Datasets:
Tasks:
Text Generation
Modalities:
Text
Sub-tasks:
language-modeling
Languages:
English
Size:
100K - 1M
License:
(*<*) | |
\<comment>\<open> ******************************************************************** | |
* Project : AGM Theory | |
* Version : 1.0 | |
* | |
* Authors : Valentin Fouillard, Safouan Taha, Frederic Boulanger | |
and Nicolas Sabouret | |
* | |
* This file : AGM contraction | |
* | |
* Copyright (c) 2021 Université Paris Saclay, France | |
* | |
* All rights reserved. | |
* | |
******************************************************************************\<close> | |
theory AGM_Contraction | |
imports AGM_Logic AGM_Remainder | |
begin | |
(*>*) | |
section \<open>Contractions\<close> | |
text\<open>The first operator of belief change of the AGM framework is contraction. This operator consist to remove | |
a sentence @{term \<open>\<phi>\<close>} from a belief set @{term \<open>K\<close>} in such a way that @{term \<open>K\<close>} no longer imply @{term \<open>\<phi>\<close>}. | |
In the following we will first axiomatize such operators at different levels of logics (Tarskian, supraclassical and compact) | |
and then we will give constructions satisfying these axioms. The following graph summarizes all equivalences we established: | |
\includegraphics[width=\textwidth]{"graph_locales.pdf"} | |
We will use the extension feature of locales in Isabelle/HOL to incrementally define the contraction | |
operator as shown by blue arrows in the previous figure. Then, using the interpretation feature of locales, we will prove the equivalence between | |
descriptive and constructive approaches at each level depending on the adopted logics (black arrows). | |
\<close> | |
subsection\<open>AGM contraction postulates\<close> | |
text\<open> | |
The operator of contraction is denoted by the symbol @{text \<open>\<div>\<close>} and respects the six following conditions : | |
\<^item> @{text \<open>contract_closure\<close>} : a belief set @{term \<open>K\<close>} contracted by @{term \<open>\<phi>\<close>} should be logically closed | |
\<^item> @{text \<open>contract_inclusion\<close>} : a contracted set @{term \<open>K\<close>} should be a subset of the original one | |
\<^item> @{text \<open>contract_vacuity\<close>} : if @{term \<open>\<phi>\<close>} is not included in a set @{term \<open>K\<close>} then the contraction of @{term \<open>K\<close>} by @{term \<open>\<phi>\<close>} involves no change at all | |
\<^item> @{text \<open>contract_success\<close>} : if a set @{term \<open>K\<close>} is contracted by @{term \<open>\<phi>\<close>} then @{term \<open>K\<close>} does not imply @{term \<open>\<phi>\<close>} | |
\<^item> @{text \<open>contract_recovery\<close>}: all propositions removed in a set @{term \<open>K\<close>} by contraction of @{term \<open>\<phi>\<close>} will be recovered by expansion of @{term \<open>\<phi>\<close>} | |
\<^item> @{text \<open>contract_extensionality\<close>} : Extensionality guarantees that the logic of contraction is extensional in the sense of allowing logically | |
quivalent sentences to be freely substituted for each other\<close> | |
locale AGM_Contraction = Tarskian_logic + | |
fixes contraction::\<open>'a set \<Rightarrow> 'a \<Rightarrow> 'a set\<close> (infix \<open>\<div>\<close> 55) | |
assumes contract_closure: \<open>K = Cn(A) \<Longrightarrow> K \<div> \<phi> = Cn(K \<div> \<phi>)\<close> | |
and contract_inclusion: \<open>K = Cn(A) \<Longrightarrow> K \<div> \<phi> \<subseteq> K\<close> | |
and contract_vacuity: \<open>K = Cn(A) \<Longrightarrow> \<phi> \<notin> K \<Longrightarrow> K \<div> \<phi> = K\<close> | |
and contract_success: \<open>K = Cn(A) \<Longrightarrow> \<phi> \<notin> Cn({}) \<Longrightarrow> \<phi> \<notin> K \<div> \<phi>\<close> | |
and contract_recovery: \<open>K = Cn(A) \<Longrightarrow> K \<subseteq> ((K \<div> \<phi>) \<oplus> \<phi>)\<close> | |
and contract_extensionality: \<open>K = Cn(A) \<Longrightarrow> Cn({\<phi>}) = Cn({\<psi>}) \<Longrightarrow> K \<div> \<phi> = K \<div> \<psi>\<close> | |
text\<open> | |
A full contraction is defined by two more postulates to rule the conjunction. We base on a supraclassical logic. | |
\<^item> @{text \<open>contract_conj_overlap\<close>} : An element in both @{text \<open>K \<div> \<phi>\<close>} and @{text \<open>K \<div> \<psi>\<close>} is also an element of @{text \<open>K \<div> (\<phi> \<and> \<psi>)\<close>} | |
\<^item> @{text \<open>contract_conj_inclusion\<close>} : If @{term \<open>\<phi>\<close>} not in @{text \<open>K \<div> (\<phi> \<and> \<psi>)\<close>} then all elements removed by this contraction are also removed from @{text \<open>K \<div> \<phi>\<close>}\<close> | |
locale AGM_FullContraction = AGM_Contraction + Supraclassical_logic + | |
assumes contract_conj_overlap: \<open>K = Cn(A) \<Longrightarrow> (K \<div> \<phi>) \<inter> (K \<div> \<psi>) \<subseteq> (K \<div> (\<phi> .\<and>. \<psi>))\<close> | |
and contract_conj_inclusion: \<open>K = Cn(A) \<Longrightarrow> \<phi> \<notin> (K \<div> (\<phi> .\<and>. \<psi>)) \<Longrightarrow> ((K \<div> (\<phi> .\<and>. \<psi>) \<subseteq> (K \<div> \<phi>)))\<close> | |
begin | |
\<comment> \<open>two important lemmas/corollaries that can replace the two assumptions @{text \<open>contract_conj_overlap\<close>} and @{text \<open>contract_conj_inclusion\<close>}\<close> | |
text\<open>@{text \<open>contract_conj_overlap_variant\<close>} does not need \<open>\<psi>\<close> to occur in the left side! \<close> | |
corollary contract_conj_overlap_variant: \<open>K = Cn(A) \<Longrightarrow> (K \<div> \<phi>) \<inter> Cn({\<phi>}) \<subseteq> (K \<div> (\<phi> .\<and>. \<psi>))\<close> | |
proof - | |
assume a:\<open>K = Cn(A)\<close> | |
{ assume b:\<open>K \<turnstile> \<phi>\<close> and c:\<open>K \<turnstile> \<psi>\<close> | |
hence d:\<open>K \<div> (\<phi> .\<and>. \<psi>) = K \<div> (\<phi> .\<and>. ((.\<not> \<phi>) .\<or>. \<psi>))\<close> | |
apply(rule_tac contract_extensionality[OF a]) | |
using conj_overlap[of _ \<phi> \<psi>] by (simp add: Cn_same) | |
have e:\<open>K \<inter> Cn {\<phi>} \<subseteq> K \<div> (.\<not> \<phi> .\<or>. \<psi>)\<close> | |
proof(safe) | |
fix \<chi> | |
assume f:\<open>\<chi> \<in> K\<close> and g:\<open>\<chi> \<in> Cn {\<phi>}\<close> | |
have \<open>K \<div> (.\<not> \<phi> .\<or>. \<psi>) \<turnstile> (.\<not> \<phi> .\<or>. \<psi>) .\<longrightarrow>. \<chi>\<close> | |
by (metis a contract_recovery expansion_def f impI_PL infer_def subset_eq) | |
hence \<open>K \<div> (.\<not> \<phi> .\<or>. \<psi>) \<turnstile> .\<not> \<phi> .\<longrightarrow>. \<chi>\<close> | |
by (meson disjI1_PL imp_trans inclusion_L infer_def insert_subset validD_L valid_imp_PL) | |
with g show \<open>\<chi> \<in> K \<div> (.\<not> \<phi> .\<or>. \<psi>)\<close> | |
by (metis a contract_closure disjE_PL ex_mid_PL infer_def validD_L valid_imp_PL) | |
qed | |
have ?thesis | |
unfolding d using e contract_conj_overlap[OF a, of \<phi> \<open>(.\<not> \<phi> .\<or>. \<psi>)\<close>] a contract_inclusion by force | |
} | |
then show ?thesis | |
apply (cases \<open>\<not> K \<turnstile> \<phi> \<or> \<not> K \<turnstile> \<psi>\<close>) | |
by (metis IntE a assumption_L conjE1_PL conjE2_PL contract_inclusion contract_vacuity subsetD subsetI) blast | |
qed | |
text\<open>@{text \<open>contract_conj_inclusion_variant\<close>}: Everything retained in @{text \<open>K \<div> (\<phi> \<and> \<psi>)\<close>} is retained in @{text \<open>K \<div> \<psi>\<close>}\<close> | |
corollary contract_conj_inclusion_variant : \<open>K = Cn(A) \<Longrightarrow> (K \<div> (\<phi> .\<and>. \<psi>) \<subseteq> (K \<div> \<phi>)) \<or> (K \<div> (\<phi> .\<and>. \<psi>) \<subseteq> (K \<div> \<psi>))\<close> | |
proof - | |
assume a:\<open>K = Cn(A)\<close> | |
{ assume d:\<open>\<phi> \<in> (K \<div> (\<phi> .\<and>. \<psi>)) \<and> \<psi> \<in> (K \<div> (\<phi> .\<and>. \<psi>))\<close> | |
hence \<open>\<phi> .\<and>. \<psi> \<in> (K \<div> (\<phi> .\<and>. \<psi>))\<close> | |
using Supraclassical_logic.conjI_PL Supraclassical_logic_axioms a contract_closure by fastforce | |
with d have ?thesis | |
by (metis (no_types, lifting) Supraclassical_logic.valid_conj_PL Supraclassical_logic_axioms | |
Tarskian_logic.valid_expansion Tarskian_logic_axioms a contract_closure contract_inclusion | |
contract_recovery contract_success dual_order.trans expansion_def) | |
} | |
then show ?thesis | |
by (metis a conj_com_Cn contract_conj_inclusion contract_extensionality) | |
qed | |
end | |
subsection \<open>Partial meet contraction definition\<close> | |
text\<open>A partial meet contraction of @{term \<open>K\<close>} by @{term \<open>\<phi>\<close>} is the intersection of some sets that not imply @{term \<open>\<phi>\<close>}. | |
We define these sets as the "remainders" @{text \<open>(K .\<bottom>. \<phi>\<close>}. | |
The function of selection @{term \<open>\<gamma>\<close>} select the best set of the remainders that do not imply @{term \<open>\<phi>\<close>}. | |
This function respect these postulates : | |
\<^item> @{text \<open>is_selection\<close>} : if there exist some set that do not imply @{term \<open>\<phi>\<close>} then the function selection @{term \<open>\<gamma>\<close>} is a subset of these sets | |
\<^item> @{text \<open>tautology_selection\<close>} : if there is no set that do not imply @{term \<open>\<phi>\<close>} then the result of the selection function is @{term \<open>K\<close>} | |
\<^item> @{text nonempty_selection} : An empty selection function do not exist | |
\<^item> @{text extensional_selection} : Two proposition with the same closure have the same selection function\<close> | |
locale PartialMeetContraction = Tarskian_logic + | |
fixes selection::\<open>'a set \<Rightarrow> 'a \<Rightarrow> 'a set set\<close> (\<open>\<gamma>\<close>) | |
assumes is_selection: \<open>K = Cn(A) \<Longrightarrow> (K .\<bottom>. \<phi>) \<noteq> {} \<Longrightarrow> \<gamma> K \<phi> \<subseteq> (K .\<bottom>. \<phi>)\<close> | |
assumes tautology_selection: \<open>K = Cn(A) \<Longrightarrow> (K .\<bottom>. \<phi>) = {} \<Longrightarrow> \<gamma> K \<phi> = {K}\<close> | |
assumes nonempty_selection: \<open>K = Cn(A) \<Longrightarrow> \<gamma> K \<phi> \<noteq> {}\<close> | |
assumes extensional_selection: \<open>K = Cn(A) \<Longrightarrow> Cn({\<phi>}) = Cn({\<psi>}) \<Longrightarrow> \<gamma> K \<phi> = \<gamma> K \<psi>\<close> | |
\<comment> \<open>extensionality seems very hard to implement for a constructive approach, | |
one basic implementation will be to ignore @{term \<open>A\<close>} and @{term \<open>\<phi>\<close>} | |
and only base on @{text \<open>A .\<bottom>. \<phi>\<close>} that | |
is already proved as extensional (lemma @{text \<open>remainder_extensionality\<close>})\<close> | |
begin | |
text \<open>A partial meet is the intersection of set of selected element.\<close> | |
definition (in Tarskian_logic) meet_contraction::\<open>'a set \<Rightarrow> ('a set \<Rightarrow> 'a \<Rightarrow> 'a set set) \<Rightarrow> 'a \<Rightarrow> 'a set\<close> (\<open>_ \<div>\<^bsub>_\<^esub> _\<close> [60,50,60]55) | |
where mc: \<open>(A \<div>\<^bsub>\<gamma>\<^esub> \<phi>) \<equiv> \<Inter>(\<gamma> A \<phi>)\<close> | |
text \<open>Following this definition 4 postulates of AGM can be proved on a partial meet contraction: | |
\<^item> @{text \<open>contract_inclusion\<close>} | |
\<^item> @{text \<open> contract_vacuity\<close>} | |
\<^item> @{text \<open> contract_closure\<close>} | |
\<^item> @{text \<open> contract_extensionality\<close>}\<close> | |
text \<open>@{text \<open>pmc_inclusion\<close> } :a partial meet contraction is a subset of the contracted set\<close> | |
lemma pmc_inclusion: \<open>K = Cn(A) \<Longrightarrow> K \<div>\<^bsub>\<gamma>\<^esub> \<phi> \<subseteq> K\<close> | |
apply (cases \<open>(K .\<bottom>. \<phi>) = {}\<close>, simp_all add: mc tautology_selection) | |
by (meson Inf_less_eq in_mono is_selection nonempty_selection rem_inclusion) | |
text\<open>@{text \<open>pmc_vacuity\<close>} : if @{term \<open>\<phi>\<close>} is not included in a set @{term \<open>K\<close>} then the partial meet contraction of @{term \<open>K\<close>} by @{term \<open>\<phi>\<close>} involves not change at all\<close> | |
lemma pmc_vacuity: \<open>K = Cn(A) \<Longrightarrow> \<not> K \<turnstile> \<phi> \<Longrightarrow> K \<div>\<^bsub>\<gamma>\<^esub> \<phi> = K\<close> | |
unfolding mc nonconsequence_remainder | |
by (metis Inf_superset_mono Un_absorb1 cInf_singleton insert_not_empty is_selection mc nonconsequence_remainder pmc_inclusion sup_commute) | |
text\<open>@{text \<open>pmc_closure\<close>} : a partial meet contraction is logically closed\<close> | |
lemma pmc_closure: \<open>K = Cn(A) \<Longrightarrow> (K \<div>\<^bsub>\<gamma>\<^esub> \<phi>) = Cn(K \<div>\<^bsub>\<gamma>\<^esub> \<phi>)\<close> | |
proof (rule subset_antisym, simp_all add:inclusion_L mc transitivity_L, goal_cases) | |
case 1 | |
have \<open>\<Inter>(\<gamma> (Cn A) \<phi>) = \<Inter>{Cn(B)|B. B \<in> \<gamma> (Cn A) \<phi>}\<close> | |
by auto (metis idempotency_L insert_absorb insert_iff insert_subset is_selection rem_closure tautology_selection)+ | |
from Cn_Inter[OF this] show ?case by blast | |
qed | |
text \<open>@{text \<open>pmc_extensionality\<close>} : Extensionality guarantees that the logic of contraction is extensional in the sense of allowing logically equivalent sentences to be freely substituted for each other\<close> | |
lemma pmc_extensionality: \<open>K = Cn(A) \<Longrightarrow> Cn({\<phi>}) = Cn({\<psi>}) \<Longrightarrow> K \<div>\<^bsub>\<gamma>\<^esub> \<phi> = K \<div>\<^bsub>\<gamma>\<^esub> \<psi>\<close> | |
by (metis extensional_selection mc) | |
text \<open>@{text \<open>pmc_tautology\<close>} : if @{term \<open>\<phi>\<close>} is a tautology then the partial meet contraction of @{term \<open>K\<close>} by @{term \<open>\<phi>\<close>} is @{term \<open>K\<close>}\<close> | |
lemma pmc_tautology: \<open>K = Cn(A) \<Longrightarrow> \<tturnstile> \<phi> \<Longrightarrow> K \<div>\<^bsub>\<gamma>\<^esub> \<phi> = K\<close> | |
by (simp add: mc taut2emptyrem tautology_selection) | |
text\<open>@{text \<open>completion\<close>} is a an operator that can build an equivalent selection from an existing one\<close> | |
definition (in Tarskian_logic) completion::\<open>('a set \<Rightarrow> 'a \<Rightarrow> 'a set set) \<Rightarrow> 'a set \<Rightarrow> 'a \<Rightarrow> 'a set set\<close> (\<open>*\<close>) | |
where \<open>* \<gamma> A \<phi> \<equiv> if (A .\<bottom>. \<phi>) = {} then {A} else {B. B \<in> A .\<bottom>. \<phi> \<and> \<Inter> (\<gamma> A \<phi>) \<subseteq> B}\<close> | |
lemma selection_completion: "K = Cn(A) \<Longrightarrow> \<gamma> K \<phi> \<subseteq> * \<gamma> K \<phi>" | |
using completion_def is_selection tautology_selection by fastforce | |
lemma (in Tarskian_logic) completion_completion: "K = Cn(A) \<Longrightarrow> * (* \<gamma>) K \<phi> = * \<gamma> K \<phi>" | |
by (auto simp add:completion_def) | |
lemma pmc_completion: \<open>K = Cn(A) \<Longrightarrow> K \<div>\<^bsub>*\<gamma>\<^esub> \<phi> = K \<div>\<^bsub>\<gamma>\<^esub> \<phi>\<close> | |
apply(auto simp add: mc completion_def tautology_selection) | |
by (metis Inter_lower equals0D in_mono is_selection) | |
end | |
text\<open>A transitively relational meet contraction is a partial meet contraction using a binary relation between the elements of the selection function\<close> | |
text\<open>A relation is : | |
\<^item> transitive (@{text \<open>trans_rel\<close>}) | |
\<^item> non empty (there is always an element preferred to the others (@{text \<open>nonempty_rel\<close>}))\<close> | |
text\<open>A selection function @{term \<open>\<gamma>\<^sub>T\<^sub>R\<close>} is transitively relational @{text \<open>rel_sel\<close>} with the following condition : | |
\<^item> If the the remainders @{text \<open>K .\<bottom>. \<phi>\<close>} is empty then the selection function return @{term \<open>K\<close>} | |
\<^item> Else the selection function return a non empty transitive relation on the remainders\<close> | |
locale TransitivelyRelationalMeetContraction = Tarskian_logic + | |
fixes relation::\<open>'a set \<Rightarrow> 'a set \<Rightarrow> 'a set \<Rightarrow> bool\<close> (\<open>_ \<preceq>\<^bsub>_\<^esub> _\<close> [60,50,60]55) | |
assumes trans_rel: \<open>K = Cn(A) \<Longrightarrow> B \<preceq>\<^bsub>K\<^esub> C \<Longrightarrow> C \<preceq>\<^bsub>K\<^esub> D \<Longrightarrow> B \<preceq>\<^bsub>K\<^esub> D\<close> | |
assumes nonempty_rel: \<open>K = Cn(A) \<Longrightarrow> (K .\<bottom>. \<phi>) \<noteq> {} \<Longrightarrow> \<exists>B\<in>(K .\<bottom>. \<phi>). (\<forall>C\<in>(K .\<bottom>. \<phi>). C \<preceq>\<^bsub>K\<^esub> B)\<close> \<comment> \<open>pas clair dans la litterrature\<close> | |
fixes rel_sel::\<open>'a set \<Rightarrow> 'a \<Rightarrow> 'a set set\<close> (\<open>\<gamma>\<^sub>T\<^sub>R\<close>) | |
defines rel_sel: \<open>\<gamma>\<^sub>T\<^sub>R K \<phi> \<equiv> if (K .\<bottom>. \<phi>) = {} then {K} | |
else {B. B\<in>(K .\<bottom>. \<phi>) \<and> (\<forall>C\<in>(K .\<bottom>. \<phi>). C \<preceq>\<^bsub>K\<^esub> B)}\<close> | |
begin | |
text\<open>A transitively relational selection function respect the partial meet contraction postulates.\<close> | |
sublocale PartialMeetContraction where selection = \<gamma>\<^sub>T\<^sub>R | |
apply(unfold_locales) | |
apply(simp_all add: rel_sel) | |
using nonempty_rel apply blast | |
using remainder_extensionality by blast | |
end | |
text\<open>A full meet contraction is a limiting case of the partial meet contraction where if the remainders are not empty then | |
the selection function return all the remainders (as defined by @{text \<open>full_sel\<close>}\<close> | |
locale FullMeetContraction = Tarskian_logic + | |
fixes full_sel::\<open>'a set \<Rightarrow> 'a \<Rightarrow> 'a set set\<close> (\<open>\<gamma>\<^sub>F\<^sub>C\<close>) | |
defines full_sel: \<open>\<gamma>\<^sub>F\<^sub>C K \<phi> \<equiv> if K .\<bottom>. \<phi> = {} then {K} else K .\<bottom>. \<phi>\<close> | |
begin | |
text\<open>A full selection and a relation ? is a transitively relational meet contraction postulates.\<close> | |
sublocale TransitivelyRelationalMeetContraction where relation = \<open>\<lambda> K A B. True\<close> and rel_sel=\<gamma>\<^sub>F\<^sub>C | |
by (unfold_locales, auto simp add:full_sel, rule eq_reflection, simp) | |
end | |
subsection\<open>Equivalence of partial meet contraction and AGM contraction\<close> | |
locale PMC_SC = PartialMeetContraction + Supraclassical_logic + Compact_logic | |
begin | |
text \<open>In a context of a supraclassical and a compact logic the two remaining postulates of AGM contraction : | |
\<^item> @{text \<open>contract_recovery\<close>} | |
\<^item> @{text \<open>contract_success\<close>} | |
can be proved on a partial meet contraction.\<close> | |
text\<open>@{text \<open>pmc_recovery\<close>} : all proposition removed by a partial meet contraction of @{term \<open>\<phi>\<close>} will be recovered by the expansion of @{term \<open>\<phi>\<close>}\<close> | |
\<comment> \<open>recovery requires supraclassicality\<close> | |
lemma pmc_recovery: \<open>K = Cn(A) \<Longrightarrow> K \<subseteq> ((K \<div>\<^bsub>\<gamma>\<^esub> \<phi>) \<oplus> \<phi>)\<close> | |
apply(cases \<open>(K .\<bottom>. \<phi>) = {}\<close>, simp_all (no_asm) add:mc expansion_def) | |
using inclusion_L tautology_selection apply fastforce | |
proof - | |
assume a:\<open>K = Cn(A)\<close> and b:\<open>K .\<bottom>. \<phi> \<noteq> {}\<close> | |
{ fix \<psi> | |
assume d:\<open>K \<turnstile> \<psi>\<close> | |
have \<open>\<phi> .\<longrightarrow>. \<psi> \<in> \<Inter>(\<gamma> K \<phi>)\<close> | |
using is_selection[OF a b] | |
by auto (metis a d infer_def rem_closure remainder_recovery subsetD) | |
} | |
with a b show \<open>K \<subseteq> Cn (insert \<phi> (\<Inter> (\<gamma> K \<phi>)))\<close> | |
by (metis (no_types, lifting) Un_commute assumption_L imp_PL infer_def insert_is_Un subsetI) | |
qed | |
text \<open>@{text \<open>pmc_success\<close>} : a partial meet contraction of @{term \<open>K\<close>} by @{term \<open>\<phi>\<close>} not imply @{term \<open>\<phi>\<close>}\<close> | |
\<comment> \<open>success requires compacteness\<close> | |
lemma pmc_success: \<open>K = Cn(A) \<Longrightarrow> \<phi> \<notin> Cn({}) \<Longrightarrow> \<phi> \<notin> K \<div>\<^bsub>\<gamma>\<^esub> \<phi>\<close> | |
proof | |
assume a:\<open>K = Cn(A)\<close> and b:\<open>\<phi> \<notin> Cn({})\<close> and c:\<open>\<phi> \<in> K \<div>\<^bsub>\<gamma>\<^esub> \<phi>\<close> | |
from c show False unfolding mc | |
proof(cases \<open>K .\<bottom>. \<phi> = {K}\<close>) | |
case True | |
then show ?thesis | |
by (meson assumption_L c nonconsequence_remainder pmc_inclusion[OF a] subsetD) | |
next | |
case False | |
hence \<open>\<forall>B\<in>K .\<bottom>. \<phi>. \<phi> \<notin> B\<close> using assumption_L rem by auto | |
moreover have \<open>K .\<bottom>. \<phi> \<noteq> {}\<close> using b emptyrem2taut validD_L by blast | |
ultimately show ?thesis | |
using b c mc nonempty_selection[OF a] validD_L emptyrem2taut is_selection[OF a] | |
by (metis Inter_iff bot.extremum_uniqueI subset_iff) | |
qed | |
qed | |
text\<open>As a partial meet contraction has been proven to respect all postulates of AGM contraction | |
the equivalence between the both are straightforward\<close> | |
sublocale AGM_Contraction where contraction = \<open>\<lambda>A \<phi>. A \<div>\<^bsub>\<gamma>\<^esub> \<phi>\<close> | |
using pmc_closure pmc_inclusion pmc_vacuity | |
pmc_success pmc_recovery pmc_extensionality | |
expansion_def idempotency_L infer_def | |
by (unfold_locales) metis+ | |
end | |
locale AGMC_SC = AGM_Contraction + Supraclassical_logic + Compact_logic | |
begin | |
text \<open>obs 2.5 page 514\<close> | |
definition AGM_selection::\<open>'a set \<Rightarrow> 'a \<Rightarrow> 'a set set\<close> (\<open>\<gamma>\<^sub>A\<^sub>G\<^sub>M\<close>) | |
where AGM_sel: \<open>\<gamma>\<^sub>A\<^sub>G\<^sub>M A \<phi> \<equiv> if A .\<bottom>. \<phi> = {} then {A} else {B. B \<in> A .\<bottom>. \<phi> \<and> A \<div> \<phi> \<subseteq> B}\<close> | |
text\<open>The selection function @{term \<open>\<gamma>\<^sub>A\<^sub>G\<^sub>M\<close>} respect the partial meet contraction postulates\<close> | |
sublocale PartialMeetContraction where selection = \<gamma>\<^sub>A\<^sub>G\<^sub>M | |
proof(unfold_locales, unfold AGM_sel, simp_all, goal_cases) | |
case (1 K A \<phi>) \<comment> \<open>@{text \<open>non_emptiness\<close>} of selection requires a compact logic\<close> | |
then show ?case using upper_remainder[of \<open>K \<div> \<phi>\<close> K \<phi>] contract_success[OF 1(1)] | |
by (metis contract_closure contract_inclusion infer_def taut2emptyrem valid_def) | |
next | |
case (2 K A \<phi> \<psi>) | |
then show ?case | |
by (metis (mono_tags, lifting) contract_extensionality Collect_cong remainder_extensionality) | |
qed | |
text \<open>@{text \<open>contraction_is_pmc\<close>} : an AGM contraction is equivalent to a partial met contraction using the selection function \<open>\<gamma>\<^sub>A\<^sub>G\<^sub>M\<close>\<close> | |
lemma contraction_is_pmc: \<open>K = Cn(A) \<Longrightarrow> K \<div> \<phi> = K \<div>\<^bsub>\<gamma>\<^sub>A\<^sub>G\<^sub>M\<^esub> \<phi>\<close> \<comment> \<open>requires a supraclassical logic\<close> | |
proof | |
assume a:\<open>K = Cn(A)\<close> | |
show \<open>K \<div> \<phi> \<subseteq> K \<div>\<^bsub>\<gamma>\<^sub>A\<^sub>G\<^sub>M\<^esub> \<phi>\<close> | |
using contract_inclusion[OF a] by (auto simp add:mc AGM_sel) | |
next | |
assume a:\<open>K = Cn(A)\<close> | |
show \<open>K \<div>\<^bsub>\<gamma>\<^sub>A\<^sub>G\<^sub>M\<^esub> \<phi> \<subseteq> K \<div> \<phi>\<close> | |
proof (cases \<open>\<tturnstile> \<phi>\<close>) | |
case True | |
hence \<open>K .\<bottom>. \<phi> = {}\<close> | |
using nonconsequence_remainder taut2emptyrem by auto | |
then show ?thesis | |
apply(simp_all add:mc AGM_sel) | |
by (metis a emptyrem2taut contract_closure contract_recovery valid_expansion) | |
next | |
case validFalse:False | |
then show ?thesis | |
proof (cases \<open>K \<turnstile> \<phi>\<close>) | |
case True | |
hence b:\<open>K .\<bottom>. \<phi> \<noteq> {}\<close> | |
using emptyrem2taut validFalse by blast | |
have d:\<open>\<psi> \<in> K \<Longrightarrow> \<phi> .\<longrightarrow>. \<psi> \<in> K \<div> \<phi>\<close> for \<psi> | |
using Supraclassical_logic.impI_PL Supraclassical_logic_axioms a contract_closure contract_recovery expansion_def by fastforce | |
{ fix \<psi> | |
assume e:\<open>\<psi> \<in> K \<close> and f:\<open>\<psi> \<notin> K \<div> \<phi>\<close> | |
have \<open>(\<psi> .\<longrightarrow>. \<phi>) .\<longrightarrow>. \<phi> \<notin> K \<div> \<phi>\<close> | |
using imp_recovery2[of \<open>K \<div> \<phi>\<close> \<phi> \<psi>] a contract_closure d e f by auto | |
hence g:\<open>\<not> (K \<div> \<phi>) \<union> {\<psi> .\<longrightarrow>. \<phi>} \<turnstile> \<phi>\<close> | |
using a contract_closure impI_PL by fastforce | |
then obtain B where h:\<open>(K \<div> \<phi>) \<union> {\<psi> .\<longrightarrow>. \<phi>} \<subseteq> B\<close> and i:\<open>B \<in> K .\<bottom>. \<phi>\<close> | |
using upper_remainder[of \<open>(K \<div> \<phi>) \<union> {\<psi> .\<longrightarrow>. \<phi>}\<close> K \<phi>] a True contract_inclusion idempotency_L impI2 by auto | |
hence j:\<open>\<psi> \<notin> Cn(B)\<close> | |
by (metis (no_types, lifting) CollectD mp_PL Un_insert_right a infer_def insert_subset rem rem_closure) | |
have \<open>\<psi> \<notin> K \<div>\<^bsub>\<gamma>\<^sub>A\<^sub>G\<^sub>M\<^esub> \<phi>\<close> | |
apply(simp add:mc AGM_sel b, rule_tac x=B in exI) | |
by (meson Tarskian_logic.assumption_L Tarskian_logic_axioms h i j le_sup_iff) | |
} | |
then show ?thesis | |
using a pmc_inclusion by fastforce | |
next | |
case False | |
hence \<open>K .\<bottom>. \<phi> = {K}\<close> | |
using nonconsequence_remainder taut2emptyrem by auto | |
then show ?thesis | |
using False a contract_vacuity idempotency_L pmc_vacuity by auto | |
qed | |
qed | |
qed | |
lemma contraction_with_completion: \<open>K = Cn(A) \<Longrightarrow> K \<div> \<phi> = K \<div>\<^bsub>* \<gamma>\<^sub>A\<^sub>G\<^sub>M\<^esub> \<phi>\<close> | |
by (simp add: contraction_is_pmc pmc_completion) | |
end | |
(* in case of doubt uncomment one of these\<in> | |
sublocale AGMC_SC \<subseteq> PMC_SC where selection = \<gamma>\<^sub>A\<^sub>G\<^sub>M\<^sub>C | |
by (unfold_locales) | |
sublocale PMC_SC \<subseteq> AGMC_SC where contraction = \<open>\<lambda>A \<phi>. A \<div>\<^bsub>\<gamma>\<^esub> \<phi>\<close> | |
by (unfold_locales) | |
*) | |
locale TRMC_SC = TransitivelyRelationalMeetContraction + PMC_SC where selection = \<gamma>\<^sub>T\<^sub>R | |
begin | |
text \<open>A transitively relational selection function respect conjuctive overlap.\<close> | |
lemma rel_sel_conj_overlap: \<open>K = Cn(A) \<Longrightarrow> \<gamma>\<^sub>T\<^sub>R K (\<phi> .\<and>. \<psi>) \<subseteq> \<gamma>\<^sub>T\<^sub>R K \<phi> \<union> \<gamma>\<^sub>T\<^sub>R K \<psi>\<close> | |
proof(intro subsetI) | |
fix B | |
assume a:\<open>K = Cn(A)\<close> and b:\<open>B \<in> \<gamma>\<^sub>T\<^sub>R K (\<phi> .\<and>. \<psi>)\<close> | |
show \<open>B \<in> \<gamma>\<^sub>T\<^sub>R K \<phi> \<union> \<gamma>\<^sub>T\<^sub>R K \<psi>\<close> (is ?A) | |
proof(cases \<open>\<tturnstile> \<phi> \<or> \<tturnstile> \<psi> \<or> \<not> K \<turnstile> \<phi> \<or> \<not> K \<turnstile> \<psi>\<close>, elim disjE) | |
assume \<open>\<tturnstile> \<phi>\<close> | |
hence c:\<open>Cn({\<phi> .\<and>. \<psi>}) = Cn({\<psi>})\<close> | |
using conj_equiv valid_Cn_equiv valid_def by blast | |
from b show ?A | |
by (metis Un_iff a c extensional_selection) | |
next | |
assume \<open>\<tturnstile> \<psi>\<close> | |
hence c:\<open>Cn({\<phi> .\<and>. \<psi>}) = Cn({\<phi>})\<close> | |
by (simp add: Cn_conj_bis Cn_same validD_L) | |
from b show ?A | |
by (metis Un_iff a c extensional_selection) | |
next | |
assume \<open>\<not> K \<turnstile> \<phi>\<close> | |
then show ?A | |
by (metis UnI1 a b conjE1_PL is_selection nonconsequence_remainder nonempty_selection tautology_selection subset_singletonD) | |
next | |
assume \<open>\<not> K \<turnstile> \<psi>\<close> | |
then show ?A | |
by (metis UnI2 a b conjE2_PL is_selection nonconsequence_remainder nonempty_selection tautology_selection subset_singletonD) | |
next | |
assume d:\<open>\<not> (\<tturnstile> \<phi> \<or> \<tturnstile> \<psi> \<or> \<not> K \<turnstile> \<phi> \<or> \<not> K \<turnstile> \<psi>)\<close> | |
hence h:\<open>K .\<bottom>. \<phi> \<noteq> {}\<close> and i:\<open>K .\<bottom>. \<psi> \<noteq> {}\<close> and j:\<open>K .\<bottom>. (\<phi> .\<and>. \<psi>) \<noteq> {}\<close> and k:"K \<turnstile> \<phi> .\<and>. \<psi>" | |
using d emptyrem2taut valid_conj_PL apply auto | |
by (meson Supraclassical_logic.conjI_PL Supraclassical_logic_axioms d) | |
show ?A | |
using remainder_conj[OF a k] b h i j rel_sel by auto | |
qed | |
qed | |
text\<open>A transitively relational meet contraction respect conjuctive overlap.\<close> | |
lemma trmc_conj_overlap: \<open>K = Cn(A) \<Longrightarrow> (K \<div>\<^bsub>\<gamma>\<^sub>T\<^sub>R\<^esub> \<phi>) \<inter> (K \<div>\<^bsub>\<gamma>\<^sub>T\<^sub>R\<^esub> \<psi>) \<subseteq> (K \<div>\<^bsub>\<gamma>\<^sub>T\<^sub>R\<^esub> (\<phi> .\<and>. \<psi>))\<close> | |
unfolding mc using rel_sel_conj_overlap by blast | |
text\<open>A transitively relational selection function respect conjuctive inclusion\<close> | |
lemma rel_sel_conj_inclusion: \<open>K = Cn(A) \<Longrightarrow> \<gamma>\<^sub>T\<^sub>R K (\<phi> .\<and>. \<psi>) \<inter> (K .\<bottom>. \<phi>) \<noteq> {} \<Longrightarrow> \<gamma>\<^sub>T\<^sub>R K \<phi> \<subseteq> \<gamma>\<^sub>T\<^sub>R K (\<phi> .\<and>. \<psi>)\<close> | |
proof(intro subsetI) | |
fix B | |
assume a:\<open>K = Cn(A)\<close> and b:\<open>\<gamma>\<^sub>T\<^sub>R K (\<phi> .\<and>. \<psi>) \<inter> (K .\<bottom>. \<phi>) \<noteq> {}\<close> and c:\<open>B \<in> \<gamma>\<^sub>T\<^sub>R K \<phi>\<close> | |
show \<open>B \<in> \<gamma>\<^sub>T\<^sub>R K (\<phi> .\<and>. \<psi>)\<close> (is ?A) | |
proof(cases \<open>\<tturnstile> \<phi> \<or> \<tturnstile> \<psi> \<or> \<not> K \<turnstile> \<phi> \<or> \<not> K \<turnstile> \<psi>\<close>, auto) | |
assume \<open>\<tturnstile> \<phi>\<close> | |
then show ?A | |
using b taut2emptyrem by auto | |
next | |
assume \<open>\<tturnstile> \<psi>\<close> | |
hence \<open>Cn({\<phi> .\<and>. \<psi>}) = Cn({\<phi>})\<close> | |
by (simp add: Cn_conj_bis Cn_same validD_L) | |
then show ?A | |
using a c extensional_selection by blast | |
next | |
assume d:\<open>\<phi> \<notin> Cn K\<close> | |
with d show ?A | |
by (metis Int_emptyI Tarskian_logic.nonconsequence_remainder Tarskian_logic_axioms a b c idempotency_L | |
inf_bot_right is_selection nonempty_selection singletonD subset_singletonD) | |
next | |
assume d:\<open>\<psi> \<notin> Cn K\<close> | |
hence e:\<open>(\<phi> .\<and>. \<psi>) \<notin> Cn K\<close> | |
by (meson Supraclassical_logic.conjE2_PL Supraclassical_logic_axioms) | |
hence f:\<open>\<gamma>\<^sub>T\<^sub>R K (\<phi> .\<and>. \<psi>) = {K}\<close> | |
by (metis Tarskian_logic.nonconsequence_remainder Tarskian_logic_axioms a insert_not_empty is_selection | |
nonempty_selection subset_singletonD) | |
with b have g:\<open>(K .\<bottom>. \<phi>) = {K}\<close> | |
unfolding nonconsequence_remainder[symmetric] using rem by auto | |
with d f show ?A | |
using a c is_selection by fastforce | |
next | |
assume d:\<open>\<not> \<tturnstile> \<phi>\<close> and e:\<open>\<not> \<tturnstile> \<psi>\<close> and f:\<open>\<phi> \<in> Cn K\<close> and g:\<open>\<psi> \<in> Cn K\<close> | |
hence h:\<open>K .\<bottom>. \<phi> \<noteq> {}\<close> and i:\<open>K .\<bottom>. \<psi> \<noteq> {}\<close> and j:\<open>K .\<bottom>. (\<phi> .\<and>. \<psi>) \<noteq> {}\<close> and k:"K \<turnstile> \<phi> .\<and>. \<psi>" | |
using e d emptyrem2taut valid_conj_PL apply auto | |
by (meson Supraclassical_logic.conjI_PL Supraclassical_logic_axioms f g) | |
have o:\<open>B \<in> K .\<bottom>. \<phi> \<Longrightarrow> B \<in> K .\<bottom>. (\<phi> .\<and>. \<psi>)\<close> for B | |
using a k remainder_conj by auto | |
from b obtain B' where l:\<open>B' \<in> K .\<bottom>. (\<phi> .\<and>. \<psi>)\<close> and m:\<open>\<forall>C\<in>K .\<bottom>. (\<phi> .\<and>. \<psi>). C \<preceq>\<^bsub>K\<^esub> B'\<close> and n:\<open>\<phi> \<notin> B'\<close> | |
apply (auto simp add:mc rel_sel j) | |
using assumption_L rem by force | |
have p:\<open>B' \<in> K .\<bottom>. \<phi>\<close> | |
apply(simp add: rem) | |
by (metis (no_types, lifting) Supraclassical_logic.conjE1_PL Supraclassical_logic_axioms | |
Tarskian_logic.rem Tarskian_logic_axioms a l mem_Collect_eq n rem_closure) | |
from c show ?A | |
apply (simp add:rel_sel o j h) | |
using m p trans_rel a by blast | |
qed | |
qed | |
text\<open>A transitively relational meet contraction respect conjuctive inclusion\<close> | |
lemma trmc_conj_inclusion: \<open>K = Cn(A) \<Longrightarrow> \<phi> \<notin> (K \<div>\<^bsub>\<gamma>\<^sub>T\<^sub>R\<^esub> (\<phi> .\<and>. \<psi>)) \<Longrightarrow> ((K \<div>\<^bsub>\<gamma>\<^sub>T\<^sub>R\<^esub> (\<phi> .\<and>. \<psi>) \<subseteq> (K \<div>\<^bsub>\<gamma>\<^sub>T\<^sub>R\<^esub> \<phi>)))\<close> | |
proof - | |
assume a:\<open>K = Cn(A)\<close> and b:\<open>\<phi> \<notin> (K \<div>\<^bsub>\<gamma>\<^sub>T\<^sub>R\<^esub> (\<phi> .\<and>. \<psi>))\<close> | |
then obtain B where c:\<open>B \<in> \<gamma>\<^sub>T\<^sub>R K (\<phi> .\<and>. \<psi>)\<close> and d:\<open>\<not> B \<turnstile> \<phi>\<close> apply(simp add:mc) | |
by (metis b emptyrem2taut is_selection pmc_tautology rem_closure subset_iff validD_L valid_conj_PL) | |
hence \<open>B \<in> (K .\<bottom>. \<phi>)\<close> | |
using remainder_recovery_bis[OF a _ d, of \<open>\<phi> .\<and>. \<psi>\<close>] | |
by (metis (no_types, opaque_lifting) a conj_PL emptyrem2taut insert_not_empty is_selection | |
nonconsequence_remainder subsetD taut2emptyrem) | |
with c have e:\<open>\<gamma>\<^sub>T\<^sub>R K (\<phi> .\<and>. \<psi>) \<inter> (K .\<bottom>. \<phi>) \<noteq> {}\<close> by blast | |
then show \<open>((K \<div>\<^bsub>\<gamma>\<^sub>T\<^sub>R\<^esub> (\<phi> .\<and>. \<psi>) \<subseteq> (K \<div>\<^bsub>\<gamma>\<^sub>T\<^sub>R\<^esub> \<phi>)))\<close> | |
unfolding mc using rel_sel_conj_inclusion[OF a e] by blast | |
qed | |
text\<open>As a transitively relational meet contraction has been proven to respect all postulates of AGM full contraction | |
the equivalence between the both are straightforward\<close> | |
sublocale AGM_FullContraction where contraction = \<open>\<lambda>A \<phi>. A \<div>\<^bsub>\<gamma>\<^sub>T\<^sub>R\<^esub> \<phi>\<close> | |
using trmc_conj_inclusion trmc_conj_overlap | |
by (unfold_locales, simp_all) | |
end | |
locale AGMFC_SC = AGM_FullContraction + AGMC_SC | |
begin | |
text\<open>An AGM relation is defined as ?\<close> | |
definition AGM_relation::\<open>'a set \<Rightarrow> 'a set \<Rightarrow> 'a set \<Rightarrow> bool\<close> | |
where AGM_rel: \<open>AGM_relation C K B \<equiv> (C = K \<and> B = K) \<or> ( (\<exists>\<phi>. K \<turnstile> \<phi> \<and> C \<in> K .\<bottom>. \<phi>) | |
\<and> (\<exists>\<phi>. K \<turnstile> \<phi> \<and> B \<in> K .\<bottom>. \<phi> \<and> K \<div> \<phi> \<subseteq> B) | |
\<and> (\<forall>\<phi>. (K \<turnstile> \<phi> \<and> C \<in> K .\<bottom>. \<phi> \<and> B \<in> K .\<bottom>. \<phi> \<and> K \<div> \<phi> \<subseteq> C) \<longrightarrow> K \<div> \<phi> \<subseteq> B))\<close> | |
text\<open>An AGM relational selection is defined as a function that return @{term \<open>K\<close>} if the remainders of @{text \<open>K .\<bottom>. \<phi>\<close>} is empty and | |
the best element of the remainders according to an AGM relation\<close> | |
definition AGM_relational_selection::\<open>'a set \<Rightarrow> 'a \<Rightarrow> 'a set set\<close> (\<open>\<gamma>\<^sub>A\<^sub>G\<^sub>M\<^sub>T\<^sub>R\<close>) | |
where AGM_rel_sel: \<open>\<gamma>\<^sub>A\<^sub>G\<^sub>M\<^sub>T\<^sub>R K \<phi> \<equiv> if (K .\<bottom>. \<phi>) = {} | |
then {K} | |
else {B. B\<in>(K .\<bottom>. \<phi>) \<and> (\<forall>C\<in>(K .\<bottom>. \<phi>). AGM_relation C K B)}\<close> | |
lemma AGM_rel_sel_completion: \<open>K = Cn(A) \<Longrightarrow> \<gamma>\<^sub>A\<^sub>G\<^sub>M\<^sub>T\<^sub>R K \<phi> = * \<gamma>\<^sub>A\<^sub>G\<^sub>M K \<phi>\<close> | |
apply (unfold AGM_rel_sel, simp add:completion_def split: if_splits) | |
proof(auto simp add:AGM_sel) | |
fix S B C | |
assume a:\<open>S \<in> Cn(A) .\<bottom>. \<phi>\<close> and b:\<open>B \<in> Cn(A) .\<bottom>. \<phi>\<close> and c:\<open>\<Inter> {B \<in> Cn(A) .\<bottom>. \<phi>. Cn(A) \<div> \<phi> \<subseteq> B} \<subseteq> B\<close> | |
and d:\<open>C \<in> Cn(A) .\<bottom>. \<phi>\<close> | |
hence e:\<open>\<phi> \<notin> Cn(A) \<div> \<phi>\<close> | |
using Tarskian_logic.taut2emptyrem Tarskian_logic_axioms contract_success by fastforce | |
show \<open>AGM_relation C (Cn(A)) B\<close> | |
proof(cases \<open>\<phi> \<in> Cn(A)\<close>) | |
case True | |
{ fix \<psi> | |
assume \<open>Cn A \<div> \<psi> \<subseteq> C\<close> | |
hence \<open>Cn A \<div> (\<phi> .\<and>. \<psi>) \<subseteq> Cn A \<div> \<phi>\<close> | |
using contract_conj_inclusion_variant[of \<open>Cn(A)\<close> A \<phi> \<psi>] | |
by (metis (mono_tags, lifting) assumption_L contract_conj_inclusion d mem_Collect_eq rem subset_iff) | |
} note f = this | |
{ fix \<psi> \<phi>' | |
assume g:\<open>\<psi> \<in> Cn A \<div> \<phi>'\<close> and h:\<open>B \<in> Cn A .\<bottom>. \<phi>'\<close> and j:\<open>Cn A \<div> \<phi>' \<subseteq> C\<close> and i:\<open>\<psi> \<notin> B\<close> | |
hence \<open>\<phi>' .\<or>. \<psi> \<in> Cn A \<div> \<phi>'\<close> | |
using Supraclassical_logic.disjI2_PL Supraclassical_logic_axioms contract_closure by fastforce | |
hence k:\<open>\<phi>' .\<or>. \<psi> \<in> Cn A \<div> \<phi>\<close> | |
using contract_conj_overlap_variant[of \<open>Cn(A)\<close> A \<phi>' \<phi>] f[OF j] | |
by (metis IntI Supraclassical_logic.disjI1_PL Supraclassical_logic_axioms conj_com_Cn | |
contract_extensionality inclusion_L singletonI subsetD) | |
hence l:\<open>Cn A \<div> \<phi> \<subseteq> B\<close> using c by auto | |
from k l have m:\<open>\<phi>' .\<or>. \<psi> \<in> B\<close> and n:\<open>B =Cn(B)\<close> | |
using b rem_closure by blast+ | |
have \<open>B \<union> {\<psi>} \<turnstile> \<phi>'\<close> using g h i | |
by (simp add:rem) (metis contract_inclusion insertI1 insert_subsetI psubsetI subsetD subset_insertI) | |
with n m have \<open>B \<turnstile> \<phi>'\<close> | |
by (metis Cn_equiv assumption_L disjE_PL disj_com equiv_PL imp_PL) | |
with h have False | |
using assumption_L rem by auto | |
} note g = this | |
with True show ?thesis | |
apply(unfold AGM_rel, rule_tac disjI2) | |
using d b c by (auto simp add:AGM_rel idempotency_L del:subsetI) blast+ | |
next | |
case False | |
then show ?thesis | |
by (metis AGM_rel b d idempotency_L infer_def nonconsequence_remainder singletonD) | |
qed | |
next | |
fix S B \<psi> | |
assume a:\<open>S \<in> Cn(A) .\<bottom>. \<phi>\<close> and b:\<open>B \<in> Cn(A) .\<bottom>. \<phi>\<close> and c:\<open>\<forall>C\<in>Cn A .\<bottom>. \<phi>. AGM_relation C (Cn A) B\<close> | |
and d:\<open>\<forall>C'. C' \<in> Cn A .\<bottom>. \<phi> \<and> Cn A \<div> \<phi> \<subseteq> C' \<longrightarrow> \<psi> \<in> C'\<close> | |
then show \<open>\<psi> \<in> B\<close> | |
unfolding AGM_rel | |
by (metis (no_types, lifting) AGM_sel empty_Collect_eq insert_Diff insert_not_empty | |
nonconsequence_remainder nonempty_selection singletonD) | |
qed | |
text\<open>A transitively relational selection and an AGM relation is a transitively relational meet contraction\<close> | |
sublocale TransitivelyRelationalMeetContraction where relation = AGM_relation and rel_sel = \<open>\<gamma>\<^sub>A\<^sub>G\<^sub>M\<^sub>T\<^sub>R\<close> | |
proof(unfold_locales, simp_all (no_asm) only:atomize_eq, goal_cases) | |
case a:(1 K A C B' B) \<comment> \<open>Very difficult proof requires litterature and high automation of isabelle!\<close> | |
from a(2,3) show ?case | |
unfolding AGM_rel apply(elim disjE conjE, simp_all) | |
proof(intro disjI2 allI impI, elim exE conjE, goal_cases) | |
case (1 \<psi> _ _ \<phi>) | |
have b:\<open>B \<in> K .\<bottom>. (\<phi> .\<and>. \<psi>)\<close> and c:\<open>B' \<in> K .\<bottom>. (\<phi> .\<and>. \<psi>)\<close> and d:\<open>C \<in> K .\<bottom>. (\<phi> .\<and>. \<psi>)\<close> | |
using remainder_conj[OF a(1)] 1 conjI_PL by auto | |
hence e:\<open>K \<div> (\<phi> .\<and>. \<psi>) \<subseteq> B\<close> | |
using contract_conj_inclusion_variant[OF a(1), of \<phi> \<psi>] | |
by (meson "1"(1) "1"(12) "1"(16) "1"(2) "1"(3) "1"(8) Supraclassical_logic.conj_PL | |
Supraclassical_logic_axioms dual_order.trans) | |
{ fix \<chi> | |
assume f:\<open>\<chi> \<in> K \<div> \<psi>\<close> | |
have \<open>\<psi> .\<or>. \<chi> \<in> (K \<div> \<psi>) \<inter> Cn {\<psi>}\<close> | |
by (metis Int_iff Supraclassical_logic.disjI1_PL Supraclassical_logic.disjI2_PL Supraclassical_logic_axioms | |
f a(1) contract_closure in_mono inclusion_L singletonI) | |
hence g:\<open>\<psi> .\<or>. \<chi> \<in> B\<close> | |
using contract_conj_overlap_variant[OF a(1), of \<psi>] | |
by (metis AGM_Contraction.contract_extensionality AGM_Contraction_axioms a(1) conj_com_Cn e in_mono) | |
have \<open>\<psi> .\<longrightarrow>. \<chi> \<in> B\<close> | |
by (metis a(1) "1"(10) "1"(15) "1"(16) assumption_L f in_mono infer_def rem_closure rem_inclusion remainder_recovery) | |
with g have \<open>\<chi> \<in> B\<close> | |
by (metis 1(15) a(1) disjE_PL infer_def order_refl rem_closure validD_L valid_Cn_imp) | |
} | |
then show ?case by blast | |
qed | |
next | |
case (2 K A \<phi>) | |
hence \<open>* \<gamma>\<^sub>A\<^sub>G\<^sub>M K \<phi> \<noteq> {}\<close> | |
using nonempty_selection[OF 2(1), of \<phi>] selection_completion[OF 2(1), of \<phi>] by blast | |
then show ?case | |
using AGM_rel_sel_completion[OF 2(1), of \<phi>] AGM_rel_sel 2(1,2) by force | |
next | |
case (3 K \<phi>) | |
then show ?case using AGM_rel_sel_completion AGM_rel_sel by simp | |
qed | |
\<comment> \<open>ça marche tout seul! ==> Je ne vois pas où sont utilisés ces lemmas\<close> | |
lemmas fullcontraction_is_pmc = contraction_is_pmc | |
lemmas fullcontraction_is_trmc = contraction_with_completion | |
end | |
locale FMC_SC = FullMeetContraction + TRMC_SC | |
begin | |
lemma full_meet_weak1: \<open>K = Cn(A) \<Longrightarrow> K \<turnstile> \<phi> \<Longrightarrow> (K \<div>\<^bsub>\<gamma>\<^sub>F\<^sub>C\<^esub> \<phi>) = K \<inter> Cn({.\<not> \<phi>})\<close> | |
proof(intro subset_antisym Int_greatest) | |
assume a:\<open>K = Cn(A)\<close> and b:\<open>K \<turnstile> \<phi>\<close> | |
then show \<open> (K \<div>\<^bsub>\<gamma>\<^sub>F\<^sub>C\<^esub> \<phi>) \<subseteq> K\<close> | |
by (simp add: Inf_less_eq full_sel mc rem_inclusion) | |
next | |
assume a:\<open>K = Cn(A)\<close> and b:\<open>K \<turnstile> \<phi>\<close> | |
show \<open>(K \<div>\<^bsub>\<gamma>\<^sub>F\<^sub>C\<^esub> \<phi>) \<subseteq> Cn({.\<not> \<phi>})\<close> | |
proof | |
fix \<psi> | |
assume c:\<open>\<psi> \<in> (K \<div>\<^bsub>\<gamma>\<^sub>F\<^sub>C\<^esub> \<phi>)\<close> | |
{ assume \<open>\<not> {.\<not> \<phi>} \<turnstile> \<psi>\<close> | |
hence \<open>\<not> {.\<not> \<psi>} \<turnstile> \<phi>\<close> | |
by (metis Un_insert_right insert_is_Un not_PL notnot_PL) | |
hence \<open>\<not> {\<phi> .\<or>. .\<not> \<psi>} \<turnstile> \<phi>\<close> | |
by (metis assumption_L disjI2_PL singleton_iff transitivity2_L) | |
then obtain B where d:\<open>{\<phi> .\<or>. .\<not> \<psi>} \<subseteq> B\<close> and e:\<open>B \<in> K .\<bottom>. \<phi>\<close> | |
by (metis a b disjI1_PL empty_subsetI idempotency_L infer_def insert_subset upper_remainder) | |
hence f:\<open>\<not> \<psi> \<in> B\<close> | |
by (metis (no_types, lifting) CollectD assumption_L insert_subset disj_notE_PL rem) | |
hence \<open>\<not> \<psi> \<in> (K \<div>\<^bsub>\<gamma>\<^sub>F\<^sub>C\<^esub> \<phi>)\<close> | |
using e mc full_sel by auto | |
} | |
then show \<open>\<psi> \<in> Cn({.\<not> \<phi>})\<close> | |
using c infer_def by blast | |
qed | |
next | |
assume a:\<open>K = Cn(A)\<close> and b:\<open>K \<turnstile> \<phi>\<close> | |
show \<open>K \<inter> Cn({.\<not> \<phi>}) \<subseteq> (K \<div>\<^bsub>\<gamma>\<^sub>F\<^sub>C\<^esub> \<phi>)\<close> | |
proof(safe) | |
fix \<psi> | |
assume c:\<open>\<psi> \<in> K\<close> and d: \<open>\<psi> \<in> Cn {.\<not> \<phi>}\<close> | |
have e:\<open>B \<turnstile> .\<not> \<phi> .\<longrightarrow>. \<psi>\<close> for B | |
by (simp add: d validD_L valid_imp_PL) | |
{ fix B | |
assume f:\<open>B \<in> K .\<bottom>. \<phi>\<close> | |
hence \<open>B \<turnstile> \<phi> .\<longrightarrow>. \<psi>\<close> | |
using a assumption_L c remainder_recovery by auto | |
then have f:\<open>B \<turnstile> \<psi>\<close> using d e | |
using disjE_PL ex_mid_PL by blast | |
} | |
then show \<open>\<psi> \<in> (K \<div>\<^bsub>\<gamma>\<^sub>F\<^sub>C\<^esub> \<phi>)\<close> | |
apply(simp_all add:mc c full_sel) | |
using a rem_closure by blast | |
qed | |
qed | |
lemma full_meet_weak2:\<open>K = Cn(A) \<Longrightarrow> K \<turnstile> \<phi> \<Longrightarrow> Cn((K \<div>\<^bsub>\<gamma>\<^sub>F\<^sub>C\<^esub> \<phi>) \<union> {.\<not> \<phi>}) = Cn({.\<not> \<phi>})\<close> | |
unfolding full_meet_weak1 | |
by (metis Cn_union idempotency_L inf.cobounded2 sup.absorb_iff2 sup_commute) | |
end | |
end | |