAC[th]) THEN | |
ASM_REWRITE_TAC[IN_ELIM_THM; ADD_EQ_0; ARITH] THEN | |
REWRITE_TAC[MULT_ASSOC] THEN BINOP_TAC THENL | |
[ASM_CASES_TAC `(i:num->num) p = 0` THEN | |
ASM_REWRITE_TAC[EXP_ADD; EXP_1; EXP; MULT_AC]; | |
ALL_TAC] THEN | |
MATCH_MP_TAC NPRODUCT_EQ_GEN THEN RULE_ASSUM_TAC(SIMP_RULE[]) THEN | |
ASM_SIMP_TAC[FINITE_DELETE; IN_DELETE; EXTENSION; IN_ELIM_THM] THEN | |
ONCE_REWRITE_TAC[COND_RAND] THEN ONCE_REWRITE_TAC[COND_RATOR] THEN | |
REWRITE_TAC[ADD_EQ_0; ARITH] THEN MESON_TAC[]; | |
ALL_TAC] THEN | |
MP_TAC(ISPEC `p:num` NPRODUCT_SPLITOFF_HACK) THEN | |
DISCH_THEN(fun th -> ONCE_REWRITE_TAC[th]) THEN | |
REWRITE_TAC[TAUT | |
`p /\ q /\ ((if p then x else y) = z) <=> p /\ q /\ x = z`] THEN | |
REWRITE_TAC[IN_ELIM_THM] THEN | |
REWRITE_TAC[MESON[EXP] `(if ~(x = 0) then p EXP x else 1) = p EXP x`] THEN | |
REWRITE_TAC[FUN_EQ_THM] THEN DISCH_TAC THEN | |
MAP_EVERY X_GEN_TAC [`j:num->num`; `k:num->num`] THEN STRIP_TAC THEN | |
FIRST_X_ASSUM(MP_TAC o SPECL | |
[`\i:num. if i = p then j(i) - 1 else j(i)`; | |
`\i:num. if i = p then k(i) - 1 else k(i)`]) THEN | |
REWRITE_TAC[] THEN | |
REPEAT(FIRST_X_ASSUM(MP_TAC o MATCH_MP NPRODUCT_CANCEL_PRIME)) THEN | |
ASM_REWRITE_TAC[IN_ELIM_THM] THEN STRIP_TAC THEN STRIP_TAC THEN | |
REWRITE_TAC[SET_RULE | |
`!j k. {q | ~((if q = p then j q else k q) = 0)} DELETE p = | |
{q | ~(k q = 0)} DELETE p`] THEN | |
ANTS_TAC THENL | |
[ALL_TAC; | |
MATCH_MP_TAC MONO_FORALL THEN GEN_TAC THEN COND_CASES_TAC THEN | |
ASM_REWRITE_TAC[] THEN MAP_EVERY UNDISCH_TAC | |
[`~(j(p:num) = 0)`; `~(k(p:num) = 0)`] THEN ARITH_TAC] THEN | |
ONCE_REWRITE_TAC[COND_RAND] THEN ONCE_REWRITE_TAC[COND_RATOR] THEN | |
REPEAT CONJ_TAC THENL | |
[MATCH_MP_TAC FINITE_SUBSET THEN EXISTS_TAC `{p:num | ~(j p = 0)}` THEN | |
ASM_REWRITE_TAC[SUBSET; IN_ELIM_THM] THEN ARITH_TAC; | |
ASM_MESON_TAC[SUB_0]; | |
FIRST_X_ASSUM(fun th -> SUBST1_TAC(SYM th) THEN AP_TERM_TAC) THEN | |
MATCH_MP_TAC NPRODUCT_EQ_GEN THEN ASM_REWRITE_TAC[FINITE_DELETE] THEN | |
SIMP_TAC[IN_DELETE; IN_ELIM_THM]; | |
MATCH_MP_TAC FINITE_SUBSET THEN EXISTS_TAC `{p:num | ~(k p = 0)}` THEN | |
ASM_REWRITE_TAC[SUBSET; IN_ELIM_THM] THEN ARITH_TAC; | |
ASM_MESON_TAC[SUB_0]; | |
FIRST_X_ASSUM(fun th -> SUBST1_TAC(SYM th) THEN AP_TERM_TAC) THEN | |
MATCH_MP_TAC NPRODUCT_EQ_GEN THEN ASM_REWRITE_TAC[FINITE_DELETE] THEN | |
SIMP_TAC[IN_DELETE; IN_ELIM_THM]]);; | |