Datasets:
Tasks:
Text Generation
Modalities:
Text
Sub-tasks:
language-modeling
Languages:
English
Size:
100K - 1M
License:
(* | |
(C) Copyright Andreas Viktor Hess, DTU, 2020 | |
(C) Copyright Sebastian A. Mödersheim, DTU, 2020 | |
(C) Copyright Achim D. Brucker, University of Exeter, 2020 | |
(C) Copyright Anders Schlichtkrull, DTU, 2020 | |
All Rights Reserved. | |
Redistribution and use in source and binary forms, with or without | |
modification, are permitted provided that the following conditions are | |
met: | |
- Redistributions of source code must retain the above copyright | |
notice, this list of conditions and the following disclaimer. | |
- Redistributions in binary form must reproduce the above copyright | |
notice, this list of conditions and the following disclaimer in the | |
documentation and/or other materials provided with the distribution. | |
- Neither the name of the copyright holder nor the names of its | |
contributors may be used to endorse or promote products | |
derived from this software without specific prior written | |
permission. | |
THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS | |
"AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT | |
LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR | |
A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT | |
OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, | |
SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT | |
LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, | |
DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY | |
THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT | |
(INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE | |
OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. | |
*) | |
(* Title: Term_Abstraction.thy | |
Author: Andreas Viktor Hess, DTU | |
Author: Sebastian A. Mödersheim, DTU | |
Author: Achim D. Brucker, University of Exeter | |
Author: Anders Schlichtkrull, DTU | |
*) | |
section\<open>Term Abstraction\<close> | |
theory Term_Abstraction | |
imports Transactions | |
begin | |
subsection \<open>Definitions\<close> | |
fun to_abs ("\<alpha>\<^sub>0") where | |
"\<alpha>\<^sub>0 [] _ = {}" | |
| "\<alpha>\<^sub>0 ((Fun (Val m) [],Fun (Set s) S)#D) n = | |
(if m = n then insert s (\<alpha>\<^sub>0 D n) else \<alpha>\<^sub>0 D n)" | |
| "\<alpha>\<^sub>0 (_#D) n = \<alpha>\<^sub>0 D n" | |
fun abs_apply_term (infixl "\<cdot>\<^sub>\<alpha>" 67) where | |
"Var x \<cdot>\<^sub>\<alpha> \<alpha> = Var x" | |
| "Fun (Val n) T \<cdot>\<^sub>\<alpha> \<alpha> = Fun (Abs (\<alpha> n)) (map (\<lambda>t. t \<cdot>\<^sub>\<alpha> \<alpha>) T)" | |
| "Fun f T \<cdot>\<^sub>\<alpha> \<alpha> = Fun f (map (\<lambda>t. t \<cdot>\<^sub>\<alpha> \<alpha>) T)" | |
definition abs_apply_list (infixl "\<cdot>\<^sub>\<alpha>\<^sub>l\<^sub>i\<^sub>s\<^sub>t" 67) where | |
"M \<cdot>\<^sub>\<alpha>\<^sub>l\<^sub>i\<^sub>s\<^sub>t \<alpha> \<equiv> map (\<lambda>t. t \<cdot>\<^sub>\<alpha> \<alpha>) M" | |
definition abs_apply_terms (infixl "\<cdot>\<^sub>\<alpha>\<^sub>s\<^sub>e\<^sub>t" 67) where | |
"M \<cdot>\<^sub>\<alpha>\<^sub>s\<^sub>e\<^sub>t \<alpha> \<equiv> (\<lambda>t. t \<cdot>\<^sub>\<alpha> \<alpha>) ` M" | |
definition abs_apply_pairs (infixl "\<cdot>\<^sub>\<alpha>\<^sub>p\<^sub>a\<^sub>i\<^sub>r\<^sub>s" 67) where | |
"F \<cdot>\<^sub>\<alpha>\<^sub>p\<^sub>a\<^sub>i\<^sub>r\<^sub>s \<alpha> \<equiv> map (\<lambda>(s,t). (s \<cdot>\<^sub>\<alpha> \<alpha>, t \<cdot>\<^sub>\<alpha> \<alpha>)) F" | |
definition abs_apply_strand_step (infixl "\<cdot>\<^sub>\<alpha>\<^sub>s\<^sub>t\<^sub>p" 67) where | |
"s \<cdot>\<^sub>\<alpha>\<^sub>s\<^sub>t\<^sub>p \<alpha> \<equiv> (case s of | |
(l,send\<langle>t\<rangle>) \<Rightarrow> (l,send\<langle>t \<cdot>\<^sub>\<alpha> \<alpha>\<rangle>) | |
| (l,receive\<langle>t\<rangle>) \<Rightarrow> (l,receive\<langle>t \<cdot>\<^sub>\<alpha> \<alpha>\<rangle>) | |
| (l,\<langle>ac: t \<doteq> t'\<rangle>) \<Rightarrow> (l,\<langle>ac: (t \<cdot>\<^sub>\<alpha> \<alpha>) \<doteq> (t' \<cdot>\<^sub>\<alpha> \<alpha>)\<rangle>) | |
| (l,insert\<langle>t,t'\<rangle>) \<Rightarrow> (l,insert\<langle>t \<cdot>\<^sub>\<alpha> \<alpha>,t' \<cdot>\<^sub>\<alpha> \<alpha>\<rangle>) | |
| (l,delete\<langle>t,t'\<rangle>) \<Rightarrow> (l,delete\<langle>t \<cdot>\<^sub>\<alpha> \<alpha>,t' \<cdot>\<^sub>\<alpha> \<alpha>\<rangle>) | |
| (l,\<langle>ac: t \<in> t'\<rangle>) \<Rightarrow> (l,\<langle>ac: (t \<cdot>\<^sub>\<alpha> \<alpha>) \<in> (t' \<cdot>\<^sub>\<alpha> \<alpha>)\<rangle>) | |
| (l,\<forall>X\<langle>\<or>\<noteq>: F \<or>\<notin>: F'\<rangle>) \<Rightarrow> (l,\<forall>X\<langle>\<or>\<noteq>: (F \<cdot>\<^sub>\<alpha>\<^sub>p\<^sub>a\<^sub>i\<^sub>r\<^sub>s \<alpha>) \<or>\<notin>: (F' \<cdot>\<^sub>\<alpha>\<^sub>p\<^sub>a\<^sub>i\<^sub>r\<^sub>s \<alpha>)\<rangle>))" | |
definition abs_apply_strand (infixl "\<cdot>\<^sub>\<alpha>\<^sub>s\<^sub>t" 67) where | |
"S \<cdot>\<^sub>\<alpha>\<^sub>s\<^sub>t \<alpha> \<equiv> map (\<lambda>x. x \<cdot>\<^sub>\<alpha>\<^sub>s\<^sub>t\<^sub>p \<alpha>) S" | |
subsection \<open>Lemmata\<close> | |
lemma to_abs_alt_def: | |
"\<alpha>\<^sub>0 D n = {s. \<exists>S. (Fun (Val n) [], Fun (Set s) S) \<in> set D}" | |
by (induct D n rule: to_abs.induct) auto | |
lemma abs_term_apply_const[simp]: | |
"is_Val f \<Longrightarrow> Fun f [] \<cdot>\<^sub>\<alpha> a = Fun (Abs (a (the_Val f))) []" | |
"\<not>is_Val f \<Longrightarrow> Fun f [] \<cdot>\<^sub>\<alpha> a = Fun f []" | |
by (cases f; auto)+ | |
lemma abs_fv: "fv (t \<cdot>\<^sub>\<alpha> a) = fv t" | |
by (induct t a rule: abs_apply_term.induct) auto | |
lemma abs_eq_if_no_Val: | |
assumes "\<forall>f \<in> funs_term t. \<not>is_Val f" | |
shows "t \<cdot>\<^sub>\<alpha> a = t \<cdot>\<^sub>\<alpha> b" | |
using assms | |
proof (induction t) | |
case (Fun f T) thus ?case by (cases f) simp_all | |
qed simp | |
lemma abs_list_set_is_set_abs_set: "set (M \<cdot>\<^sub>\<alpha>\<^sub>l\<^sub>i\<^sub>s\<^sub>t \<alpha>) = (set M) \<cdot>\<^sub>\<alpha>\<^sub>s\<^sub>e\<^sub>t \<alpha>" | |
unfolding abs_apply_list_def abs_apply_terms_def by simp | |
lemma abs_set_empty[simp]: "{} \<cdot>\<^sub>\<alpha>\<^sub>s\<^sub>e\<^sub>t \<alpha> = {}" | |
unfolding abs_apply_terms_def by simp | |
lemma abs_in: | |
assumes "t \<in> M" | |
shows "t \<cdot>\<^sub>\<alpha> \<alpha> \<in> M \<cdot>\<^sub>\<alpha>\<^sub>s\<^sub>e\<^sub>t \<alpha>" | |
using assms unfolding abs_apply_terms_def | |
by (induct t \<alpha> rule: abs_apply_term.induct) blast+ | |
lemma abs_set_union: "(A \<union> B) \<cdot>\<^sub>\<alpha>\<^sub>s\<^sub>e\<^sub>t a = (A \<cdot>\<^sub>\<alpha>\<^sub>s\<^sub>e\<^sub>t a) \<union> (B \<cdot>\<^sub>\<alpha>\<^sub>s\<^sub>e\<^sub>t a)" | |
unfolding abs_apply_terms_def | |
by auto | |
lemma abs_subterms: "subterms (t \<cdot>\<^sub>\<alpha> \<alpha>) = subterms t \<cdot>\<^sub>\<alpha>\<^sub>s\<^sub>e\<^sub>t \<alpha>" | |
proof (induction t) | |
case (Fun f T) thus ?case by (cases f) (auto simp add: abs_apply_terms_def) | |
qed (simp add: abs_apply_terms_def) | |
lemma abs_subterms_in: "s \<in> subterms t \<Longrightarrow> s \<cdot>\<^sub>\<alpha> a \<in> subterms (t \<cdot>\<^sub>\<alpha> a)" | |
proof (induction t) | |
case (Fun f T) thus ?case by (cases f) auto | |
qed simp | |
lemma abs_ik_append: "(ik\<^sub>s\<^sub>s\<^sub>t (A@B) \<cdot>\<^sub>s\<^sub>e\<^sub>t I) \<cdot>\<^sub>\<alpha>\<^sub>s\<^sub>e\<^sub>t a = (ik\<^sub>s\<^sub>s\<^sub>t A \<cdot>\<^sub>s\<^sub>e\<^sub>t I) \<cdot>\<^sub>\<alpha>\<^sub>s\<^sub>e\<^sub>t a \<union> (ik\<^sub>s\<^sub>s\<^sub>t B \<cdot>\<^sub>s\<^sub>e\<^sub>t I) \<cdot>\<^sub>\<alpha>\<^sub>s\<^sub>e\<^sub>t a" | |
unfolding abs_apply_terms_def ik\<^sub>s\<^sub>s\<^sub>t_def | |
by auto | |
lemma to_abs_in: | |
assumes "(Fun (Val n) [], Fun (Set s) []) \<in> set D" | |
shows "s \<in> \<alpha>\<^sub>0 D n" | |
using assms by (induct rule: to_abs.induct) auto | |
lemma to_abs_empty_iff_notin_db: | |
"Fun (Val n) [] \<cdot>\<^sub>\<alpha> \<alpha>\<^sub>0 D = Fun (Abs {}) [] \<longleftrightarrow> (\<nexists>s S. (Fun (Val n) [], Fun (Set s) S) \<in> set D)" | |
by (simp add: to_abs_alt_def) | |
lemma to_abs_list_insert: | |
assumes "Fun (Val n) [] \<noteq> t" | |
shows "\<alpha>\<^sub>0 D n = \<alpha>\<^sub>0 (List.insert (t,s) D) n" | |
using assms to_abs_alt_def[of D n] to_abs_alt_def[of "List.insert (t,s) D" n] | |
by auto | |
lemma to_abs_list_insert': | |
"insert s (\<alpha>\<^sub>0 D n) = \<alpha>\<^sub>0 (List.insert (Fun (Val n) [], Fun (Set s) S) D) n" | |
using to_abs_alt_def[of D n] | |
to_abs_alt_def[of "List.insert (Fun (Val n) [], Fun (Set s) S) D" n] | |
by auto | |
lemma to_abs_list_remove_all: | |
assumes "Fun (Val n) [] \<noteq> t" | |
shows "\<alpha>\<^sub>0 D n = \<alpha>\<^sub>0 (List.removeAll (t,s) D) n" | |
using assms to_abs_alt_def[of D n] to_abs_alt_def[of "List.removeAll (t,s) D" n] | |
by auto | |
lemma to_abs_list_remove_all': | |
"\<alpha>\<^sub>0 D n - {s} = \<alpha>\<^sub>0 (filter (\<lambda>d. \<nexists>S. d = (Fun (Val n) [], Fun (Set s) S)) D) n" | |
using to_abs_alt_def[of D n] | |
to_abs_alt_def[of "filter (\<lambda>d. \<nexists>S. d = (Fun (Val n) [], Fun (Set s) S)) D" n] | |
by auto | |
lemma to_abs_db\<^sub>s\<^sub>s\<^sub>t_append: | |
assumes "\<forall>u s. insert\<langle>u, s\<rangle> \<in> set B \<longrightarrow> Fun (Val n) [] \<noteq> u \<cdot> \<I>" | |
and "\<forall>u s. delete\<langle>u, s\<rangle> \<in> set B \<longrightarrow> Fun (Val n) [] \<noteq> u \<cdot> \<I>" | |
shows "\<alpha>\<^sub>0 (db'\<^sub>s\<^sub>s\<^sub>t A \<I> D) n = \<alpha>\<^sub>0 (db'\<^sub>s\<^sub>s\<^sub>t (A@B) \<I> D) n" | |
using assms | |
proof (induction B rule: List.rev_induct) | |
case (snoc b B) | |
hence IH: "\<alpha>\<^sub>0 (db'\<^sub>s\<^sub>s\<^sub>t A \<I> D) n = \<alpha>\<^sub>0 (db'\<^sub>s\<^sub>s\<^sub>t (A@B) \<I> D) n" by auto | |
have *: "\<forall>u s. b = insert\<langle>u,s\<rangle> \<longrightarrow> Fun (Val n) [] \<noteq> u \<cdot> \<I>" | |
"\<forall>u s. b = delete\<langle>u,s\<rangle> \<longrightarrow> Fun (Val n) [] \<noteq> u \<cdot> \<I>" | |
using snoc.prems by simp_all | |
show ?case | |
proof (cases b) | |
case (Insert u s) | |
hence **: "db'\<^sub>s\<^sub>s\<^sub>t (A@B@[b]) \<I> D = List.insert (u \<cdot> \<I>,s \<cdot> \<I>) (db'\<^sub>s\<^sub>s\<^sub>t (A@B) \<I> D)" | |
using db\<^sub>s\<^sub>s\<^sub>t_append[of "A@B" "[b]"] by simp | |
have "Fun (Val n) [] \<noteq> u \<cdot> \<I>" using *(1) Insert by auto | |
thus ?thesis using IH ** to_abs_list_insert by metis | |
next | |
case (Delete u s) | |
hence **: "db'\<^sub>s\<^sub>s\<^sub>t (A@B@[b]) \<I> D = List.removeAll (u \<cdot> \<I>,s \<cdot> \<I>) (db'\<^sub>s\<^sub>s\<^sub>t (A@B) \<I> D)" | |
using db\<^sub>s\<^sub>s\<^sub>t_append[of "A@B" "[b]"] by simp | |
have "Fun (Val n) [] \<noteq> u \<cdot> \<I>" using *(2) Delete by auto | |
thus ?thesis using IH ** to_abs_list_remove_all by metis | |
qed (simp_all add: db\<^sub>s\<^sub>s\<^sub>t_no_upd_append[of "[b]" "A@B"] IH) | |
qed simp | |
lemma to_abs_neq_imp_db_update: | |
assumes "\<alpha>\<^sub>0 (db\<^sub>s\<^sub>s\<^sub>t A I) n \<noteq> \<alpha>\<^sub>0 (db\<^sub>s\<^sub>s\<^sub>t (A@B) I) n" | |
shows "\<exists>u s. u \<cdot> I = Fun (Val n) [] \<and> (insert\<langle>u,s\<rangle> \<in> set B \<or> delete\<langle>u,s\<rangle> \<in> set B)" | |
proof - | |
{ fix D have ?thesis when "\<alpha>\<^sub>0 D n \<noteq> \<alpha>\<^sub>0 (db'\<^sub>s\<^sub>s\<^sub>t B I D) n" using that | |
proof (induction B I D rule: db'\<^sub>s\<^sub>s\<^sub>t.induct) | |
case 2 thus ?case | |
by (metis db'\<^sub>s\<^sub>s\<^sub>t.simps(2) list.set_intros(1,2) subst_apply_pair_pair to_abs_list_insert) | |
next | |
case 3 thus ?case | |
by (metis db'\<^sub>s\<^sub>s\<^sub>t.simps(3) list.set_intros(1,2) subst_apply_pair_pair to_abs_list_remove_all) | |
qed simp_all | |
} thus ?thesis using assms by (metis db\<^sub>s\<^sub>s\<^sub>t_append db\<^sub>s\<^sub>s\<^sub>t_def) | |
qed | |
lemma abs_term_subst_eq: | |
fixes \<delta> \<theta>::"(('a,'b,'c) prot_fun, ('d,'e prot_atom) term \<times> nat) subst" | |
assumes "\<forall>x \<in> fv t. \<delta> x \<cdot>\<^sub>\<alpha> a = \<theta> x \<cdot>\<^sub>\<alpha> b" | |
and "\<nexists>n T. Fun (Val n) T \<in> subterms t" | |
shows "t \<cdot> \<delta> \<cdot>\<^sub>\<alpha> a = t \<cdot> \<theta> \<cdot>\<^sub>\<alpha> b" | |
using assms | |
proof (induction t) | |
case (Fun f T) thus ?case | |
proof (cases f) | |
case (Val n) | |
hence False using Fun.prems(2) by blast | |
thus ?thesis by metis | |
qed auto | |
qed simp | |
lemma abs_term_subst_eq': | |
fixes \<delta> \<theta>::"(('a,'b,'c) prot_fun, ('d,'e prot_atom) term \<times> nat) subst" | |
assumes "\<forall>x \<in> fv t. \<delta> x \<cdot>\<^sub>\<alpha> a = \<theta> x" | |
and "\<nexists>n T. Fun (Val n) T \<in> subterms t" | |
shows "t \<cdot> \<delta> \<cdot>\<^sub>\<alpha> a = t \<cdot> \<theta>" | |
using assms | |
proof (induction t) | |
case (Fun f T) thus ?case | |
proof (cases f) | |
case (Val n) | |
hence False using Fun.prems(2) by blast | |
thus ?thesis by metis | |
qed auto | |
qed simp | |
lemma abs_val_in_funs_term: | |
assumes "f \<in> funs_term t" "is_Val f" | |
shows "Abs (\<alpha> (the_Val f)) \<in> funs_term (t \<cdot>\<^sub>\<alpha> \<alpha>)" | |
using assms by (induct t \<alpha> rule: abs_apply_term.induct) auto | |
end | |