Datasets:
Tasks:
Text Generation
Modalities:
Text
Sub-tasks:
language-modeling
Languages:
English
Size:
100K - 1M
License:
(* | |
Title: Allen's Interval Algebra | |
Author: Fadoua Ghourabi (fadouaghourabi@gmail.com) | |
Affiliation: Ochanomizu University, Japan | |
*) | |
theory examples | |
imports | |
disjoint_relations | |
begin | |
section \<open>Examples\<close> | |
subsection \<open>Compositions of non-basic relations\<close> | |
text\<open>Basic relations are the 13 time interval relations. The unions of basic relations are also relations and their compositions is the union of compositions. | |
We prove few of these compositions that are required in theory nest.thy.\<close> | |
method (in arelations) e_compose = (match conclusion in "e O b \<subseteq> _" \<Rightarrow> \<open>insert ceb, blast\<close> | |
\<bar> _ \<Rightarrow> \<open>match conclusion in "e O m \<subseteq> _" \<Rightarrow> \<open>insert cem, blast\<close> \<bar> _ \<Rightarrow> \<open>fail\<close>\<close>) | |
declare [[simp_trace_depth_limit=4]] | |
lemma eovisidifmifiOm:"(e \<union> ov\<inverse> \<union> s\<inverse> \<union> d\<inverse> \<union> f \<union> m\<inverse> \<union> f^-1) O m \<subseteq> m \<union> ov \<union> f^-1 \<union> d^-1 \<union> s \<union> s\<inverse> \<union> e" | |
apply (simp, intro conjI) | |
using cem apply blast | |
using crm_rules by auto | |
lemma ovsmfidiesiOmi:"(ov \<union> s\<union> m \<union> f^-1 \<union> d^-1 \<union> e \<union> s^-1) O m^-1 \<subseteq> d^-1 \<union> s^-1 \<union> ov^-1 \<union> m^-1 \<union> f^-1 \<union> f \<union> e " | |
apply (simp, intro conjI) | |
using crmi_rules by auto | |
lemma ovsmfidiesiOm:"(ov \<union> s \<union> m \<union> f\<inverse> \<union> d\<inverse> \<union> e \<union> s\<inverse>) O m \<subseteq> b \<union> ov \<union> f^-1 \<union> d^-1 \<union> m " | |
apply (simp, intro conjI) | |
using crm_rules by auto | |
lemma ovsmfidiesiOssie:"(ov \<union> s \<union> m \<union> f\<inverse> \<union> d\<inverse> \<union> e \<union> s\<inverse>) O (s \<union> s^-1 \<union> e) \<subseteq> ov \<union> f^-1 \<union> d^-1 \<union> s \<union> e \<union> s^-1 \<union> m " | |
apply (simp, intro conjI) | |
using crs_rules apply auto[7] | |
using crsi_rules apply auto[7] | |
using cre_rules by auto[7] | |
lemma " (b \<union> m \<union> ov \<union> s \<union> d) O (b \<union> m \<union> ov \<union> s \<union> d) \<subseteq> b \<union> m \<union> ov \<union> s \<union> d" | |
apply (simp, intro conjI) | |
using crb_rules apply auto[5] | |
using crm_rules apply auto[5] | |
using crov_rules apply auto[5] | |
using crs_rules apply auto[5] | |
using crd_rules by auto[5] | |
lemma ebmovovissifsiddib:"(e \<union> b \<union> m \<union> ov \<union> ov\<inverse> \<union> s \<union> s\<inverse> \<union> f \<union> f\<inverse> \<union> d \<union> d\<inverse>) O b \<subseteq> b \<union> m \<union> ov \<union> f^-1 \<union> d^-1" | |
apply (simp, intro conjI) | |
using crb_rules by auto | |
lemma ebmovovissiffiddibmovsd:"(e \<union> b \<union> m \<union> ov \<union> ov\<inverse> \<union> s \<union> s\<inverse> \<union> f \<union> f\<inverse> \<union> d \<union> d\<inverse>) O ( b \<union> m \<union> ov \<union> s \<union> d) \<subseteq> (b \<union> m \<union> ov \<union> s \<union> d \<union> f^-1 \<union> d^-1 \<union> ov^-1 \<union> s\<inverse> \<union> f \<union> e) " | |
apply (simp, intro conjI) | |
using crb_rules apply auto[11] | |
using crm_rules apply auto[11] | |
using crov_rules apply auto[11] | |
using crs_rules apply auto[11] | |
using crd_rules by auto | |
lemma difimov:"(d^-1 \<union> f^-1 \<union> ov \<union> e \<union> f \<union> m \<union> b \<union> s^-1 \<union> s) O ( m \<union> ov \<union> s \<union> d \<union> b \<union> f^-1 \<union> f \<union> e) \<subseteq> ( e \<union> b \<union> m \<union> ov \<union> ov^-1 \<union> s \<union> s^-1 \<union> f \<union> f\<inverse> \<union> d \<union> d\<inverse>)" | |
apply (simp, intro conjI) | |
using crm_rules apply auto[9] | |
using crov_rules apply auto[9] | |
using crs_rules apply auto[9] | |
using crd_rules apply auto[9] | |
using crb_rules apply auto[9] | |
using crfi_rules apply auto[9] | |
using crf_rules apply auto[9] | |
using cre_rules by auto | |
lemma difibs:"(d\<inverse> \<union> f\<inverse> \<union> ov \<union> e \<union> f \<union> m \<union> b \<union> s\<inverse> \<union> s) O (b \<union> s \<union> m) \<subseteq> (b \<union> m \<union> ov \<union> f\<inverse> \<union> d\<inverse> \<union> d \<union> e \<union> s \<union> s\<inverse>)" | |
apply (simp, intro conjI) | |
using crb_rules apply auto[9] | |
using crs_rules apply auto[9] | |
using crm_rules by auto | |
lemma bebmovovissiffiddi:"b O (e \<union> b \<union> m \<union> ov \<union> ov\<inverse> \<union> s \<union> s\<inverse> \<union> f \<union> f\<inverse> \<union> d \<union> d\<inverse>) \<subseteq> (b \<union> m \<union> ov \<union> s \<union> d)" | |
apply (simp, intro conjI) | |
using cb_rules by auto[11] | |
lemma ovsmfidiesi:"(((ov \<union> s \<union> m \<union> f\<inverse> \<union> d\<inverse> \<union> e \<union> s\<inverse>) O (ov^-1 \<union> s^-1 \<union> m^-1 \<union> f \<union> d \<union> e \<union> s)) \<subseteq> (s \<union> s^-1 \<union> f \<union> f^-1 \<union> d \<union> d^-1 \<union> e \<union> ov \<union> ov^-1 \<union> m \<union> m^-1))" | |
apply (simp, intro conjI) | |
using crovi_rules apply auto[7] | |
using crsi_rules apply auto[7] | |
using crmi_rules apply auto[7] | |
using crf_rules apply auto[7] | |
using crd_rules apply auto[7] | |
using cre_rules apply auto[7] | |
using crs_rules by auto | |
lemma piiq:"(p,i) \<in> ov \<union> s \<union> m \<union> f\<inverse> \<union> d\<inverse> \<union> e \<union> s\<inverse> \<Longrightarrow> (i,q) \<in> ov^-1 \<union> s^-1 \<union> m^-1 \<union> f \<union> d \<union> e \<union> s \<Longrightarrow> (p,q) \<in> s \<union> s^-1 \<union> f \<union> f^-1 \<union> d \<union> d^-1 \<union> e \<union> ov \<union> ov^-1 \<union> m \<union> m^-1" | |
using ovsmfidiesi relcomp.relcompI subsetCE by blast | |
lemma ceovisidiffimi_ffie:"(e \<union> ov\<inverse> \<union> s\<inverse> \<union> d\<inverse> \<union> f \<union> f\<inverse> \<union> m\<inverse>) O (f \<union> f\<inverse> \<union> e) \<subseteq> e \<union> ov\<inverse> \<union> s\<inverse> \<union> d\<inverse> \<union> f \<union> f\<inverse> \<union> m\<inverse> " | |
apply (simp, intro conjI) | |
using crf_rules apply auto[7] | |
using crfi_rules apply auto[7] | |
using cre_rules by auto | |
lemma ceovisidiffimi_ffie_simp:"(p,i) \<in> (e \<union> ov\<inverse> \<union> s\<inverse> \<union> d\<inverse> \<union> f \<union> f\<inverse> \<union> m\<inverse>) \<Longrightarrow> (i, q) \<in> (f \<union> f\<inverse> \<union> e) \<Longrightarrow> (p,q) \<in> e \<union> ov\<inverse> \<union> s\<inverse> \<union> d\<inverse> \<union> f \<union> f\<inverse> \<union> m\<inverse> " | |
using ceovisidiffimi_ffie relcomp.relcompI subsetCE by blast | |
lemma ceovisidiffimi_fife:" (e \<union> ov\<inverse> \<union> s\<inverse> \<union> d\<inverse> \<union> f \<union> f\<inverse> \<union> m\<inverse>) O (f\<inverse> \<union> f \<union> e) \<subseteq> e \<union> ov\<inverse> \<union> s\<inverse> \<union> d\<inverse> \<union> f \<union> f\<inverse> \<union> m\<inverse>" | |
apply (simp, intro conjI) | |
using cefi covifi csifi cdifi cffi cfifi cmifi covifi csifi cdifi apply auto[7] | |
using cef covif csif cdif cff cfif cmif apply auto[7] | |
using cee covie csie cdie cfe cfie cmie by auto[7] | |
lemma "(x, j) \<in> e \<union> ov\<inverse> \<union> s\<inverse> \<union> d\<inverse> \<union> f \<union> f\<inverse> \<union> m\<inverse> \<Longrightarrow> (j, i) \<in> f\<inverse> \<union> f \<union> e \<Longrightarrow> (x, i) \<in> e \<union> ov\<inverse> \<union> s\<inverse> \<union> d\<inverse> \<union> f \<union> f\<inverse> \<union> m\<inverse>" | |
using ceovisidiffimi_ffie_simp by blast | |
lemma m_ovsmfidiesi:"m O (ov \<union> s \<union> m \<union> f\<inverse> \<union> d\<inverse> \<union> e \<union> s\<inverse>) \<subseteq> b \<union> s \<union> m" | |
apply (simp, intro conjI) | |
using cm_rules by auto | |
lemma ovsmfidiesi_d:"(ov \<union> s \<union> m \<union> f\<inverse> \<union> d\<inverse> \<union> e \<union> s\<inverse>) O d \<subseteq> e \<union> s \<union> d \<union> ov \<union> ov^-1 \<union> s^-1 \<union> f \<union> f^-1 \<union> d^-1" | |
apply (simp, intro conjI) | |
using crd_rules by auto[7] | |
lemma cbi_esdovovisiffidi:"b^-1 O (e \<union> s \<union> d \<union> ov \<union> ov\<inverse> \<union> s\<inverse> \<union> f \<union> f\<inverse> \<union> d\<inverse>) \<subseteq> b^-1 \<union> m^-1 \<union> ov^-1 \<union> f \<union> d " | |
apply (simp, intro conjI) | |
using cbi_rules by auto[9] | |
lemma cm_alpha1ialpha4mi:"m O (e \<union> ov\<inverse> \<union> s\<inverse> \<union> d\<inverse> \<union> f \<union> f\<inverse> \<union> m\<inverse>) \<subseteq> m \<union> ov \<union> s \<union> d \<union> b \<union> f^-1 \<union> f \<union> e" | |
apply (simp, intro conjI) | |
using cm_rules by auto | |
lemma cbi_alpha1ialpha4mi:"b^-1 O ( e \<union> ov\<inverse> \<union> s\<inverse> \<union> d\<inverse> \<union> f \<union> f\<inverse> \<union> m\<inverse>) \<subseteq> b^-1" | |
apply (simp, intro conjI) | |
using cbi_rules by auto | |
lemma cbeta2_beta2:"( b \<union> m \<union> ov \<union> f\<inverse> \<union> d\<inverse>) O ( b \<union> m \<union> ov \<union> f\<inverse> \<union> d\<inverse>) \<subseteq> b \<union> m \<union> ov \<union> f\<inverse> \<union> d\<inverse>" | |
apply (simp, intro conjI) | |
using crb_rules apply auto[5] | |
using crm_rules apply auto[5] | |
using crov_rules apply auto[5] | |
using crfi_rules apply auto[5] | |
using crdi_rules by auto | |
lemma cbeta2_gammabm: "(b \<union> m \<union> ov \<union> f\<inverse> \<union> d\<inverse>) O ( e \<union> b \<union> m \<union> ov \<union> ov\<inverse> \<union> s \<union> s\<inverse> \<union> f \<union> f\<inverse> \<union> d \<union> d\<inverse>) \<subseteq> ( e \<union> b \<union> m \<union> ov \<union> ov\<inverse> \<union> s \<union> s\<inverse> \<union> f \<union> f\<inverse> \<union> d \<union> d\<inverse>)" | |
apply (simp, intro conjI) | |
using cre_rules apply auto[5] | |
using crb_rules apply auto[5] | |
using crm_rules apply auto[5] | |
using crov_rules apply auto[5] | |
using crovi_rules apply auto[5] | |
using crs_rules apply auto[5] | |
using crsi_rules apply auto[5] | |
using crf_rules apply auto[5] | |
using crfi_rules apply auto[5] | |
using crd_rules apply auto[5] | |
using crdi_rules by auto | |
lemma calpha1_alpha1:"(b \<union> m \<union> ov \<union> s \<union> d) O ( b \<union> m \<union> ov \<union> s \<union> d) \<subseteq> ( b \<union> m \<union> ov \<union> s \<union> d)" | |
apply (simp, intro conjI) | |
using crb_rules apply auto[5] | |
using crm_rules apply auto[5] | |
using crov_rules apply auto[5] | |
using crs_rules apply auto[5] | |
using crd_rules by auto | |
subsection \<open>Intersection of non-basic relations\<close> | |
lemma inter_ov: | |
assumes "(i,j) \<in> (b \<union> m \<union> ov \<union> f\<inverse> \<union> d\<inverse>) \<inter> (e \<union> b^-1 \<union> m^-1 \<union> ov^-1 \<union> ov \<union> s^-1 \<union> s \<union> f^-1 \<union> f \<union> d^-1 \<union> d) \<inter> (b \<union> m \<union> ov \<union> s \<union> d)" | |
shows "(i,j) \<in> ov" | |
using assms apply auto | |
using b_rules apply auto[43] | |
using e_rules apply auto[9] | |
using b_rules apply auto[30] | |
using m_rules apply auto[24] | |
using b_rules apply auto[6] | |
using m_rules apply auto[20] | |
using f_rules apply auto[14] | |
using d_rules by auto | |
lemma neq_beta2i_alpha2alpha5m: | |
assumes "(q, j) \<in> b\<inverse> \<union> d \<union> f \<union> ov\<inverse> \<union> m\<inverse> " and " (q, j) \<in> ov \<union> s \<union> m \<union> f\<inverse> \<union> d\<inverse> \<union> e \<union> s\<inverse>" | |
shows False | |
using assms apply auto | |
using b_rules apply auto[7] | |
using ov_rules apply auto[4] | |
using d_rules apply auto[6] | |
using s_rules apply auto[3] | |
using f_rules apply auto[5] | |
using m_rules apply auto[2] | |
using ov_rules apply auto[4] | |
using m_rules by auto | |
lemma neq_bi_alpha1ialpha4mi: | |
assumes "(q,i) \<in> b^-1" and " (q, i) \<in> e \<union> ov\<inverse> \<union> s\<inverse> \<union> d\<inverse> \<union> f \<union> f\<inverse> \<union> m\<inverse>" | |
shows False | |
using assms apply auto | |
using b_rules by auto | |
end | |