Datasets:
Tasks:
Text Generation
Modalities:
Text
Sub-tasks:
language-modeling
Languages:
English
Size:
100K - 1M
License:
(* | |
Authors: Jose Divasón | |
Sebastiaan Joosten | |
René Thiemann | |
Akihisa Yamada | |
*) | |
section \<open>The Polynomial Factorization Algorithm\<close> | |
subsection \<open>Factoring Square-Free Integer Polynomials\<close> | |
text \<open>We combine all previous results, i.e., Berlekamp's algorithm, Hensel-lifting, the reconstruction | |
of Zassenhaus, Mignotte-bounds, etc., to eventually assemble the factorization algorithm for | |
integer polynomials.\<close> | |
theory Berlekamp_Zassenhaus | |
imports | |
Berlekamp_Hensel | |
Polynomial_Factorization.Gauss_Lemma | |
Polynomial_Factorization.Dvd_Int_Poly | |
Reconstruction | |
Suitable_Prime | |
Degree_Bound | |
Code_Abort_Gcd | |
begin | |
context | |
begin | |
private partial_function (tailrec) find_exponent_main :: "int \<Rightarrow> int \<Rightarrow> nat \<Rightarrow> int \<Rightarrow> nat" where | |
[code]: "find_exponent_main p pm m bnd = (if pm > bnd then m | |
else find_exponent_main p (pm * p) (Suc m) bnd)" | |
definition find_exponent :: "int \<Rightarrow> int \<Rightarrow> nat" where | |
"find_exponent p bnd = find_exponent_main p p 1 bnd" | |
lemma find_exponent: assumes p: "p > 1" | |
shows "p ^ find_exponent p bnd > bnd" "find_exponent p bnd \<noteq> 0" | |
proof - | |
{ | |
fix m and n | |
assume "n = nat (1 + bnd - p^m)" and "m \<ge> 1" | |
hence "bnd < p ^ find_exponent_main p (p^m) m bnd \<and> find_exponent_main p (p^m) m bnd \<ge> 1" | |
proof (induct n arbitrary: m rule: less_induct) | |
case (less n m) | |
note simp = find_exponent_main.simps[of p "p^m"] | |
show ?case | |
proof (cases "bnd < p ^ m") | |
case True | |
thus ?thesis using less unfolding simp by simp | |
next | |
case False | |
hence id: "find_exponent_main p (p ^ m) m bnd = find_exponent_main p (p ^ Suc m) (Suc m) bnd" | |
unfolding simp by (simp add: ac_simps) | |
show ?thesis unfolding id | |
by (rule less(1)[OF _ refl], unfold less(2), insert False p, auto) | |
qed | |
qed | |
} | |
from this[OF refl, of 1] | |
show "p ^ find_exponent p bnd > bnd" "find_exponent p bnd \<noteq> 0" | |
unfolding find_exponent_def by auto | |
qed | |
end | |
definition berlekamp_zassenhaus_factorization :: "int poly \<Rightarrow> int poly list" where | |
"berlekamp_zassenhaus_factorization f = (let | |
\<comment> \<open>find suitable prime\<close> | |
p = suitable_prime_bz f; | |
\<comment> \<open>compute finite field factorization\<close> | |
(_, fs) = finite_field_factorization_int p f; | |
\<comment> \<open>determine maximal degree that we can build by multiplying at most half of the factors\<close> | |
max_deg = degree_bound fs; | |
\<comment> \<open>determine a number large enough to represent all coefficients of every\<close> | |
\<comment> \<open>factor of \<open>lc * f\<close> that has at most degree most \<open>max_deg\<close>\<close> | |
bnd = 2 * \<bar>lead_coeff f\<bar> * factor_bound f max_deg; | |
\<comment> \<open>determine \<open>k\<close> such that \<open>p^k > bnd\<close>\<close> | |
k = find_exponent p bnd; | |
\<comment> \<open>perform hensel lifting to lift factorization to mod \<open>p^k\<close>\<close> | |
vs = hensel_lifting p k f fs | |
\<comment> \<open>reconstruct integer factors\<close> | |
in zassenhaus_reconstruction vs p k f)" | |
theorem berlekamp_zassenhaus_factorization_irreducible\<^sub>d: | |
assumes res: "berlekamp_zassenhaus_factorization f = fs" | |
and sf: "square_free f" | |
and deg: "degree f > 0" | |
shows "f = prod_list fs \<and> (\<forall> fi \<in> set fs. irreducible\<^sub>d fi)" | |
proof - | |
let ?lc = "lead_coeff f" | |
define p where "p \<equiv> suitable_prime_bz f" | |
obtain c gs where berl: "finite_field_factorization_int p f = (c,gs)" by force | |
let ?degs = "map degree gs" | |
note res = res[unfolded berlekamp_zassenhaus_factorization_def Let_def, folded p_def, | |
unfolded berl split, folded] | |
from suitable_prime_bz[OF sf refl] | |
have prime: "prime p" and cop: "coprime ?lc p" and sf: "poly_mod.square_free_m p f" | |
unfolding p_def by auto | |
from prime interpret poly_mod_prime p by unfold_locales | |
define n where "n = find_exponent p (2 * abs ?lc * factor_bound f (degree_bound gs))" | |
note n = find_exponent[OF m1, of "2 * abs ?lc * factor_bound f (degree_bound gs)", | |
folded n_def] | |
note bh = berlekamp_and_hensel_separated[OF cop sf refl berl n(2)] | |
have db: "degree_bound (berlekamp_hensel p n f) = degree_bound gs" unfolding bh | |
degree_bound_def max_factor_degree_def by simp | |
note res = res[folded n_def bh(1)] | |
show ?thesis | |
by (rule zassenhaus_reconstruction_irreducible\<^sub>d[OF prime cop sf deg refl _ res], insert n db, auto) | |
qed | |
corollary berlekamp_zassenhaus_factorization_irreducible: | |
assumes res: "berlekamp_zassenhaus_factorization f = fs" | |
and sf: "square_free f" | |
and pr: "primitive f" | |
and deg: "degree f > 0" | |
shows "f = prod_list fs \<and> (\<forall> fi \<in> set fs. irreducible fi)" | |
using pr irreducible_primitive_connect[OF primitive_prod_list] | |
berlekamp_zassenhaus_factorization_irreducible\<^sub>d[OF res sf deg] by auto | |
end | |