Datasets:
Tasks:
Text Generation
Modalities:
Text
Sub-tasks:
language-modeling
Languages:
English
Size:
100K - 1M
License:
(* ========================================================================= *) | |
(* Bernoulli numbers and polynomials; sum of kth powers. *) | |
(* ========================================================================= *) | |
needs "Library/binomial.ml";; | |
needs "Library/analysis.ml";; | |
needs "Library/transc.ml";; | |
prioritize_real();; | |
(* ------------------------------------------------------------------------- *) | |
(* A couple of basic lemmas about new-style sums. *) | |
(* ------------------------------------------------------------------------- *) | |
let SUM_DIFFS = prove | |
(`!a m n. m <= n + 1 ==> sum(m..n) (\i. a(i + 1) - a(i)) = a(n + 1) - a(m)`, | |
GEN_TAC THEN GEN_TAC THEN INDUCT_TAC THEN | |
REWRITE_TAC[SUM_CLAUSES_NUMSEG] THENL | |
[REWRITE_TAC[ARITH_RULE `m <= 0 + 1 <=> m = 0 \/ m = 1`] THEN | |
STRIP_TAC THEN ASM_REWRITE_TAC[ARITH; ADD_CLAUSES; REAL_SUB_REFL]; | |
SIMP_TAC[ARITH_RULE `m <= SUC n + 1 <=> m <= n + 1 \/ m = SUC n + 1`] THEN | |
STRIP_TAC THEN ASM_SIMP_TAC[ADD1] THENL [REAL_ARITH_TAC; ALL_TAC] THEN | |
REWRITE_TAC[REAL_SUB_REFL; ARITH_RULE `~((n + 1) + 1 <= n + 1)`] THEN | |
MATCH_MP_TAC SUM_TRIV_NUMSEG THEN ARITH_TAC]);; | |
let DIFF_SUM = prove | |
(`!f f' a b. | |
(!k. a <= k /\ k <= b ==> ((\x. f x k) diffl f'(k)) x) | |
==> ((\x. sum(a..b) (f x)) diffl (sum(a..b) f')) x`, | |
REPLICATE_TAC 3 GEN_TAC THEN INDUCT_TAC THEN | |
REWRITE_TAC[SUM_CLAUSES_NUMSEG] THEN COND_CASES_TAC THEN | |
ASM_SIMP_TAC[ARITH; DIFF_CONST; SUM_TRIV_NUMSEG; | |
ARITH_RULE `~(a <= SUC b) ==> b < a`] THEN | |
DISCH_TAC THEN MATCH_MP_TAC DIFF_ADD THEN | |
ASM_SIMP_TAC[LE_REFL; ARITH_RULE `k <= b ==> k <= SUC b`]);; | |
(* ------------------------------------------------------------------------- *) | |
(* Bernoulli numbers. *) | |
(* ------------------------------------------------------------------------- *) | |
let bernoulli = define | |
`(bernoulli 0 = &1) /\ | |
(!n. bernoulli(SUC n) = | |
--sum(0..n) (\j. &(binom(n + 2,j)) * bernoulli j) / (&n + &2))`;; | |
(* ------------------------------------------------------------------------- *) | |
(* A slightly tidier-looking form of the recurrence. *) | |
(* ------------------------------------------------------------------------- *) | |
let BERNOULLI = prove | |
(`!n. sum(0..n) (\j. &(binom(n + 1,j)) * bernoulli j) = | |
if n = 0 then &1 else &0`, | |
INDUCT_TAC THEN | |
REWRITE_TAC[bernoulli; SUM_CLAUSES_NUMSEG; GSYM ADD1; ADD_CLAUSES; binom; | |
REAL_MUL_LID; LE_0; NOT_SUC] THEN | |
SIMP_TAC[BINOM_LT; ARITH_RULE `n < SUC n`; BINOM_REFL; REAL_ADD_LID] THEN | |
REWRITE_TAC[ADD_CLAUSES] THEN REWRITE_TAC[GSYM REAL_OF_NUM_ADD] THEN | |
REWRITE_TAC[ARITH_RULE `SUC(SUC n) = n + 2`] THEN | |
MATCH_MP_TAC(REAL_FIELD `x = &n + &2 ==> s + x * --s / (&n + &2) = &0`) THEN | |
REWRITE_TAC[ADD1; BINOM_TOP_STEP_REAL; ARITH_RULE `~(n = n + 1)`] THEN | |
REWRITE_TAC[BINOM_REFL] THEN REAL_ARITH_TAC);; | |
(* ------------------------------------------------------------------------- *) | |
(* Bernoulli polynomials. *) | |
(* ------------------------------------------------------------------------- *) | |
let bernpoly = new_definition | |
`bernpoly n x = sum(0..n) (\k. &(binom(n,k)) * bernoulli k * x pow (n - k))`;; | |
(* ------------------------------------------------------------------------- *) | |
(* The key derivative recurrence. *) | |
(* ------------------------------------------------------------------------- *) | |
let DIFF_BERNPOLY = prove | |
(`!n x. ((bernpoly (SUC n)) diffl (&(SUC n) * bernpoly n x)) x`, | |
REPEAT GEN_TAC THEN | |
GEN_REWRITE_TAC (RATOR_CONV o LAND_CONV) [GSYM ETA_AX] THEN | |
REWRITE_TAC[bernpoly; SUM_CLAUSES_NUMSEG; LE_0] THEN | |
GEN_REWRITE_TAC LAND_CONV [GSYM REAL_ADD_RID] THEN | |
MATCH_MP_TAC DIFF_ADD THEN REWRITE_TAC[SUB_REFL; real_pow; DIFF_CONST] THEN | |
REWRITE_TAC[GSYM SUM_LMUL] THEN MATCH_MP_TAC DIFF_SUM THEN | |
REPEAT STRIP_TAC THEN REWRITE_TAC[ADD1; BINOM_TOP_STEP_REAL] THEN | |
DIFF_TAC THEN ASM_SIMP_TAC[ARITH_RULE `k <= n ==> ~(k = n + 1)`] THEN | |
REWRITE_TAC[REAL_MUL_LZERO; REAL_ADD_LID] THEN | |
ASM_SIMP_TAC[ARITH_RULE `k <= n ==> (n + 1) - k - 1 = n - k`] THEN | |
ASM_SIMP_TAC[GSYM REAL_OF_NUM_SUB; ARITH_RULE `k <= n ==> k <= n + 1`] THEN | |
UNDISCH_TAC `k <= n:num` THEN | |
REWRITE_TAC[GSYM REAL_OF_NUM_ADD; GSYM REAL_OF_NUM_LE] THEN | |
ABBREV_TAC `z = x pow (n - k)` THEN CONV_TAC REAL_FIELD);; | |
(* ------------------------------------------------------------------------- *) | |
(* Hence the key stepping recurrence. *) | |
(* ------------------------------------------------------------------------- *) | |
let INTEGRALS_EQ = prove | |
(`!f g. (!x. ((\x. f(x) - g(x)) diffl &0) x) /\ f(&0) = g(&0) | |
==> !x. f(x) = g(x)`, | |
REPEAT STRIP_TAC THEN | |
MP_TAC(SPECL [`\x:real. f(x) - g(x)`; `x:real`; `&0`] DIFF_ISCONST_ALL) THEN | |
ASM_REWRITE_TAC[] THEN REAL_ARITH_TAC);; | |
let RECURRENCE_BERNPOLY = prove | |
(`!n x. bernpoly n (x + &1) - bernpoly n x = &n * x pow (n - 1)`, | |
INDUCT_TAC THENL | |
[REWRITE_TAC[bernpoly; SUM_SING_NUMSEG; REAL_SUB_REFL; SUB_REFL; | |
real_pow; REAL_MUL_LZERO]; | |
ALL_TAC] THEN | |
MATCH_MP_TAC INTEGRALS_EQ THEN CONJ_TAC THENL | |
[X_GEN_TAC `x:real` THEN FIRST_X_ASSUM(MP_TAC o SPEC `x:real`) THEN | |
ONCE_REWRITE_TAC[GSYM REAL_SUB_0] THEN | |
DISCH_THEN(MP_TAC o AP_TERM `(*) (&(SUC n))`) THEN | |
REWRITE_TAC[REAL_MUL_RZERO] THEN DISCH_THEN(SUBST1_TAC o SYM) THEN | |
REWRITE_TAC[REAL_SUB_LDISTRIB] THEN | |
REPEAT(MATCH_MP_TAC DIFF_SUB THEN CONJ_TAC) THEN | |
SIMP_TAC[SUC_SUB1; DIFF_CMUL; DIFF_POW; DIFF_BERNPOLY; ETA_AX] THEN | |
GEN_REWRITE_TAC LAND_CONV [GSYM REAL_MUL_RID] THEN | |
MATCH_MP_TAC DIFF_CHAIN THEN REWRITE_TAC[DIFF_BERNPOLY] THEN | |
DIFF_TAC THEN REAL_ARITH_TAC; | |
ALL_TAC] THEN | |
REWRITE_TAC[bernpoly; GSYM SUM_SUB_NUMSEG] THEN | |
REWRITE_TAC[REAL_ADD_LID; REAL_POW_ONE; GSYM REAL_SUB_LDISTRIB] THEN | |
REWRITE_TAC[SUM_CLAUSES_NUMSEG; LE_0; SUB_REFL; real_pow] THEN | |
REWRITE_TAC[REAL_SUB_REFL; REAL_MUL_RZERO; REAL_ADD_RID] THEN | |
SIMP_TAC[ARITH_RULE `i <= n ==> SUC n - i = SUC(n - i)`] THEN | |
REWRITE_TAC[real_pow; REAL_MUL_LZERO; REAL_SUB_RZERO; REAL_MUL_RID] THEN | |
REWRITE_TAC[BERNOULLI; ADD1] THEN | |
COND_CASES_TAC THEN ASM_REWRITE_TAC[ARITH; real_pow; REAL_MUL_LID] THEN | |
CONV_TAC SYM_CONV THEN REWRITE_TAC[REAL_ENTIRE; REAL_POW_EQ_0] THEN | |
ASM_REWRITE_TAC[ADD_SUB]);; | |
(* ------------------------------------------------------------------------- *) | |
(* Hence we get the main result. *) | |
(* ------------------------------------------------------------------------- *) | |
let SUM_OF_POWERS = prove | |
(`!n. sum(0..n) (\k. &k pow m) = | |
(bernpoly(SUC m) (&n + &1) - bernpoly(SUC m) (&0)) / (&m + &1)`, | |
GEN_TAC THEN ASM_SIMP_TAC[REAL_EQ_RDIV_EQ; REAL_ARITH `&0 < &n + &1`] THEN | |
ONCE_REWRITE_TAC[GSYM REAL_MUL_SYM] THEN | |
REWRITE_TAC[GSYM SUM_LMUL] THEN MATCH_MP_TAC EQ_TRANS THEN EXISTS_TAC | |
`sum(0..n) (\i. bernpoly (SUC m) (&(i + 1)) - bernpoly (SUC m) (&i))` THEN | |
CONJ_TAC THENL | |
[REWRITE_TAC[RECURRENCE_BERNPOLY; GSYM REAL_OF_NUM_ADD] THEN | |
REWRITE_TAC[GSYM REAL_OF_NUM_SUC; SUC_SUB1]; | |
SIMP_TAC[SUM_DIFFS; LE_0] THEN REWRITE_TAC[REAL_OF_NUM_ADD]]);; | |
(* ------------------------------------------------------------------------- *) | |
(* Now explicit computations of the various terms on specific instances. *) | |
(* ------------------------------------------------------------------------- *) | |
let SUM_CONV = | |
let pth = prove | |
(`sum(0..0) f = f 0 /\ sum(0..SUC n) f = sum(0..n) f + f(SUC n)`, | |
SIMP_TAC[SUM_CLAUSES_NUMSEG; LE_0]) in | |
let econv_0 = GEN_REWRITE_CONV I [CONJUNCT1 pth] | |
and econv_1 = GEN_REWRITE_CONV I [CONJUNCT2 pth] in | |
let rec sconv tm = | |
(econv_0 ORELSEC | |
(LAND_CONV(RAND_CONV num_CONV) THENC econv_1 THENC | |
COMB2_CONV (RAND_CONV sconv) (RAND_CONV NUM_SUC_CONV))) tm in | |
sconv;; | |
let BINOM_CONV = | |
let pth = prove | |
(`a * b * x = FACT c ==> x = (FACT c) DIV (a * b)`, | |
REPEAT STRIP_TAC THEN CONV_TAC SYM_CONV THEN | |
MATCH_MP_TAC DIV_UNIQ THEN EXISTS_TAC `0` THEN CONJ_TAC THENL | |
[POP_ASSUM MP_TAC THEN ARITH_TAC; | |
POP_ASSUM MP_TAC THEN ONCE_REWRITE_TAC[GSYM CONTRAPOS_THM] THEN | |
SIMP_TAC[LT_NZ; MULT_ASSOC; MULT_CLAUSES] THEN | |
MESON_TAC[LT_NZ; FACT_LT]]) in | |
let match_pth = MATCH_MP pth | |
and binom_tm = `binom` in | |
fun tm -> | |
let bop,lr = dest_comb tm in | |
if bop <> binom_tm then failwith "BINOM_CONV" else | |
let l,r = dest_pair lr in | |
let n = dest_numeral l and k = dest_numeral r in | |
if n </ k then | |
let th = SPECL [l;r] BINOM_LT in | |
MP th (EQT_ELIM(NUM_LT_CONV(lhand(concl th)))) | |
else | |
let d = n -/ k in | |
let th1 = match_pth(SPECL [mk_numeral d; r] BINOM_FACT) in | |
CONV_RULE NUM_REDUCE_CONV th1;; | |
let BERNOULLIS = | |
let th_0,th_1 = CONJ_PAIR bernoulli | |
and b_tm = `bernoulli` in | |
let conv_1 = GEN_REWRITE_CONV I [th_1] in | |
let rec bconv n = | |
if n <= 0 then [th_0] else | |
let bths = bconv (n - 1) | |
and tm = mk_comb(b_tm,mk_small_numeral n) in | |
(RAND_CONV num_CONV THENC conv_1 THENC | |
LAND_CONV(RAND_CONV SUM_CONV) THENC | |
ONCE_DEPTH_CONV BETA_CONV THENC | |
DEPTH_CONV(NUM_RED_CONV ORELSEC BINOM_CONV) THENC | |
GEN_REWRITE_CONV ONCE_DEPTH_CONV bths THENC | |
REAL_RAT_REDUCE_CONV) tm :: bths in | |
bconv;; | |
let BERNOULLI_CONV = | |
let b_tm = `bernoulli` in | |
fun tm -> let op,n = dest_comb tm in | |
if op <> b_tm || not(is_numeral n) then failwith "BERNOULLI_CONV" | |
else hd(BERNOULLIS(dest_small_numeral n));; | |
let BERNPOLY_CONV = | |
let conv_1 = | |
REWR_CONV bernpoly THENC SUM_CONV THENC | |
TOP_DEPTH_CONV BETA_CONV THENC NUM_REDUCE_CONV | |
and conv_3 = | |
ONCE_DEPTH_CONV BINOM_CONV THENC REAL_POLY_CONV in | |
fun tm -> | |
let n = dest_small_numeral(lhand tm) in | |
let conv_2 = GEN_REWRITE_CONV ONCE_DEPTH_CONV (BERNOULLIS n) in | |
(conv_1 THENC conv_2 THENC conv_3) tm;; | |
let SOP_CONV = | |
let pth = prove | |
(`sum(0..n) (\k. &k pow m) = | |
(\p. (p(&n + &1) - p(&0)) / (&m + &1)) | |
(\x. bernpoly (SUC m) x)`, | |
REWRITE_TAC[SUM_OF_POWERS]) in | |
let conv_0 = REWR_CONV pth in | |
REWR_CONV pth THENC | |
RAND_CONV(ABS_CONV(LAND_CONV NUM_SUC_CONV THENC BERNPOLY_CONV)) THENC | |
TOP_DEPTH_CONV BETA_CONV THENC | |
REAL_POLY_CONV;; | |
let SOP_NUM_CONV = | |
let pth = prove | |
(`sum(0..n) (\k. &k pow p) = &m ==> nsum(0..n) (\k. k EXP p) = m`, | |
REWRITE_TAC[REAL_OF_NUM_POW; GSYM REAL_OF_NUM_SUM_NUMSEG; | |
REAL_OF_NUM_EQ]) in | |
let rule_1 = PART_MATCH (lhs o rand) pth in | |
fun tm -> | |
let th1 = rule_1 tm in | |
let th2 = SOP_CONV(lhs(lhand(concl th1))) in | |
MATCH_MP th1 th2;; | |
(* ------------------------------------------------------------------------- *) | |
(* The example Bernoulli bragged about. *) | |
(* ------------------------------------------------------------------------- *) | |
time SOP_NUM_CONV `nsum(0..1000) (\k. k EXP 10)`;; | |
(* ------------------------------------------------------------------------- *) | |
(* The general formulas for moderate powers. *) | |
(* ------------------------------------------------------------------------- *) | |
time SOP_CONV `sum(0..n) (\k. &k pow 0)`;; | |
time SOP_CONV `sum(0..n) (\k. &k pow 1)`;; | |
time SOP_CONV `sum(0..n) (\k. &k pow 2)`;; | |
time SOP_CONV `sum(0..n) (\k. &k pow 3)`;; | |
time SOP_CONV `sum(0..n) (\k. &k pow 4)`;; | |
time SOP_CONV `sum(0..n) (\k. &k pow 5)`;; | |
time SOP_CONV `sum(0..n) (\k. &k pow 6)`;; | |
time SOP_CONV `sum(0..n) (\k. &k pow 7)`;; | |
time SOP_CONV `sum(0..n) (\k. &k pow 8)`;; | |
time SOP_CONV `sum(0..n) (\k. &k pow 9)`;; | |
time SOP_CONV `sum(0..n) (\k. &k pow 10)`;; | |
time SOP_CONV `sum(0..n) (\k. &k pow 11)`;; | |
time SOP_CONV `sum(0..n) (\k. &k pow 12)`;; | |
time SOP_CONV `sum(0..n) (\k. &k pow 13)`;; | |
time SOP_CONV `sum(0..n) (\k. &k pow 14)`;; | |
time SOP_CONV `sum(0..n) (\k. &k pow 15)`;; | |
time SOP_CONV `sum(0..n) (\k. &k pow 16)`;; | |
time SOP_CONV `sum(0..n) (\k. &k pow 17)`;; | |
time SOP_CONV `sum(0..n) (\k. &k pow 18)`;; | |
time SOP_CONV `sum(0..n) (\k. &k pow 19)`;; | |
time SOP_CONV `sum(0..n) (\k. &k pow 20)`;; | |
time SOP_CONV `sum(0..n) (\k. &k pow 21)`;; | |