Datasets:

Modalities:
Text
Languages:
English
Libraries:
Datasets
License:
Zhangir Azerbayev
squashed?
4365a98
raw
history blame
4.21 kB
(* ========================================================================= *)
(* Cantor's theorem. *)
(* ========================================================================= *)
(* ------------------------------------------------------------------------- *)
(* Ad hoc version for whole type. *)
(* ------------------------------------------------------------------------- *)
let CANTOR_THM_INJ = prove
(`~(?f:(A->bool)->A. (!x y. f(x) = f(y) ==> x = y))`,
REWRITE_TAC[INJECTIVE_LEFT_INVERSE; NOT_EXISTS_THM] THEN
MAP_EVERY X_GEN_TAC [`f:(A->bool)->A`; `g:A->(A->bool)`] THEN
DISCH_THEN(MP_TAC o SPEC `\x:A. ~(g x x)`) THEN MESON_TAC[]);;
let CANTOR_THM_SURJ = prove
(`~(?f:A->(A->bool). !s. ?x. f x = s)`,
REWRITE_TAC[SURJECTIVE_RIGHT_INVERSE; NOT_EXISTS_THM] THEN
MAP_EVERY X_GEN_TAC [`g:A->(A->bool)`; `f:(A->bool)->A`] THEN
DISCH_THEN(MP_TAC o SPEC `\x:A. ~(g x x)`) THEN MESON_TAC[]);;
(* ------------------------------------------------------------------------- *)
(* Proper version for any set, in terms of cardinality operators. *)
(* ------------------------------------------------------------------------- *)
let CANTOR = prove
(`!s:A->bool. s <_c {t | t SUBSET s}`,
GEN_TAC THEN REWRITE_TAC[lt_c] THEN CONJ_TAC THENL
[REWRITE_TAC[le_c] THEN EXISTS_TAC `(=):A->A->bool` THEN
REWRITE_TAC[FUN_EQ_THM; IN_ELIM_THM; SUBSET; IN] THEN MESON_TAC[];
REWRITE_TAC[LE_C; IN_ELIM_THM; SURJECTIVE_RIGHT_INVERSE] THEN
REWRITE_TAC[NOT_EXISTS_THM] THEN X_GEN_TAC `g:A->(A->bool)` THEN
DISCH_THEN(MP_TAC o SPEC `\x:A. s(x) /\ ~(g x x)`) THEN
REWRITE_TAC[SUBSET; IN; FUN_EQ_THM] THEN MESON_TAC[]]);;
(* ------------------------------------------------------------------------- *)
(* More explicit "injective" version as in Paul Taylor's book. *)
(* ------------------------------------------------------------------------- *)
let CANTOR_THM_INJ' = prove
(`~(?f:(A->bool)->A. (!x y. f(x) = f(y) ==> x = y))`,
STRIP_TAC THEN
ABBREV_TAC `(g:A->A->bool) = \a. { b | !s. f(s) = a ==> b IN s}` THEN
MP_TAC(ISPEC `g:A->A->bool`
(REWRITE_RULE[NOT_EXISTS_THM] CANTOR_THM_SURJ)) THEN
FIRST_X_ASSUM(SUBST_ALL_TAC o SYM) THEN
ASM_REWRITE_TAC[EXTENSION; IN_ELIM_THM] THEN
ASM_MESON_TAC[]);;
(* ------------------------------------------------------------------------- *)
(* Another sequence of versions (Lawvere, Cantor, Taylor) taken from *)
(* http://ncatlab.org/nlab/show/Cantor%27s+theorem. *)
(* ------------------------------------------------------------------------- *)
let CANTOR_LAWVERE = prove
(`!h:A->(A->B).
(!f:A->B. ?x:A. h(x) = f) ==> !n:B->B. ?x. n(x) = x`,
REPEAT STRIP_TAC THEN
ABBREV_TAC `g:A->B = \a. (n:B->B) (h a a)` THEN
RULE_ASSUM_TAC(REWRITE_RULE[FUN_EQ_THM]) THEN
ASM_MESON_TAC[]);;
let CANTOR = prove
(`!f:A->(A->bool). ~(!s. ?x. f x = s)`,
GEN_TAC THEN DISCH_THEN(MP_TAC o MATCH_MP CANTOR_LAWVERE) THEN
DISCH_THEN(MP_TAC o SPEC `(~)`) THEN MESON_TAC[]);;
let CANTOR_TAYLOR = prove
(`!f:(A->bool)->A. ~(!x y. f(x) = f(y) ==> x = y)`,
REPEAT STRIP_TAC THEN
MP_TAC(ISPEC `\a:A. { b:A | !s. f(s) = a ==> b IN s}`
(REWRITE_RULE[NOT_EXISTS_THM] CANTOR)) THEN
REWRITE_TAC[EXTENSION; IN_ELIM_THM] THEN
ASM_MESON_TAC[]);;
let SURJECTIVE_COMPOSE = prove
(`(!y. ?x. f(x) = y) /\ (!z. ?y. g(y) = z)
==> (!z. ?x. (g o f) x = z)`,
MESON_TAC[o_THM]);;
let INJECTIVE_SURJECTIVE_PREIMAGE = prove
(`!f:A->B. (!x y. f(x) = f(y) ==> x = y) ==> !t. ?s. {x | f(x) IN s} = t`,
REPEAT STRIP_TAC THEN
EXISTS_TAC `IMAGE (f:A->B) t` THEN
REWRITE_TAC[EXTENSION; IN_ELIM_THM; IN_IMAGE] THEN
ASM_MESON_TAC[]);;
let CANTOR_JOHNSTONE = prove
(`!i:B->S f:B->S->bool.
~((!x y. i(x) = i(y) ==> x = y) /\ (!s. ?z. f(z) = s))`,
REPEAT STRIP_TAC THEN
MP_TAC(ISPEC
`(IMAGE (f:B->S->bool)) o (\s:S->bool. {x | i(x) IN s})`
(REWRITE_RULE[NOT_EXISTS_THM] CANTOR)) THEN
REWRITE_TAC[] THEN MATCH_MP_TAC SURJECTIVE_COMPOSE THEN
ASM_REWRITE_TAC[SURJECTIVE_IMAGE] THEN
MATCH_MP_TAC INJECTIVE_SURJECTIVE_PREIMAGE THEN
ASM_REWRITE_TAC[]);;