Datasets:
Tasks:
Text Generation
Modalities:
Text
Sub-tasks:
language-modeling
Languages:
English
Size:
100K - 1M
License:
(* | |
Author: Sebastiaan Joosten | |
René Thiemann | |
Akihisa Yamada | |
License: BSD | |
*) | |
section \<open>Real Algebraic Numbers\<close> | |
text \<open>Whereas we previously only proved the closure properties of algebraic numbers, this | |
theory adds the numeric computations that are required to separate the roots, and to | |
pick unique representatives of algebraic numbers. | |
The development is split into three major parts. First, an ambiguous representation of | |
algebraic numbers is used, afterwards another layer is used with special treatment of rational numbers | |
which still does not admit unique representatives, and finally, a quotient type is created modulo | |
the equivalence. | |
The theory also contains a code-setup to implement real numbers via real algebraic numbers.\<close> | |
text \<open>The results are taken from the textbook \cite[pages 329ff]{AlgNumbers}.\<close> | |
theory Real_Algebraic_Numbers | |
imports | |
"Abstract-Rewriting.SN_Order_Carrier" | |
Deriving.Compare_Rat | |
Deriving.Compare_Real | |
Jordan_Normal_Form.Gauss_Jordan_IArray_Impl | |
Algebraic_Numbers | |
Sturm_Rat | |
Factors_of_Int_Poly | |
Min_Int_Poly | |
begin | |
text \<open>For algebraic numbers, it turned out that @{const gcd_int_poly} is not | |
preferable to the default implementation of @{const gcd}, which just implements | |
Collin's primitive remainder sequence.\<close> | |
declare gcd_int_poly_code[code_unfold del] | |
(*TODO: move *) | |
lemma ex1_imp_Collect_singleton: "(\<exists>!x. P x) \<and> P x \<longleftrightarrow> Collect P = {x}" | |
proof(intro iffI conjI, unfold conj_imp_eq_imp_imp) | |
assume "Ex1 P" "P x" then show "Collect P = {x}" by blast | |
next | |
assume Px: "Collect P = {x}" | |
then have "P y \<longleftrightarrow> x = y" for y by auto | |
then show "Ex1 P" by auto | |
from Px show "P x" by auto | |
qed | |
lemma ex1_Collect_singleton[consumes 2]: | |
assumes "\<exists>!x. P x" and "P x" and "Collect P = {x} \<Longrightarrow> thesis" shows thesis | |
by (rule assms(3), subst ex1_imp_Collect_singleton[symmetric], insert assms(1,2), auto) | |
lemma ex1_iff_Collect_singleton: "P x \<Longrightarrow> (\<exists>!x. P x) \<longleftrightarrow> Collect P = {x}" | |
by (subst ex1_imp_Collect_singleton[symmetric], auto) | |
context | |
fixes f | |
assumes bij: "bij f" | |
begin | |
lemma bij_imp_ex1_iff: "(\<exists>!x. P (f x)) \<longleftrightarrow> (\<exists>!y. P y)" (is "?l = ?r") | |
proof (intro iffI) | |
assume l: ?l | |
then obtain x where "P (f x)" by auto | |
with l have *: "{x} = Collect (P o f)" by auto | |
also have "f ` \<dots> = {y. P (f (Hilbert_Choice.inv f y))}" using bij_image_Collect_eq[OF bij] by auto | |
also have "\<dots> = {y. P y}" | |
proof- | |
have "f (Hilbert_Choice.inv f y) = y" for y by (meson bij bij_inv_eq_iff) | |
then show ?thesis by simp | |
qed | |
finally have "Collect P = {f x}" by auto | |
then show ?r by (fold ex1_imp_Collect_singleton, auto) | |
next | |
assume r: ?r | |
then obtain y where "P y" by auto | |
with r have "{y} = Collect P" by auto | |
also have "Hilbert_Choice.inv f ` \<dots> = Collect (P \<circ> f)" | |
using bij_image_Collect_eq[OF bij_imp_bij_inv[OF bij]] bij by (auto simp: inv_inv_eq) | |
finally have "Collect (P o f) = {Hilbert_Choice.inv f y}" by (simp add: o_def) | |
then show ?l by (fold ex1_imp_Collect_singleton, auto) | |
qed | |
lemma bij_ex1_imp_the_shift: | |
assumes ex1: "\<exists>!y. P y" shows "(THE x. P (f x)) = Hilbert_Choice.inv f (THE y. P y)" (is "?l = ?r") | |
proof- | |
from ex1 have "P (THE y. P y)" by (rule the1I2) | |
moreover from ex1[folded bij_imp_ex1_iff] have "P (f (THE x. P (f x)))" by (rule the1I2) | |
ultimately have "(THE y. P y) = f (THE x. P (f x))" using ex1 by auto | |
also have "Hilbert_Choice.inv f \<dots> = (THE x. P (f x))" using bij by (simp add: bij_is_inj) | |
finally show "?l = ?r" by auto | |
qed | |
lemma bij_imp_Collect_image: "{x. P (f x)} = Hilbert_Choice.inv f ` {y. P y}" (is "?l = ?g ` _") | |
proof- | |
have "?l = ?g ` f ` ?l" by (simp add: image_comp inv_o_cancel[OF bij_is_inj[OF bij]]) | |
also have "f ` ?l = {f x | x. P (f x)}" by auto | |
also have "\<dots> = {y. P y}" by (metis bij bij_iff) | |
finally show ?thesis. | |
qed | |
lemma bij_imp_card_image: "card (f ` X) = card X" | |
by (metis bij bij_iff card.infinite finite_imageD inj_onI inj_on_iff_eq_card) | |
end | |
lemma bij_imp_card: assumes bij: "bij f" shows "card {x. P (f x)} = card {x. P x}" | |
unfolding bij_imp_Collect_image[OF bij] bij_imp_card_image[OF bij_imp_bij_inv[OF bij]].. | |
lemma bij_add: "bij (\<lambda>x. x + y :: 'a :: group_add)" (is ?g1) | |
and bij_minus: "bij (\<lambda>x. x - y :: 'a)" (is ?g2) | |
and inv_add[simp]: "Hilbert_Choice.inv (\<lambda>x. x + y) = (\<lambda>x. x - y)" (is ?g3) | |
and inv_minus[simp]: "Hilbert_Choice.inv (\<lambda>x. x - y) = (\<lambda>x. x + y)" (is ?g4) | |
proof- | |
have 1: "(\<lambda>x. x - y) \<circ> (\<lambda>x. x + y) = id" and 2: "(\<lambda>x. x + y) \<circ> (\<lambda>x. x - y) = id" by auto | |
from o_bij[OF 1 2] show ?g1. | |
from o_bij[OF 2 1] show ?g2. | |
from inv_unique_comp[OF 2 1] show ?g3. | |
from inv_unique_comp[OF 1 2] show ?g4. | |
qed | |
lemmas ex1_shift[simp] = bij_imp_ex1_iff[OF bij_add] bij_imp_ex1_iff[OF bij_minus] | |
lemma ex1_the_shift: | |
assumes ex1: "\<exists>!y :: 'a :: group_add. P y" | |
shows "(THE x. P (x + d)) = (THE y. P y) - d" | |
and "(THE x. P (x - d)) = (THE y. P y) + d" | |
unfolding bij_ex1_imp_the_shift[OF bij_add ex1] bij_ex1_imp_the_shift[OF bij_minus ex1] by auto | |
lemma card_shift_image[simp]: | |
shows "card ((\<lambda>x :: 'a :: group_add. x + d) ` X) = card X" | |
and "card ((\<lambda>x. x - d) ` X) = card X" | |
by (auto simp: bij_imp_card_image[OF bij_add] bij_imp_card_image[OF bij_minus]) | |
lemma irreducible_root_free: | |
fixes p :: "'a :: {idom,comm_ring_1} poly" | |
assumes irr: "irreducible p" shows "root_free p" | |
proof (cases "degree p" "1::nat" rule: linorder_cases) | |
case greater | |
{ | |
fix x | |
assume "poly p x = 0" | |
hence "[:-x,1:] dvd p" using poly_eq_0_iff_dvd by blast | |
then obtain r where p: "p = r * [:-x,1:]" by (elim dvdE, auto) | |
have deg: "degree [:-x,1:] = 1" by simp | |
have dvd: "\<not> [:-x,1:] dvd 1" by (auto simp: poly_dvd_1) | |
from greater have "degree r \<noteq> 0" using degree_mult_le[of r "[:-x,1:]", unfolded deg, folded p] by auto | |
then have "\<not> r dvd 1" by (auto simp: poly_dvd_1) | |
with p irr irreducibleD[OF irr p] dvd have False by auto | |
} | |
thus ?thesis unfolding root_free_def by auto | |
next | |
case less then have deg: "degree p = 0" by auto | |
from deg obtain p0 where p: "p = [:p0:]" using degree0_coeffs by auto | |
with irr have "p \<noteq> 0" by auto | |
with p have "poly p x \<noteq> 0" for x by auto | |
thus ?thesis by (auto simp: root_free_def) | |
qed (auto simp: root_free_def) | |
(* **************************************************************** *) | |
subsection \<open>Real Algebraic Numbers -- Innermost Layer\<close> | |
text \<open>We represent a real algebraic number \<open>\<alpha>\<close> by a tuple (p,l,r): | |
\<open>\<alpha>\<close> is the unique root in the interval [l,r] | |
and l and r have the same sign. We always assume that p is normalized, i.e., | |
p is the unique irreducible and positive content-free polynomial | |
which represents the algebraic number. | |
This representation clearly admits duplicate representations for the same number, e.g. | |
(...,x-3, 3,3) is equivalent to (...,x-3,2,10).\<close> | |
subsubsection \<open>Basic Definitions\<close> | |
type_synonym real_alg_1 = "int poly \<times> rat \<times> rat" | |
fun poly_real_alg_1 :: "real_alg_1 \<Rightarrow> int poly" where "poly_real_alg_1 (p,_,_) = p" | |
fun rai_ub :: "real_alg_1 \<Rightarrow> rat" where "rai_ub (_,_,r) = r" | |
fun rai_lb :: "real_alg_1 \<Rightarrow> rat" where "rai_lb (_,l,_) = l" | |
abbreviation "roots_below p x \<equiv> {y :: real. y \<le> x \<and> ipoly p y = 0}" | |
abbreviation(input) unique_root :: "real_alg_1 \<Rightarrow> bool" where | |
"unique_root plr \<equiv> (\<exists>! x. root_cond plr x)" | |
abbreviation the_unique_root :: "real_alg_1 \<Rightarrow> real" where | |
"the_unique_root plr \<equiv> (THE x. root_cond plr x)" | |
abbreviation real_of_1 where "real_of_1 \<equiv> the_unique_root" | |
lemma root_condI[intro]: | |
assumes "of_rat (rai_lb plr) \<le> x" and "x \<le> of_rat (rai_ub plr)" and "ipoly (poly_real_alg_1 plr) x = 0" | |
shows "root_cond plr x" | |
using assms by (auto simp: root_cond_def) | |
lemma root_condE[elim]: | |
assumes "root_cond plr x" | |
and "of_rat (rai_lb plr) \<le> x \<Longrightarrow> x \<le> of_rat (rai_ub plr) \<Longrightarrow> ipoly (poly_real_alg_1 plr) x = 0 \<Longrightarrow> thesis" | |
shows thesis | |
using assms by (auto simp: root_cond_def) | |
lemma | |
assumes ur: "unique_root plr" | |
defines "x \<equiv> the_unique_root plr" and "p \<equiv> poly_real_alg_1 plr" and "l \<equiv> rai_lb plr" and "r \<equiv> rai_ub plr" | |
shows unique_rootD: "of_rat l \<le> x" "x \<le> of_rat r" "ipoly p x = 0" "root_cond plr x" | |
"x = y \<longleftrightarrow> root_cond plr y" "y = x \<longleftrightarrow> root_cond plr y" | |
and the_unique_root_eqI: "root_cond plr y \<Longrightarrow> y = x" "root_cond plr y \<Longrightarrow> x = y" | |
proof - | |
from ur show x: "root_cond plr x" unfolding x_def by (rule theI') | |
have "plr = (p,l,r)" by (cases plr, auto simp: p_def l_def r_def) | |
from x[unfolded this] show "of_rat l \<le> x" "x \<le> of_rat r" "ipoly p x = 0" by auto | |
from x ur | |
show "root_cond plr y \<Longrightarrow> y = x" and "root_cond plr y \<Longrightarrow> x = y" | |
and "x = y \<longleftrightarrow> root_cond plr y" and "y = x \<longleftrightarrow> root_cond plr y" by auto | |
qed | |
lemma unique_rootE: | |
assumes ur: "unique_root plr" | |
defines "x \<equiv> the_unique_root plr" and "p \<equiv> poly_real_alg_1 plr" and "l \<equiv> rai_lb plr" and "r \<equiv> rai_ub plr" | |
assumes main: "of_rat l \<le> x \<Longrightarrow> x \<le> of_rat r \<Longrightarrow> ipoly p x = 0 \<Longrightarrow> root_cond plr x \<Longrightarrow> | |
(\<And>y. x = y \<longleftrightarrow> root_cond plr y) \<Longrightarrow> (\<And>y. y = x \<longleftrightarrow> root_cond plr y) \<Longrightarrow> thesis" | |
shows thesis by (rule main, unfold x_def p_def l_def r_def; rule unique_rootD[OF ur]) | |
lemma unique_rootI: | |
assumes "\<And> y. root_cond plr y \<Longrightarrow> x = y" "root_cond plr x" | |
shows "unique_root plr" using assms by blast | |
definition poly_cond :: "int poly \<Rightarrow> bool" where | |
"poly_cond p = (lead_coeff p > 0 \<and> irreducible p)" | |
lemma poly_condI[intro]: | |
assumes "lead_coeff p > 0" and "irreducible p" shows "poly_cond p" using assms by (auto simp: poly_cond_def) | |
lemma poly_condD: | |
assumes "poly_cond p" | |
shows "irreducible p" and "lead_coeff p > 0" and "root_free p" and "square_free p" and "p \<noteq> 0" | |
using assms unfolding poly_cond_def using irreducible_root_free irreducible_imp_square_free cf_pos_def by auto | |
lemma poly_condE[elim]: | |
assumes "poly_cond p" | |
and "irreducible p \<Longrightarrow> lead_coeff p > 0 \<Longrightarrow> root_free p \<Longrightarrow> square_free p \<Longrightarrow> p \<noteq> 0 \<Longrightarrow> thesis" | |
shows thesis | |
using assms by (auto dest:poly_condD) | |
definition invariant_1 :: "real_alg_1 \<Rightarrow> bool" where | |
"invariant_1 tup \<equiv> case tup of (p,l,r) \<Rightarrow> | |
unique_root (p,l,r) \<and> sgn l = sgn r \<and> poly_cond p" | |
lemma invariant_1I: | |
assumes "unique_root plr" and "sgn (rai_lb plr) = sgn (rai_ub plr)" and "poly_cond (poly_real_alg_1 plr)" | |
shows "invariant_1 plr" | |
using assms by (auto simp: invariant_1_def) | |
lemma | |
assumes "invariant_1 plr" | |
defines "x \<equiv> the_unique_root plr" and "p \<equiv> poly_real_alg_1 plr" and "l \<equiv> rai_lb plr" and "r \<equiv> rai_ub plr" | |
shows invariant_1D: "root_cond plr x" | |
"sgn l = sgn r" "sgn x = of_rat (sgn r)" "unique_root plr" "poly_cond p" "degree p > 0" "primitive p" | |
and invariant_1_root_cond: "\<And> y. root_cond plr y \<longleftrightarrow> y = x" | |
proof - | |
let ?l = "of_rat l :: real" | |
let ?r = "of_rat r :: real" | |
have plr: "plr = (p,l,r)" by (cases plr, auto simp: p_def l_def r_def) | |
from assms | |
show ur: "unique_root plr" and sgn: "sgn l = sgn r" and pc: "poly_cond p" by (auto simp: invariant_1_def) | |
from ur show rc: "root_cond plr x" by (auto simp add: x_def plr intro: theI') | |
from this[unfolded plr] have x: "ipoly p x = 0" and bnd: "?l \<le> x" "x \<le> ?r" by auto | |
show "sgn x = of_rat (sgn r)" | |
proof (cases "0::real" "x" rule:linorder_cases) | |
case less | |
with bnd(2) have "0 < ?r" by arith | |
thus ?thesis using less by simp | |
next | |
case equal | |
with bnd have "?l \<le> 0" "?r \<ge> 0" by auto | |
hence "l \<le> 0" "r \<ge> 0" by auto | |
with \<open>sgn l = sgn r\<close> have "l = 0" "r = 0" unfolding sgn_rat_def by (auto split: if_splits) | |
with rc[unfolded plr] | |
show ?thesis by auto | |
next | |
case greater | |
with bnd(1) have "?l < 0" by arith | |
thus ?thesis unfolding \<open>sgn l = sgn r\<close>[symmetric] using greater by simp | |
qed | |
from the_unique_root_eqI[OF ur] rc | |
show "\<And> y. root_cond plr y \<longleftrightarrow> y = x" by metis | |
{ | |
assume "degree p = 0" | |
with poly_zero[OF x, simplified] sgn bnd have "p = 0" by auto | |
with pc have "False" by auto | |
} | |
then show "degree p > 0" by auto | |
with pc show "primitive p" by (intro irreducible_imp_primitive, auto) | |
qed | |
lemma invariant_1E[elim]: | |
assumes "invariant_1 plr" | |
defines "x \<equiv> the_unique_root plr" and "p \<equiv> poly_real_alg_1 plr" and "l \<equiv> rai_lb plr" and "r \<equiv> rai_ub plr" | |
assumes main: "root_cond plr x \<Longrightarrow> | |
sgn l = sgn r \<Longrightarrow> sgn x = of_rat (sgn r) \<Longrightarrow> unique_root plr \<Longrightarrow> poly_cond p \<Longrightarrow> degree p > 0 \<Longrightarrow> | |
primitive p \<Longrightarrow> thesis" | |
shows thesis apply (rule main) | |
using assms(1) unfolding x_def p_def l_def r_def by (auto dest: invariant_1D) | |
lemma invariant_1_realI: | |
fixes plr :: real_alg_1 | |
defines "p \<equiv> poly_real_alg_1 plr" and "l \<equiv> rai_lb plr" and "r \<equiv> rai_ub plr" | |
assumes x: "root_cond plr x" and "sgn l = sgn r" | |
and ur: "unique_root plr" | |
and "poly_cond p" | |
shows "invariant_1 plr \<and> real_of_1 plr = x" | |
using the_unique_root_eqI[OF ur x] assms by (cases plr, auto intro: invariant_1I) | |
lemma real_of_1_0: | |
assumes "invariant_1 (p,l,r)" | |
shows [simp]: "the_unique_root (p,l,r) = 0 \<longleftrightarrow> r = 0" | |
and [dest]: "l = 0 \<Longrightarrow> r = 0" | |
and [intro]: "r = 0 \<Longrightarrow> l = 0" | |
using assms by (auto simp: sgn_0_0) | |
lemma invariant_1_pos: assumes rc: "invariant_1 (p,l,r)" | |
shows [simp]:"the_unique_root (p,l,r) > 0 \<longleftrightarrow> r > 0" (is "?x > 0 \<longleftrightarrow> _") | |
and [simp]:"the_unique_root (p,l,r) < 0 \<longleftrightarrow> r < 0" | |
and [simp]:"the_unique_root (p,l,r) \<le> 0 \<longleftrightarrow> r \<le> 0" | |
and [simp]:"the_unique_root (p,l,r) \<ge> 0 \<longleftrightarrow> r \<ge> 0" | |
and [intro]: "r > 0 \<Longrightarrow> l > 0" | |
and [dest]: "l > 0 \<Longrightarrow> r > 0" | |
and [intro]: "r < 0 \<Longrightarrow> l < 0" | |
and [dest]: "l < 0 \<Longrightarrow> r < 0" | |
proof(atomize(full),goal_cases) | |
case 1 | |
let ?r = "real_of_rat" | |
from assms[unfolded invariant_1_def] | |
have ur: "unique_root (p,l,r)" and sgn: "sgn l = sgn r" by auto | |
from unique_rootD(1-2)[OF ur] have le: "?r l \<le> ?x" "?x \<le> ?r r" by auto | |
from rc show ?case | |
proof (cases r "0::rat" rule:linorder_cases) | |
case greater | |
with sgn have "sgn l = 1" by simp | |
hence l0: "l > 0" by (auto simp: sgn_1_pos) | |
hence "?r l > 0" by auto | |
hence "?x > 0" using le(1) by arith | |
with greater l0 show ?thesis by auto | |
next | |
case equal | |
with real_of_1_0[OF rc] show ?thesis by auto | |
next | |
case less | |
hence "?r r < 0" by auto | |
with le(2) have "?x < 0" by arith | |
with less sgn show ?thesis by (auto simp: sgn_1_neg) | |
qed | |
qed | |
definition invariant_1_2 where | |
"invariant_1_2 rai \<equiv> invariant_1 rai \<and> degree (poly_real_alg_1 rai) > 1" | |
definition poly_cond2 where "poly_cond2 p \<equiv> poly_cond p \<and> degree p > 1" | |
lemma poly_cond2I[intro!]: "poly_cond p \<Longrightarrow> degree p > 1 \<Longrightarrow> poly_cond2 p" by (simp add: poly_cond2_def) | |
lemma poly_cond2D: | |
assumes "poly_cond2 p" | |
shows "poly_cond p" and "degree p > 1" using assms by (auto simp: poly_cond2_def) | |
lemma poly_cond2E[elim!]: | |
assumes "poly_cond2 p" and "poly_cond p \<Longrightarrow> degree p > 1 \<Longrightarrow> thesis" shows thesis | |
using assms by (auto simp: poly_cond2_def) | |
lemma invariant_1_2_poly_cond2: "invariant_1_2 rai \<Longrightarrow> poly_cond2 (poly_real_alg_1 rai)" | |
unfolding invariant_1_def invariant_1_2_def poly_cond2_def by auto | |
lemma invariant_1_2I[intro!]: | |
assumes "invariant_1 rai" and "degree (poly_real_alg_1 rai) > 1" shows "invariant_1_2 rai" | |
using assms by (auto simp: invariant_1_2_def) | |
lemma invariant_1_2E[elim!]: | |
assumes "invariant_1_2 rai" | |
and "invariant_1 rai \<Longrightarrow> degree (poly_real_alg_1 rai) > 1 \<Longrightarrow> thesis" | |
shows thesis using assms[unfolded invariant_1_2_def] by auto | |
lemma invariant_1_2_realI: | |
fixes plr :: real_alg_1 | |
defines "p \<equiv> poly_real_alg_1 plr" and "l \<equiv> rai_lb plr" and "r \<equiv> rai_ub plr" | |
assumes x: "root_cond plr x" and sgn: "sgn l = sgn r" and ur: "unique_root plr" and p: "poly_cond2 p" | |
shows "invariant_1_2 plr \<and> real_of_1 plr = x" | |
using invariant_1_realI[OF x] p sgn ur unfolding p_def l_def r_def by auto | |
subsection \<open>Real Algebraic Numbers = Rational + Irrational Real Algebraic Numbers\<close> | |
text \<open>In the next representation of real algebraic numbers, we distinguish between | |
rational and irrational numbers. The advantage is that whenever we only work on | |
rational numbers, there is not much overhead involved in comparison to the | |
existing implementation of real numbers which just supports the rational numbers. | |
For irrational numbers we additionally store the number of the root, counting from | |
left to right. For instance $-\sqrt{2}$ and $\sqrt{2}$ would be root number 1 and 2 | |
of $x^2 - 2$.\<close> | |
subsubsection \<open>Definitions and Algorithms on Raw Type\<close> | |
datatype real_alg_2 = Rational rat | Irrational nat real_alg_1 | |
fun invariant_2 :: "real_alg_2 \<Rightarrow> bool" where | |
"invariant_2 (Irrational n rai) = (invariant_1_2 rai | |
\<and> n = card(roots_below (poly_real_alg_1 rai) (real_of_1 rai)))" | |
| "invariant_2 (Rational r) = True" | |
fun real_of_2 :: "real_alg_2 \<Rightarrow> real" where | |
"real_of_2 (Rational r) = of_rat r" | |
| "real_of_2 (Irrational n rai) = real_of_1 rai" | |
definition of_rat_2 :: "rat \<Rightarrow> real_alg_2" where | |
[code_unfold]: "of_rat_2 = Rational" | |
lemma of_rat_2: "real_of_2 (of_rat_2 x) = of_rat x" "invariant_2 (of_rat_2 x)" | |
by (auto simp: of_rat_2_def) | |
(* Invariant type *) | |
typedef real_alg_3 = "Collect invariant_2" | |
morphisms rep_real_alg_3 Real_Alg_Invariant | |
by (rule exI[of _ "Rational 0"], auto) | |
setup_lifting type_definition_real_alg_3 | |
lift_definition real_of_3 :: "real_alg_3 \<Rightarrow> real" is real_of_2 . | |
(* *************** *) | |
subsubsection \<open>Definitions and Algorithms on Quotient Type\<close> | |
quotient_type real_alg = real_alg_3 / "\<lambda> x y. real_of_3 x = real_of_3 y" | |
morphisms rep_real_alg Real_Alg_Quotient | |
by (auto simp: equivp_def) metis | |
(* real_of *) | |
lift_definition real_of :: "real_alg \<Rightarrow> real" is real_of_3 . | |
lemma real_of_inj: "(real_of x = real_of y) = (x = y)" | |
by (transfer, simp) | |
(* ********************** *) | |
subsubsection \<open>Sign\<close> | |
definition sgn_1 :: "real_alg_1 \<Rightarrow> rat" where | |
"sgn_1 x = sgn (rai_ub x)" | |
lemma sgn_1: "invariant_1 x \<Longrightarrow> real_of_rat (sgn_1 x) = sgn (real_of_1 x)" | |
unfolding sgn_1_def by auto | |
lemma sgn_1_inj: "invariant_1 x \<Longrightarrow> invariant_1 y \<Longrightarrow> real_of_1 x = real_of_1 y \<Longrightarrow> sgn_1 x = sgn_1 y" | |
by (auto simp: sgn_1_def elim!: invariant_1E) | |
(* ********************** *) | |
subsubsection \<open>Normalization: Bounds Close Together\<close> | |
lemma unique_root_lr: assumes ur: "unique_root plr" shows "rai_lb plr \<le> rai_ub plr" (is "?l \<le> ?r") | |
proof - | |
let ?p = "poly_real_alg_1 plr" | |
from ur[unfolded root_cond_def] | |
have ex1: "\<exists>! x :: real. of_rat ?l \<le> x \<and> x \<le> of_rat ?r \<and> ipoly ?p x = 0" by (cases plr, simp) | |
then obtain x :: real where bnd: "of_rat ?l \<le> x" "x \<le> of_rat ?r" and rt: "ipoly ?p x = 0" by auto | |
from bnd have "real_of_rat ?l \<le> of_rat ?r" by linarith | |
thus "?l \<le> ?r" by (simp add: of_rat_less_eq) | |
qed | |
locale map_poly_zero_hom_0 = base: zero_hom_0 | |
begin | |
sublocale zero_hom_0 "map_poly hom" by (unfold_locales,auto) | |
end | |
interpretation of_int_poly_hom: | |
map_poly_zero_hom_0 "of_int :: int \<Rightarrow> 'a :: {ring_1, ring_char_0}" .. | |
lemma ipoly_roots_finite: "p \<noteq> 0 \<Longrightarrow> finite {x :: 'a :: {idom, ring_char_0}. ipoly p x = 0}" | |
by (rule poly_roots_finite, simp) | |
lemma roots_below_the_unique_root: | |
assumes ur: "unique_root (p,l,r)" | |
shows "roots_below p (the_unique_root (p,l,r)) = roots_below p (of_rat r)" (is "roots_below p ?x = _") | |
proof- | |
from ur have rc: "root_cond (p,l,r) ?x" by (auto dest!: unique_rootD) | |
with ur have x: "{x. root_cond (p,l,r) x} = {?x}" by (auto intro: the_unique_root_eqI) | |
from rc have "?x \<in> {y. ?x \<le> y \<and> y \<le> of_rat r \<and> ipoly p y = 0}" by auto | |
with rc have l1x: "... = {?x}" by (intro equalityI, fold x(1), force, simp add: x) | |
have rb:"roots_below p (of_rat r) = roots_below p ?x \<union> {y. ?x < y \<and> y \<le> of_rat r \<and> ipoly p y = 0}" | |
using rc by auto | |
have emp: "\<And>x. the_unique_root (p, l, r) < x \<Longrightarrow> | |
x \<notin> {ra. ?x \<le> ra \<and> ra \<le> real_of_rat r \<and> ipoly p ra = 0}" | |
using l1x by auto | |
with rb show ?thesis by auto | |
qed | |
lemma unique_root_sub_interval: | |
assumes ur: "unique_root (p,l,r)" | |
and rc: "root_cond (p,l',r') (the_unique_root (p,l,r))" | |
and between: "l \<le> l'" "r' \<le> r" | |
shows "unique_root (p,l',r')" | |
and "the_unique_root (p,l',r') = the_unique_root (p,l,r)" | |
proof - | |
from between have ord: "real_of_rat l \<le> of_rat l'" "real_of_rat r' \<le> of_rat r" by (auto simp: of_rat_less_eq) | |
from rc have lr': "real_of_rat l' \<le> of_rat r'" by auto | |
with ord have lr: "real_of_rat l \<le> real_of_rat r" by auto | |
show "\<exists>!x. root_cond (p, l', r') x" | |
proof (rule, rule rc) | |
fix y | |
assume "root_cond (p,l',r') y" | |
with ord have "root_cond (p,l,r) y" by (auto intro!:root_condI) | |
from the_unique_root_eqI[OF ur this] show "y = the_unique_root (p,l,r)" by simp | |
qed | |
from the_unique_root_eqI[OF this rc] | |
show "the_unique_root (p,l',r') = the_unique_root (p,l,r)" by simp | |
qed | |
lemma invariant_1_sub_interval: | |
assumes rc: "invariant_1 (p,l,r)" | |
and sub: "root_cond (p,l',r') (the_unique_root (p,l,r))" | |
and between: "l \<le> l'" "r' \<le> r" | |
shows "invariant_1 (p,l',r')" and "real_of_1 (p,l',r') = real_of_1 (p,l,r)" | |
proof - | |
let ?r = real_of_rat | |
note rcD = invariant_1D[OF rc] | |
from rc | |
have ur: "unique_root (p, l', r')" | |
and id: "the_unique_root (p, l', r') = the_unique_root (p, l, r)" | |
by (atomize(full), intro conjI unique_root_sub_interval[OF _ sub between], auto) | |
show "real_of_1 (p,l',r') = real_of_1 (p,l,r)" | |
using id by simp | |
from rcD(1)[unfolded split] have "?r l \<le> ?r r" by auto | |
hence lr: "l \<le> r" by (auto simp: of_rat_less_eq) | |
from unique_rootD[OF ur] have "?r l' \<le> ?r r'" by auto | |
hence lr': "l' \<le> r'" by (auto simp: of_rat_less_eq) | |
have "sgn l' = sgn r'" | |
proof (cases "r" "0::rat" rule: linorder_cases) | |
case less | |
with lr lr' between have "l < 0" "l' < 0" "r' < 0" "r < 0" by auto | |
thus ?thesis unfolding sgn_rat_def by auto | |
next | |
case equal with rcD(2) have "l = 0" using sgn_0_0 by auto | |
with equal between lr' have "l' = 0" "r' = 0" by auto then show ?thesis by auto | |
next | |
case greater | |
with rcD(4) have "sgn r = 1" unfolding sgn_rat_def by (cases "r = 0", auto) | |
with rcD(2) have "sgn l = 1" by simp | |
hence l: "l > 0" unfolding sgn_rat_def by (cases "l = 0"; cases "l < 0"; auto) | |
with lr lr' between have "l > 0" "l' > 0" "r' > 0" "r > 0" by auto | |
thus ?thesis unfolding sgn_rat_def by auto | |
qed | |
with between ur rc show "invariant_1 (p,l',r')" by (auto simp add: invariant_1_def id) | |
qed | |
lemma root_sign_change: assumes | |
p0: "poly (p::real poly) x = 0" and | |
pd_ne0: "poly (pderiv p) x \<noteq> 0" | |
obtains d where | |
"0 < d" | |
"sgn (poly p (x - d)) \<noteq> sgn (poly p (x + d))" | |
"sgn (poly p (x - d)) \<noteq> 0" | |
"0 \<noteq> sgn (poly p (x + d))" | |
"\<forall> d' > 0. d' \<le> d \<longrightarrow> sgn (poly p (x + d')) = sgn (poly p (x + d)) \<and> sgn (poly p (x - d')) = sgn (poly p (x - d))" | |
proof - | |
assume a:"(\<And>d. 0 < d \<Longrightarrow> | |
sgn (poly p (x - d)) \<noteq> sgn (poly p (x + d)) \<Longrightarrow> | |
sgn (poly p (x - d)) \<noteq> 0 \<Longrightarrow> | |
0 \<noteq> sgn (poly p (x + d)) \<Longrightarrow> | |
\<forall>d'>0. d' \<le> d \<longrightarrow> | |
sgn (poly p (x + d')) = sgn (poly p (x + d)) \<and> sgn (poly p (x - d')) = sgn (poly p (x - d)) \<Longrightarrow> | |
thesis)" | |
from pd_ne0 consider "poly (pderiv p) x > 0" | "poly (pderiv p) x < 0" by linarith | |
thus ?thesis proof(cases) | |
case 1 | |
obtain d1 where d1:"\<And>h. 0<h \<Longrightarrow> h < d1 \<Longrightarrow> poly p (x - h) < 0" "d1 > 0" | |
using DERIV_pos_inc_left[OF poly_DERIV 1] p0 by auto | |
obtain d2 where d2:"\<And>h. 0<h \<Longrightarrow> h < d2 \<Longrightarrow> poly p (x + h) > 0" "d2 > 0" | |
using DERIV_pos_inc_right[OF poly_DERIV 1] p0 by auto | |
have g0:"0 < (min d1 d2) / 2" using d1 d2 by auto | |
hence m1:"min d1 d2 / 2 < d1" and m2:"min d1 d2 / 2 < d2" by auto | |
{ fix d | |
assume a1:"0 < d" and a2:"d < min d1 d2" | |
have "sgn (poly p (x - d)) = -1" "sgn (poly p (x + d)) = 1" | |
using d1(1)[OF a1] d2(1)[OF a1] a2 by auto | |
} note d=this | |
show ?thesis by(rule a[OF g0];insert d g0 m1 m2, simp) | |
next | |
case 2 | |
obtain d1 where d1:"\<And>h. 0<h \<Longrightarrow> h < d1 \<Longrightarrow> poly p (x - h) > 0" "d1 > 0" | |
using DERIV_neg_dec_left[OF poly_DERIV 2] p0 by auto | |
obtain d2 where d2:"\<And>h. 0<h \<Longrightarrow> h < d2 \<Longrightarrow> poly p (x + h) < 0" "d2 > 0" | |
using DERIV_neg_dec_right[OF poly_DERIV 2] p0 by auto | |
have g0:"0 < (min d1 d2) / 2" using d1 d2 by auto | |
hence m1:"min d1 d2 / 2 < d1" and m2:"min d1 d2 / 2 < d2" by auto | |
{ fix d | |
assume a1:"0 < d" and a2:"d < min d1 d2" | |
have "sgn (poly p (x - d)) = 1" "sgn (poly p (x + d)) = -1" | |
using d1(1)[OF a1] d2(1)[OF a1] a2 by auto | |
} note d=this | |
show ?thesis by(rule a[OF g0];insert d g0 m1 m2, simp) | |
qed | |
qed | |
lemma rational_root_free_degree_iff: assumes rf: "root_free (map_poly rat_of_int p)" and rt: "ipoly p x = 0" | |
shows "(x \<in> \<rat>) = (degree p = 1)" | |
proof | |
assume "x \<in> \<rat>" | |
then obtain y where x: "x = of_rat y" (is "_ = ?x") unfolding Rats_def by blast | |
from rt[unfolded x] have "poly (map_poly rat_of_int p) y = 0" by simp | |
with rf show "degree p = 1" unfolding root_free_def by auto | |
next | |
assume "degree p = 1" | |
from degree1_coeffs[OF this] | |
obtain a b where p: "p = [:a,b:]" and b: "b \<noteq> 0" by auto | |
from rt[unfolded p hom_distribs] have "of_int a + x * of_int b = 0" by auto | |
from arg_cong[OF this, of "\<lambda> x. (x - of_int a) / of_int b"] | |
have "x = - of_rat (of_int a) / of_rat (of_int b)" using b by auto | |
also have "\<dots> = of_rat (- of_int a / of_int b)" unfolding of_rat_minus of_rat_divide .. | |
finally show "x \<in> \<rat>" by auto | |
qed | |
lemma rational_poly_cond_iff: assumes "poly_cond p" and "ipoly p x = 0" and "degree p > 1" | |
shows "(x \<in> \<rat>) = (degree p = 1)" | |
proof (rule rational_root_free_degree_iff[OF _ assms(2)]) | |
from poly_condD[OF assms(1)] irreducible_connect_rev[of p] assms(3) | |
have p: "irreducible\<^sub>d p" by auto | |
from irreducible\<^sub>d_int_rat[OF this] | |
have "irreducible (map_poly rat_of_int p)" by simp | |
thus "root_free (map_poly rat_of_int p)" by (rule irreducible_root_free) | |
qed | |
lemma poly_cond_degree_gt_1: assumes "poly_cond p" "degree p > 1" "ipoly p x = 0" | |
shows "x \<notin> \<rat>" | |
using rational_poly_cond_iff[OF assms(1,3)] assms(2) by simp | |
lemma poly_cond2_no_rat_root: assumes "poly_cond2 p" | |
shows "ipoly p (real_of_rat x) \<noteq> 0" | |
using poly_cond_degree_gt_1[of p "real_of_rat x"] assms by auto | |
context | |
fixes p :: "int poly" | |
and x :: "rat" | |
begin | |
lemma gt_rat_sign_change_square_free: | |
assumes ur: "unique_root plr" | |
defines "p \<equiv> poly_real_alg_1 plr" and "l \<equiv> rai_lb plr" and "r \<equiv> rai_ub plr" | |
assumes sf: "square_free p" and in_interval: "l \<le> y" "y \<le> r" | |
and py0: "ipoly p y \<noteq> 0" and pr0: "ipoly p r \<noteq> 0" | |
shows "(sgn (ipoly p y) = sgn (ipoly p r)) = (of_rat y > the_unique_root plr)" (is "?gt = _") | |
proof (rule ccontr) | |
have plr[simp]: "plr = (p,l,r)" by (cases plr, auto simp: p_def l_def r_def) | |
assume "?gt \<noteq> (real_of_rat y > the_unique_root plr)" | |
note a = this[unfolded plr] | |
from py0 have "p \<noteq> 0" unfolding irreducible_def by auto | |
hence p0_real: "real_of_int_poly p \<noteq> (0::real poly)" by auto | |
let ?p = "real_of_int_poly p" | |
note urD = unique_rootD[OF ur, simplified] | |
let ?ur = "the_unique_root (p, l, r)" | |
let ?r = real_of_rat | |
from in_interval have in':"?r l \<le> ?r y" "?r y \<le> ?r r" unfolding of_rat_less_eq by auto | |
from sf square_free_of_int_poly[of p] square_free_rsquarefree | |
have rsf:"rsquarefree ?p" by auto | |
have ur3:"poly ?p ?ur = 0" using urD(3) by simp | |
from ur have "?ur \<le> of_rat r" by (auto elim!: unique_rootE) | |
moreover | |
from pr0 have "ipoly p (real_of_rat r) \<noteq> 0" by auto | |
with ur3 have "real_of_rat r \<noteq> real_of_1 (p,l,r)" by force | |
ultimately have "?ur < ?r r" by auto | |
hence ur2: "0 < ?r r - ?ur" by linarith | |
from rsquarefree_roots rsf ur3 | |
have pd_nonz:"poly (pderiv ?p) ?ur \<noteq> 0" by auto | |
obtain d where d':"\<And>d'. d'>0 \<Longrightarrow> d' \<le> d \<Longrightarrow> | |
sgn (poly ?p (?ur + d')) = sgn (poly ?p (?ur + d)) \<and> | |
sgn (poly ?p (?ur - d')) = sgn (poly ?p (?ur - d))" | |
"sgn (poly ?p (?ur - d)) \<noteq> sgn (poly ?p (?ur + d))" | |
"sgn (poly ?p (?ur + d)) \<noteq> 0" | |
and d_ge_0:"d > 0" | |
by (metis root_sign_change[OF ur3 pd_nonz]) | |
have sr:"sgn (poly ?p (?ur + d)) = sgn (poly ?p (?r r))" | |
proof (cases "?r r - ?ur \<le> d") | |
case True show ?thesis using d'(1)[OF ur2 True] by auto | |
next | |
case False hence less:"?ur + d < ?r r" by auto | |
show ?thesis | |
proof(rule no_roots_inbetween_imp_same_sign[OF less,rule_format],goal_cases) | |
case (1 x) | |
from ur 1 d_ge_0 have ran: "real_of_rat l \<le> x" "x \<le> real_of_rat r" by (auto elim!: unique_rootE) | |
from 1 d_ge_0 have "the_unique_root (p, l, r) \<noteq> x" by auto | |
with ur have "\<not> root_cond (p,l,r) x" by auto | |
with ran show ?case by auto | |
qed | |
qed | |
consider "?r l < ?ur - d" "?r l < ?ur" | "0 < ?ur - ?r l" "?ur - ?r l \<le> d" | "?ur = ?r l" | |
using urD by argo | |
hence sl:"sgn (poly ?p (?ur - d)) = sgn (poly ?p (?r l)) \<or> 0 = sgn (poly ?p (?r l))" | |
proof (cases) | |
case 1 | |
have "sgn (poly ?p (?r l)) = sgn (poly ?p (?ur - d))" | |
proof(rule no_roots_inbetween_imp_same_sign[OF 1(1),rule_format],goal_cases) | |
case (1 x) | |
from ur 1 d_ge_0 have ran: "real_of_rat l \<le> x" "x \<le> real_of_rat r" by (auto elim!: unique_rootE) | |
from 1 d_ge_0 have "the_unique_root (p, l, r) \<noteq> x" by auto | |
with ur have "\<not> root_cond (p,l,r) x" by auto | |
with ran show ?case by auto | |
qed | |
thus ?thesis by auto | |
next case 2 show ?thesis using d'(1)[OF 2] by simp | |
qed (insert ur3,simp) | |
have diff_sign: "sgn (ipoly p l) \<noteq> sgn (ipoly p r)" | |
using d'(2-) sr sl real_of_rat_sgn by auto | |
have ur':"\<And>x. real_of_rat l \<le> x \<and> x \<le> real_of_rat y \<Longrightarrow> ipoly p x = 0 \<Longrightarrow> \<not> (?r y \<le> the_unique_root (p,l,r))" | |
proof(standard+,goal_cases) | |
case (1 x) | |
{ | |
assume id: "the_unique_root (p,l,r) = ?r y" | |
with unique_rootE[OF ur] ur py0 have False by auto | |
} note neq = this | |
have "root_cond (p, l, r) x" unfolding root_cond_def | |
using 1 a ur by (auto elim!: unique_rootE) | |
with conjunct2[OF 1(1)] 1(2-) the_unique_root_eqI[OF ur] | |
show ?case by (auto intro!: neq) | |
qed | |
hence ur'':"\<forall>x. real_of_rat y \<le> x \<and> x \<le> real_of_rat r \<longrightarrow> poly (real_of_int_poly p) x \<noteq> 0 \<Longrightarrow> \<not> (?r y \<le> the_unique_root (p,l,r))" | |
using urD(2,3) by auto | |
have "(sgn (ipoly p y) = sgn (ipoly p r)) = (?r y > the_unique_root (p,l,r))" | |
proof(cases "sgn (ipoly p r) = sgn (ipoly p y)") | |
case True | |
have sgn:"sgn (poly ?p (real_of_rat l)) \<noteq> sgn (poly ?p (real_of_rat y))" using True diff_sign | |
by (simp add: real_of_rat_sgn) | |
have ly:"of_rat l < (of_rat y::real)" using in_interval True diff_sign less_eq_rat_def of_rat_less by auto | |
with no_roots_inbetween_imp_same_sign[OF ly,of ?p] sgn ur' True | |
show ?thesis by force | |
next | |
case False | |
hence ne:"sgn (ipoly p (real_of_rat y)) \<noteq> sgn (ipoly p (real_of_rat r))" by (simp add: real_of_rat_sgn) | |
have ry:"of_rat y < (of_rat r::real)" using in_interval False diff_sign less_eq_rat_def of_rat_less by auto | |
obtain x where x:"real_of_rat y \<le> x" "x \<le> real_of_rat r" "ipoly p x = 0" | |
using no_roots_inbetween_imp_same_sign[OF ry,of ?p] ne by auto | |
hence lx:"real_of_rat l \<le> x" using in_interval | |
using False a urD by auto | |
have "?ur = x" using x lx ur by (intro the_unique_root_eqI, auto) | |
then show ?thesis using False x by auto | |
qed | |
thus False using diff_sign(1) a py0 by(cases "ipoly p r = 0";auto simp:sgn_0_0) | |
qed | |
lemma gt_rat_sign_change: | |
assumes ur: "unique_root plr" | |
defines "p \<equiv> poly_real_alg_1 plr" and "l \<equiv> rai_lb plr" and "r \<equiv> rai_ub plr" | |
assumes p: "poly_cond2 p" and in_interval: "l \<le> y" "y \<le> r" | |
shows "(sgn (ipoly p y) = sgn (ipoly p r)) = (of_rat y > the_unique_root plr)" (is "?gt = _") | |
proof (rule gt_rat_sign_change_square_free[of plr, folded p_def l_def r_def, OF ur _ in_interval]) | |
note nz = poly_cond2_no_rat_root[OF p] | |
from nz[of y] show "ipoly p y \<noteq> 0" by auto | |
from nz[of r] show "ipoly p r \<noteq> 0" by auto | |
from p have "irreducible p" by auto | |
thus "square_free p" by (rule irreducible_imp_square_free) | |
qed | |
definition tighten_poly_bounds :: "rat \<Rightarrow> rat \<Rightarrow> rat \<Rightarrow> rat \<times> rat \<times> rat" where | |
"tighten_poly_bounds l r sr = (let m = (l + r) / 2; sm = sgn (ipoly p m) in | |
if sm = sr | |
then (l,m,sm) else (m,r,sr))" | |
lemma tighten_poly_bounds: assumes res: "tighten_poly_bounds l r sr = (l',r',sr')" | |
and ur: "unique_root (p,l,r)" | |
and p: "poly_cond2 p" | |
and sr: "sr = sgn (ipoly p r)" | |
shows "root_cond (p,l',r') (the_unique_root (p,l,r))" "l \<le> l'" "l' \<le> r'" "r' \<le> r" | |
"(r' - l') = (r - l) / 2" "sr' = sgn (ipoly p r')" | |
proof - | |
let ?x = "the_unique_root (p,l,r)" | |
let ?x' = "the_unique_root (p,l',r')" | |
let ?m = "(l + r) / 2" | |
note d = tighten_poly_bounds_def Let_def | |
from unique_root_lr[OF ur] have lr: "l \<le> r" by auto | |
thus "l \<le> l'" "l' \<le> r'" "r' \<le> r" "(r' - l') = (r - l) / 2" "sr' = sgn (ipoly p r')" | |
using res sr unfolding d by (auto split: if_splits) | |
hence "l \<le> ?m" "?m \<le> r" by auto | |
note le = gt_rat_sign_change[OF ur,simplified,OF p this] | |
note urD = unique_rootD[OF ur] | |
show "root_cond (p,l',r') ?x" | |
proof (cases "sgn (ipoly p ?m) = sgn (ipoly p r)") | |
case *: False | |
with res sr have id: "l' = ?m" "r' = r" unfolding d by auto | |
from *[unfolded le] urD show ?thesis unfolding id by auto | |
next | |
case *: True | |
with res sr have id: "l' = l" "r' = ?m" unfolding d by auto | |
from *[unfolded le] urD show ?thesis unfolding id by auto | |
qed | |
qed | |
partial_function (tailrec) tighten_poly_bounds_epsilon :: "rat \<Rightarrow> rat \<Rightarrow> rat \<Rightarrow> rat \<times> rat \<times> rat" where | |
[code]: "tighten_poly_bounds_epsilon l r sr = (if r - l \<le> x then (l,r,sr) else | |
(case tighten_poly_bounds l r sr of (l',r',sr') \<Rightarrow> tighten_poly_bounds_epsilon l' r' sr'))" | |
partial_function (tailrec) tighten_poly_bounds_for_x :: "rat \<Rightarrow> rat \<Rightarrow> rat \<Rightarrow> | |
rat \<times> rat \<times> rat" where | |
[code]: "tighten_poly_bounds_for_x l r sr = (if x < l \<or> r < x then (l, r, sr) else | |
(case tighten_poly_bounds l r sr of (l',r',sr') \<Rightarrow> tighten_poly_bounds_for_x l' r' sr'))" | |
lemma tighten_poly_bounds_epsilon: | |
assumes ur: "unique_root (p,l,r)" | |
defines u: "u \<equiv> the_unique_root (p,l,r)" | |
assumes p: "poly_cond2 p" | |
and res: "tighten_poly_bounds_epsilon l r sr = (l',r',sr')" | |
and sr: "sr = sgn (ipoly p r)" | |
and x: "x > 0" | |
shows "l \<le> l'" "r' \<le> r" "root_cond (p,l',r') u" "r' - l' \<le> x" "sr' = sgn (ipoly p r')" | |
proof - | |
let ?u = "the_unique_root (p,l,r)" | |
define delta where "delta = x / 2" | |
have delta: "delta > 0" unfolding delta_def using x by auto | |
let ?dist = "\<lambda> (l,r,sr). r - l" | |
let ?rel = "inv_image {(x, y). 0 \<le> y \<and> delta_gt delta x y} ?dist" | |
note SN = SN_inv_image[OF delta_gt_SN[OF delta], of ?dist] | |
note simps = res[unfolded tighten_poly_bounds_for_x.simps[of l r]] | |
let ?P = "\<lambda> (l,r,sr). unique_root (p,l,r) \<longrightarrow> u = the_unique_root (p,l,r) | |
\<longrightarrow> tighten_poly_bounds_epsilon l r sr = (l',r',sr') | |
\<longrightarrow> sr = sgn (ipoly p r) | |
\<longrightarrow> l \<le> l' \<and> r' \<le> r \<and> r' - l' \<le> x \<and> root_cond (p,l',r') u \<and> sr' = sgn (ipoly p r')" | |
have "?P (l,r,sr)" | |
proof (induct rule: SN_induct[OF SN]) | |
case (1 lr) | |
obtain l r sr where lr: "lr = (l,r,sr)" by (cases lr, auto) | |
show ?case unfolding lr split | |
proof (intro impI) | |
assume ur: "unique_root (p, l, r)" | |
and u: "u = the_unique_root (p, l, r)" | |
and res: "tighten_poly_bounds_epsilon l r sr = (l', r', sr')" | |
and sr: "sr = sgn (ipoly p r)" | |
note tur = unique_rootD[OF ur] | |
note simps = tighten_poly_bounds_epsilon.simps[of l r sr] | |
show "l \<le> l' \<and> r' \<le> r \<and> r' - l' \<le> x \<and> root_cond (p, l', r') u \<and> sr' = sgn (ipoly p r')" | |
proof (cases "r - l \<le> x") | |
case True | |
with res[unfolded simps] ur tur(4) u sr | |
show ?thesis by auto | |
next | |
case False | |
hence x: "r - l > x" by auto | |
let ?tight = "tighten_poly_bounds l r sr" | |
obtain L R SR where tight: "?tight = (L,R,SR)" by (cases ?tight, auto) | |
note tighten = tighten_poly_bounds[OF tight[unfolded sr] ur p] | |
from unique_root_sub_interval[OF ur tighten(1-2,4)] p | |
have ur': "unique_root (p,L,R)" "u = the_unique_root (p,L,R)" unfolding u by auto | |
from res[unfolded simps tight] False sr have "tighten_poly_bounds_epsilon L R SR = (l',r',sr')" by auto | |
note IH = 1[of "(L,R,SR)", unfolded tight split lr, rule_format, OF _ ur' this] | |
have "L \<le> l' \<and> r' \<le> R \<and> r' - l' \<le> x \<and> root_cond (p, l', r') u \<and> sr' = sgn (ipoly p r')" | |
by (rule IH, insert tighten False, auto simp: delta_gt_def delta_def) | |
thus ?thesis using tighten by auto | |
qed | |
qed | |
qed | |
from this[unfolded split u, rule_format, OF ur refl res sr] | |
show "l \<le> l'" "r' \<le> r" "root_cond (p,l',r') u" "r' - l' \<le> x" "sr' = sgn (ipoly p r')" using u by auto | |
qed | |
lemma tighten_poly_bounds_for_x: | |
assumes ur: "unique_root (p,l,r)" | |
defines u: "u \<equiv> the_unique_root (p,l,r)" | |
assumes p: "poly_cond2 p" | |
and res: "tighten_poly_bounds_for_x l r sr = (l',r',sr')" | |
and sr: "sr = sgn (ipoly p r)" | |
shows "l \<le> l'" "l' \<le> r'" "r' \<le> r" "root_cond (p,l',r') u" "\<not> (l' \<le> x \<and> x \<le> r')" "sr' = sgn (ipoly p r')" "unique_root (p,l',r')" | |
proof - | |
let ?u = "the_unique_root (p,l,r)" | |
let ?x = "real_of_rat x" | |
define delta where "delta = abs ((u - ?x) / 2)" | |
let ?p = "real_of_int_poly p" | |
note ru = unique_rootD[OF ur] | |
{ | |
assume "u = ?x" | |
note u = this[unfolded u] | |
from poly_cond2_no_rat_root[OF p] ur have False by (elim unique_rootE, auto simp: u) | |
} | |
hence delta: "delta > 0" unfolding delta_def by auto | |
let ?dist = "\<lambda> (l,r,sr). real_of_rat (r - l)" | |
let ?rel = "inv_image {(x, y). 0 \<le> y \<and> delta_gt delta x y} ?dist" | |
note SN = SN_inv_image[OF delta_gt_SN[OF delta], of ?dist] | |
note simps = res[unfolded tighten_poly_bounds_for_x.simps[of l r]] | |
let ?P = "\<lambda> (l,r,sr). unique_root (p,l,r) \<longrightarrow> u = the_unique_root (p,l,r) | |
\<longrightarrow> tighten_poly_bounds_for_x l r sr = (l',r',sr') | |
\<longrightarrow> sr = sgn (ipoly p r) | |
\<longrightarrow> l \<le> l' \<and> r' \<le> r \<and> \<not> (l' \<le> x \<and> x \<le> r') \<and> root_cond (p,l',r') u \<and> sr' = sgn (ipoly p r')" | |
have "?P (l,r,sr)" | |
proof (induct rule: SN_induct[OF SN]) | |
case (1 lr) | |
obtain l r sr where lr: "lr = (l,r,sr)" by (cases lr, auto) | |
let ?l = "real_of_rat l" | |
let ?r = "real_of_rat r" | |
show ?case unfolding lr split | |
proof (intro impI) | |
assume ur: "unique_root (p, l, r)" | |
and u: "u = the_unique_root (p, l, r)" | |
and res: "tighten_poly_bounds_for_x l r sr = (l', r', sr')" | |
and sr: "sr = sgn (ipoly p r)" | |
note tur = unique_rootD[OF ur] | |
note simps = tighten_poly_bounds_for_x.simps[of l r] | |
show "l \<le> l' \<and> r' \<le> r \<and> \<not> (l' \<le> x \<and> x \<le> r') \<and> root_cond (p, l', r') u \<and> sr' = sgn (ipoly p r')" | |
proof (cases "x < l \<or> r < x") | |
case True | |
with res[unfolded simps] ur tur(4) u sr | |
show ?thesis by auto | |
next | |
case False | |
hence x: "?l \<le> ?x" "?x \<le> ?r" by (auto simp: of_rat_less_eq) | |
let ?tight = "tighten_poly_bounds l r sr" | |
obtain L R SR where tight: "?tight = (L,R,SR)" by (cases ?tight, auto) | |
note tighten = tighten_poly_bounds[OF tight ur p sr] | |
from unique_root_sub_interval[OF ur tighten(1-2,4)] p | |
have ur': "unique_root (p,L,R)" "u = the_unique_root (p,L,R)" unfolding u by auto | |
from res[unfolded simps tight] False have "tighten_poly_bounds_for_x L R SR = (l',r',sr')" by auto | |
note IH = 1[of ?tight, unfolded tight split lr, rule_format, OF _ ur' this] | |
let ?DIFF = "real_of_rat (R - L)" let ?diff = "real_of_rat (r - l)" | |
have diff0: "0 \<le> ?DIFF" using tighten(3) | |
by (metis cancel_comm_monoid_add_class.diff_cancel diff_right_mono of_rat_less_eq of_rat_hom.hom_zero) | |
have *: "r - l - (r - l) / 2 = (r - l) / 2" by (auto simp: field_simps) | |
have "delta_gt delta ?diff ?DIFF = (abs (u - of_rat x) \<le> real_of_rat (r - l) * 1)" | |
unfolding delta_gt_def tighten(5) delta_def of_rat_diff[symmetric] * by (simp add: hom_distribs) | |
also have "real_of_rat (r - l) * 1 = ?r - ?l" | |
unfolding of_rat_divide of_rat_mult of_rat_diff by auto | |
also have "abs (u - of_rat x) \<le> ?r - ?l" using x ur by (elim unique_rootE, auto simp: u) | |
finally have delta: "delta_gt delta ?diff ?DIFF" . | |
have "L \<le> l' \<and> r' \<le> R \<and> \<not> (l' \<le> x \<and> x \<le> r') \<and> root_cond (p, l', r') u \<and> sr' = sgn (ipoly p r')" | |
by (rule IH, insert delta diff0 tighten(6), auto) | |
with \<open>l \<le> L\<close> \<open>R \<le> r\<close> show ?thesis by auto | |
qed | |
qed | |
qed | |
from this[unfolded split u, rule_format, OF ur refl res sr] | |
show *: "l \<le> l'" "r' \<le> r" "root_cond (p,l',r') u" "\<not> (l' \<le> x \<and> x \<le> r')" "sr' = sgn (ipoly p r')" unfolding u | |
by auto | |
from *(3)[unfolded split] have "real_of_rat l' \<le> of_rat r'" by auto | |
thus "l' \<le> r'" unfolding of_rat_less_eq . | |
show "unique_root (p,l',r')" using ur *(1-3) p poly_condD(5) u unique_root_sub_interval(1) by blast | |
qed | |
end | |
definition real_alg_precision :: rat where | |
"real_alg_precision \<equiv> Rat.Fract 1 2" | |
lemma real_alg_precision: "real_alg_precision > 0" | |
by eval | |
definition normalize_bounds_1_main :: "rat \<Rightarrow> real_alg_1 \<Rightarrow> real_alg_1" where | |
"normalize_bounds_1_main eps rai = (case rai of (p,l,r) \<Rightarrow> | |
let (l',r',sr') = tighten_poly_bounds_epsilon p eps l r (sgn (ipoly p r)); | |
fr = rat_of_int (floor r'); | |
(l'',r'',_) = tighten_poly_bounds_for_x p fr l' r' sr' | |
in (p,l'',r''))" | |
definition normalize_bounds_1 :: "real_alg_1 \<Rightarrow> real_alg_1" where | |
"normalize_bounds_1 = (normalize_bounds_1_main real_alg_precision)" | |
context | |
fixes p q and l r :: rat | |
assumes cong: "\<And> x. real_of_rat l \<le> x \<Longrightarrow> x \<le> of_rat r \<Longrightarrow> (ipoly p x = (0 :: real)) = (ipoly q x = 0)" | |
begin | |
lemma root_cond_cong: "root_cond (p,l,r) = root_cond (q,l,r)" | |
by (intro ext, insert cong, auto simp: root_cond_def) | |
lemma the_unique_root_cong: | |
"the_unique_root (p,l,r) = the_unique_root (q,l,r)" | |
unfolding root_cond_cong .. | |
lemma unique_root_cong: | |
"unique_root (p,l,r) = unique_root (q,l,r)" | |
unfolding root_cond_cong .. | |
end | |
lemma normalize_bounds_1_main: assumes eps: "eps > 0" and rc: "invariant_1_2 x" | |
defines y: "y \<equiv> normalize_bounds_1_main eps x" | |
shows "invariant_1_2 y \<and> (real_of_1 y = real_of_1 x)" | |
proof - | |
obtain p l r where x: "x = (p,l,r)" by (cases x) auto | |
note rc = rc[unfolded x] | |
obtain l' r' sr' where tb: "tighten_poly_bounds_epsilon p eps l r (sgn (ipoly p r)) = (l',r',sr')" | |
by (cases rule: prod_cases3, auto) | |
let ?fr = "rat_of_int (floor r')" | |
obtain l'' r'' sr'' where tbx: "tighten_poly_bounds_for_x p ?fr l' r' sr' = (l'',r'',sr'')" | |
by (cases rule: prod_cases3, auto) | |
from y[unfolded normalize_bounds_1_main_def x] tb tbx | |
have y: "y = (p, l'', r'')" | |
by (auto simp: Let_def) | |
from rc have "unique_root (p, l, r)" and p2: "poly_cond2 p" by auto | |
from tighten_poly_bounds_epsilon[OF this tb refl eps] | |
have bnd: "l \<le> l'" "r' \<le> r" and rc': "root_cond (p, l', r') (the_unique_root (p, l, r))" | |
and eps: "r' - l' \<le> eps" (* currently not relevant for lemma *) | |
and sr': "sr' = sgn (ipoly p r')" by auto | |
from invariant_1_sub_interval[OF _ rc' bnd] rc | |
have inv': "invariant_1 (p, l', r')" and eq: "real_of_1 (p, l', r') = real_of_1 (p, l, r)" by auto | |
have bnd: "l' \<le> l''" "r'' \<le> r'" and rc': "root_cond (p, l'', r'') (the_unique_root (p, l', r'))" | |
by (rule tighten_poly_bounds_for_x[OF _ p2 tbx sr'], fact invariant_1D[OF inv'])+ | |
from invariant_1_sub_interval[OF inv' rc' bnd] p2 eq | |
show ?thesis unfolding y x by auto | |
qed | |
lemma normalize_bounds_1: assumes x: "invariant_1_2 x" | |
shows "invariant_1_2 (normalize_bounds_1 x) \<and> (real_of_1 (normalize_bounds_1 x) = real_of_1 x)" | |
proof(cases x) | |
case xx:(fields p l r) | |
let ?res = "(p,l,r)" | |
have norm: "normalize_bounds_1 x = (normalize_bounds_1_main real_alg_precision ?res)" | |
unfolding normalize_bounds_1_def by (simp add: xx) | |
from x have x: "invariant_1_2 ?res" "real_of_1 ?res = real_of_1 x" unfolding xx by auto | |
from normalize_bounds_1_main[OF real_alg_precision x(1)] x(2-) | |
show ?thesis unfolding normalize_bounds_1_def xx by auto | |
qed | |
lemma normalize_bound_1_poly: "poly_real_alg_1 (normalize_bounds_1 rai) = poly_real_alg_1 rai" | |
unfolding normalize_bounds_1_def normalize_bounds_1_main_def Let_def | |
by (auto split: prod.splits) | |
definition real_alg_2_main :: "root_info \<Rightarrow> real_alg_1 \<Rightarrow> real_alg_2" where | |
"real_alg_2_main ri rai \<equiv> let p = poly_real_alg_1 rai | |
in (if degree p = 1 then Rational (Rat.Fract (- coeff p 0) (coeff p 1)) | |
else (case normalize_bounds_1 rai of (p',l,r) \<Rightarrow> | |
Irrational (root_info.number_root ri r) (p',l,r)))" | |
definition real_alg_2 :: "real_alg_1 \<Rightarrow> real_alg_2" where | |
"real_alg_2 rai \<equiv> let p = poly_real_alg_1 rai | |
in (if degree p = 1 then Rational (Rat.Fract (- coeff p 0) (coeff p 1)) | |
else (case normalize_bounds_1 rai of (p',l,r) \<Rightarrow> | |
Irrational (root_info.number_root (root_info p) r) (p',l,r)))" | |
lemma degree_1_ipoly: assumes "degree p = Suc 0" | |
shows "ipoly p x = 0 \<longleftrightarrow> (x = real_of_rat (Rat.Fract (- coeff p 0) (coeff p 1)))" | |
proof - | |
from roots1[of "map_poly real_of_int p"] assms | |
have "ipoly p x = 0 \<longleftrightarrow> x \<in> {roots1 (real_of_int_poly p)}" by auto | |
also have "\<dots> = (x = real_of_rat (Rat.Fract (- coeff p 0) (coeff p 1)))" | |
unfolding Fract_of_int_quotient roots1_def hom_distribs | |
by auto | |
finally show ?thesis . | |
qed | |
lemma invariant_1_degree_0: | |
assumes inv: "invariant_1 rai" | |
shows "degree (poly_real_alg_1 rai) \<noteq> 0" (is "degree ?p \<noteq> 0") | |
proof (rule notI) | |
assume deg: "degree ?p = 0" | |
from inv have "ipoly ?p (real_of_1 rai) = 0" by auto | |
with deg have "?p = 0" by (meson less_Suc0 representsI represents_degree) | |
with inv show False by auto | |
qed | |
lemma real_alg_2_main: | |
assumes inv: "invariant_1 rai" | |
defines [simp]: "p \<equiv> poly_real_alg_1 rai" | |
assumes ric: "irreducible (poly_real_alg_1 rai) \<Longrightarrow> root_info_cond ri (poly_real_alg_1 rai)" | |
shows "invariant_2 (real_alg_2_main ri rai)" "real_of_2 (real_alg_2_main ri rai) = real_of_1 rai" | |
proof (atomize(full)) | |
define l r where [simp]: "l \<equiv> rai_lb rai" and [simp]: "r \<equiv> rai_ub rai" | |
show "invariant_2 (real_alg_2_main ri rai) \<and> real_of_2 (real_alg_2_main ri rai) = real_of_1 rai" | |
unfolding id using invariant_1D | |
proof (cases "degree p" "Suc 0" rule: linorder_cases) | |
case deg: equal | |
hence id: "real_alg_2_main ri rai = Rational (Rat.Fract (- coeff p 0) (coeff p 1))" | |
unfolding real_alg_2_main_def Let_def by auto | |
note rc = invariant_1D[OF inv] | |
from degree_1_ipoly[OF deg, of "the_unique_root rai"] rc(1) | |
show ?thesis unfolding id by auto | |
next | |
case deg: greater | |
with inv have inv: "invariant_1_2 rai" unfolding p_def by auto | |
define rai' where "rai' = normalize_bounds_1 rai" | |
have rai': "real_of_1 rai = real_of_1 rai'" and inv': "invariant_1_2 rai'" | |
unfolding rai'_def using normalize_bounds_1[OF inv] by auto | |
obtain p' l' r' where "rai' = (p',l',r')" by (cases rai') | |
with arg_cong[OF rai'_def, of poly_real_alg_1, unfolded normalize_bound_1_poly] split | |
have split: "rai' = (p,l',r')" by auto | |
from inv'[unfolded split] | |
have "poly_cond p" by auto | |
from poly_condD[OF this] have irr: "irreducible p" by simp | |
from ric irr have ric: "root_info_cond ri p" by auto | |
have id: "real_alg_2_main ri rai = (Irrational (root_info.number_root ri r') rai')" | |
unfolding real_alg_2_main_def Let_def using deg split rai'_def | |
by (auto simp: rai'_def rai') | |
show ?thesis unfolding id using rai' root_info_condD(2)[OF ric] | |
inv'[unfolded split] | |
apply (elim invariant_1_2E invariant_1E) using inv' | |
by(auto simp: split roots_below_the_unique_root) | |
next | |
case deg: less then have "degree p = 0" by auto | |
from this invariant_1_degree_0[OF inv] have "p = 0" by simp | |
with inv show ?thesis by auto | |
qed | |
qed | |
lemma real_alg_2: assumes "invariant_1 rai" | |
shows "invariant_2 (real_alg_2 rai)" "real_of_2 (real_alg_2 rai) = real_of_1 rai" | |
proof - | |
have deg: "0 < degree (poly_real_alg_1 rai)" using assms by auto | |
have "real_alg_2 rai = real_alg_2_main (root_info (poly_real_alg_1 rai)) rai" | |
unfolding real_alg_2_def real_alg_2_main_def Let_def by auto | |
from real_alg_2_main[OF assms root_info, folded this, simplified] deg | |
show "invariant_2 (real_alg_2 rai)" "real_of_2 (real_alg_2 rai) = real_of_1 rai" by auto | |
qed | |
lemma invariant_2_realI: | |
fixes plr :: real_alg_1 | |
defines "p \<equiv> poly_real_alg_1 plr" and "l \<equiv> rai_lb plr" and "r \<equiv> rai_ub plr" | |
assumes x: "root_cond plr x" and sgn: "sgn l = sgn r" | |
and ur: "unique_root plr" | |
and p: "poly_cond p" | |
shows "invariant_2 (real_alg_2 plr) \<and> real_of_2 (real_alg_2 plr) = x" | |
using invariant_1_realI[OF x,folded p_def l_def r_def] sgn ur p | |
real_alg_2[of plr] by auto | |
(* ********************* *) | |
subsubsection \<open>Comparisons\<close> | |
fun compare_rat_1 :: "rat \<Rightarrow> real_alg_1 \<Rightarrow> order" where | |
"compare_rat_1 x (p,l,r) = (if x < l then Lt else if x > r then Gt else | |
if sgn (ipoly p x) = sgn(ipoly p r) then Gt else Lt)" | |
lemma compare_rat_1: assumes rai: "invariant_1_2 y" | |
shows "compare_rat_1 x y = compare (of_rat x) (real_of_1 y)" | |
proof- | |
define p l r where "p \<equiv> poly_real_alg_1 y" "l \<equiv> rai_lb y" "r \<equiv> rai_ub y" | |
then have y [simp]: "y = (p,l,r)" by (cases y, auto) | |
from rai have ur: "unique_root y" by auto | |
show ?thesis | |
proof (cases "x < l \<or> x > r") | |
case True | |
{ | |
assume xl: "x < l" | |
hence "real_of_rat x < of_rat l" unfolding of_rat_less by auto | |
with rai have "of_rat x < the_unique_root y" by (auto elim!: invariant_1E) | |
with xl rai have ?thesis by (cases y, auto simp: compare_real_def comparator_of_def) | |
} | |
moreover | |
{ | |
assume xr: "\<not> x < l" "x > r" | |
hence "real_of_rat x > of_rat r" unfolding of_rat_less by auto | |
with rai have "of_rat x > the_unique_root y" by (auto elim!: invariant_1E) | |
with xr rai have ?thesis by (cases y, auto simp: compare_real_def comparator_of_def) | |
} | |
ultimately show ?thesis using True by auto | |
next | |
case False | |
have 0: "ipoly p (real_of_rat x) \<noteq> 0" by (rule poly_cond2_no_rat_root, insert rai, auto) | |
with rai have diff: "real_of_1 y \<noteq> of_rat x" by (auto elim!: invariant_1E) | |
have "\<And> P. (1 < degree (poly_real_alg_1 y) \<Longrightarrow> \<exists>!x. root_cond y x \<Longrightarrow> poly_cond p \<Longrightarrow> P) \<Longrightarrow> P" | |
using poly_real_alg_1.simps y rai invariant_1_2E invariant_1E by metis | |
from this[OF gt_rat_sign_change] False | |
have left: "compare_rat_1 x y = (if real_of_rat x \<le> the_unique_root y then Lt else Gt)" | |
by (auto simp:poly_cond2_def) | |
also have "\<dots> = compare (real_of_rat x) (real_of_1 y)" using diff | |
by (auto simp: compare_real_def comparator_of_def) | |
finally show ?thesis . | |
qed | |
qed | |
lemma cf_pos_0[simp]: "\<not> cf_pos 0" | |
unfolding cf_pos_def by auto | |
(* ********************* *) | |
subsubsection\<open>Negation\<close> | |
fun uminus_1 :: "real_alg_1 \<Rightarrow> real_alg_1" where | |
"uminus_1 (p,l,r) = (abs_int_poly (poly_uminus p), -r, -l)" | |
lemma uminus_1: assumes x: "invariant_1 x" | |
defines y: "y \<equiv> uminus_1 x" | |
shows "invariant_1 y \<and> (real_of_1 y = - real_of_1 x)" | |
proof (cases x) | |
case plr: (fields p l r) | |
from x plr have inv: "invariant_1 (p,l,r)" by auto | |
note * = invariant_1D[OF this] | |
from plr have x: "x = (p,l,r)" by simp | |
let ?p = "poly_uminus p" | |
let ?mp = "abs_int_poly ?p" | |
have y: "y = (?mp, -r , -l)" | |
unfolding y plr by (simp add: Let_def) | |
{ | |
fix y | |
assume "root_cond (?mp, - r, - l) y" | |
hence mpy: "ipoly ?mp y = 0" and bnd: "- of_rat r \<le> y" "y \<le> - of_rat l" | |
unfolding root_cond_def by (auto simp: of_rat_minus) | |
from mpy have id: "ipoly p (- y) = 0" by auto | |
from bnd have bnd: "of_rat l \<le> - y" "-y \<le> of_rat r" by auto | |
from id bnd have "root_cond (p, l, r) (-y)" unfolding root_cond_def by auto | |
with inv x have "real_of_1 x = -y" by (auto intro!: the_unique_root_eqI) | |
then have "-real_of_1 x = y" by auto | |
} note inj = this | |
have rc: "root_cond (?mp, - r, - l) (- real_of_1 x)" | |
using * unfolding root_cond_def y x by (auto simp: of_rat_minus sgn_minus_rat) | |
from inj rc have ur': "unique_root (?mp, -r, -l)" by (auto intro: unique_rootI) | |
with rc have the: "- real_of_1 x = the_unique_root (?mp, -r, -l)" by (auto intro: the_unique_root_eqI) | |
have xp: "p represents (real_of_1 x)" using * unfolding root_cond_def split represents_def x by auto | |
from * have mon: "lead_coeff ?mp > 0" by (unfold pos_poly_abs_poly, auto) | |
from poly_uminus_irreducible * have mi: "irreducible ?mp" by auto | |
from mi mon have pc': "poly_cond ?mp" by (auto simp: cf_pos_def) | |
from poly_condD[OF pc'] have irr: "irreducible ?mp" by auto | |
show ?thesis unfolding y apply (intro invariant_1_realI ur' rc) using pc' inv by auto | |
qed | |
lemma uminus_1_2: | |
assumes x: "invariant_1_2 x" | |
defines y: "y \<equiv> uminus_1 x" | |
shows "invariant_1_2 y \<and> (real_of_1 y = - real_of_1 x)" | |
proof - | |
from x have "invariant_1 x" by auto | |
from uminus_1[OF this] have *: "real_of_1 y = - real_of_1 x" | |
"invariant_1 y" unfolding y by auto | |
obtain p l r where id: "x = (p,l,r)" by (cases x) | |
from x[unfolded id] have "degree p > 1" by auto | |
moreover have "poly_real_alg_1 y = abs_int_poly (poly_uminus p)" | |
unfolding y id uminus_1.simps split Let_def by auto | |
ultimately have "degree (poly_real_alg_1 y) > 1" by simp | |
with * show ?thesis by auto | |
qed | |
fun uminus_2 :: "real_alg_2 \<Rightarrow> real_alg_2" where | |
"uminus_2 (Rational r) = Rational (-r)" | |
| "uminus_2 (Irrational n x) = real_alg_2 (uminus_1 x)" | |
lemma uminus_2: assumes "invariant_2 x" | |
shows "real_of_2 (uminus_2 x) = uminus (real_of_2 x)" | |
"invariant_2 (uminus_2 x)" | |
using assms real_alg_2 uminus_1 by (atomize(full), cases x, auto simp: hom_distribs) | |
declare uminus_1.simps[simp del] | |
lift_definition uminus_3 :: "real_alg_3 \<Rightarrow> real_alg_3" is uminus_2 | |
by (auto simp: uminus_2) | |
lemma uminus_3: "real_of_3 (uminus_3 x) = - real_of_3 x" | |
by (transfer, auto simp: uminus_2) | |
instantiation real_alg :: uminus | |
begin | |
lift_definition uminus_real_alg :: "real_alg \<Rightarrow> real_alg" is uminus_3 | |
by (simp add: uminus_3) | |
instance .. | |
end | |
lemma uminus_real_alg: "- (real_of x) = real_of (- x)" | |
by (transfer, rule uminus_3[symmetric]) | |
(* ********************* *) | |
subsubsection\<open>Inverse\<close> | |
fun inverse_1 :: "real_alg_1 \<Rightarrow> real_alg_2" where | |
"inverse_1 (p,l,r) = real_alg_2 (abs_int_poly (reflect_poly p), inverse r, inverse l)" | |
lemma invariant_1_2_of_rat: assumes rc: "invariant_1_2 rai" | |
shows "real_of_1 rai \<noteq> of_rat x" | |
proof - | |
obtain p l r where rai: "rai = (p, l, r)" by (cases rai, auto) | |
from rc[unfolded rai] | |
have "poly_cond2 p" "ipoly p (the_unique_root (p, l, r)) = 0" by (auto elim!: invariant_1E) | |
from poly_cond2_no_rat_root[OF this(1), of x] this(2) show ?thesis unfolding rai by auto | |
qed | |
lemma inverse_1: | |
assumes rcx: "invariant_1_2 x" | |
defines y: "y \<equiv> inverse_1 x" | |
shows "invariant_2 y \<and> (real_of_2 y = inverse (real_of_1 x))" | |
proof (cases x) | |
case x: (fields p l r) | |
from x rcx have rcx: "invariant_1_2 (p,l,r)" by auto | |
from invariant_1_2_poly_cond2[OF rcx] have pc2: "poly_cond2 p" by simp | |
have x0: "real_of_1 (p,l,r) \<noteq> 0" using invariant_1_2_of_rat[OF rcx, of 0] x by auto | |
let ?x = "real_of_1 (p,l,r)" | |
let ?mp = "abs_int_poly (reflect_poly p)" | |
from x0 rcx have lr0: "l \<noteq> 0" and "r \<noteq> 0" by auto | |
from x0 rcx have y: "y = real_alg_2 (?mp, inverse r, inverse l)" | |
unfolding y x Let_def inverse_1.simps by auto | |
from rcx have mon: "lead_coeff ?mp > 0" by (unfold lead_coeff_abs_int_poly, auto) | |
{ | |
fix y | |
assume "root_cond (?mp, inverse r, inverse l) y" | |
hence mpy: "ipoly ?mp y = 0" and bnd: "inverse (of_rat r) \<le> y" "y \<le> inverse (of_rat l)" | |
unfolding root_cond_def by (auto simp: of_rat_inverse) | |
from sgn_real_mono[OF bnd(1)] sgn_real_mono[OF bnd(2)] | |
have "sgn (of_rat r) \<le> sgn y" "sgn y \<le> sgn (of_rat l)" | |
by (simp_all add: algebra_simps) | |
with rcx have sgn: "sgn (inverse (of_rat r)) = sgn y" "sgn y = sgn (inverse (of_rat l))" | |
unfolding sgn_inverse inverse_sgn | |
by (auto simp add: real_of_rat_sgn intro: order_antisym) | |
from sgn[simplified, unfolded real_of_rat_sgn] lr0 have "y \<noteq> 0" by (auto simp:sgn_0_0) | |
with mpy have id: "ipoly p (inverse y) = 0" by (auto simp: ipoly_reflect_poly) | |
from inverse_le_sgn[OF sgn(1) bnd(1)] inverse_le_sgn[OF sgn(2) bnd(2)] | |
have bnd: "of_rat l \<le> inverse y" "inverse y \<le> of_rat r" by auto | |
from id bnd have "root_cond (p,l,r) (inverse y)" unfolding root_cond_def by auto | |
from rcx this x0 have "?x = inverse y" by auto | |
then have "inverse ?x = y" by auto | |
} note inj = this | |
have rc: "root_cond (?mp, inverse r, inverse l) (inverse ?x)" | |
using rcx x0 apply (elim invariant_1_2E invariant_1E) | |
by (simp add: root_cond_def of_rat_inverse real_of_rat_sgn inverse_le_iff_sgn ipoly_reflect_poly) | |
from inj rc have ur: "unique_root (?mp, inverse r, inverse l)" by (auto intro: unique_rootI) | |
with rc have the: "the_unique_root (?mp, inverse r, inverse l) = inverse ?x" by (auto intro: the_unique_root_eqI) | |
have xp: "p represents ?x" unfolding split represents_def using rcx by (auto elim!: invariant_1E) | |
from reflect_poly_irreducible[OF _ xp x0] poly_condD rcx | |
have mi: "irreducible ?mp" by auto | |
from mi mon have un: "poly_cond ?mp" by (auto simp: poly_cond_def) | |
show ?thesis using rcx rc ur unfolding y | |
by (intro invariant_2_realI, auto simp: x y un) | |
qed | |
fun inverse_2 :: "real_alg_2 \<Rightarrow> real_alg_2" where | |
"inverse_2 (Rational r) = Rational (inverse r)" | |
| "inverse_2 (Irrational n x) = inverse_1 x" | |
lemma inverse_2: assumes "invariant_2 x" | |
shows "real_of_2 (inverse_2 x) = inverse (real_of_2 x)" | |
"invariant_2 (inverse_2 x)" | |
using assms | |
by (atomize(full), cases x, auto simp: real_alg_2 inverse_1 hom_distribs) | |
lift_definition inverse_3 :: "real_alg_3 \<Rightarrow> real_alg_3" is inverse_2 | |
by (auto simp: inverse_2) | |
lemma inverse_3: "real_of_3 (inverse_3 x) = inverse (real_of_3 x)" | |
by (transfer, auto simp: inverse_2) | |
(* ********************* *) | |
subsubsection\<open>Floor\<close> | |
fun floor_1 :: "real_alg_1 \<Rightarrow> int" where | |
"floor_1 (p,l,r) = (let | |
(l',r',sr') = tighten_poly_bounds_epsilon p (1/2) l r (sgn (ipoly p r)); | |
fr = floor r'; | |
fl = floor l'; | |
fr' = rat_of_int fr | |
in (if fr = fl then fr else | |
let (l'',r'',sr'') = tighten_poly_bounds_for_x p fr' l' r' sr' | |
in if fr' < l'' then fr else fl))" | |
lemma floor_1: assumes "invariant_1_2 x" | |
shows "floor (real_of_1 x) = floor_1 x" | |
proof (cases x) | |
case (fields p l r) | |
obtain l' r' sr' where tbe: "tighten_poly_bounds_epsilon p (1 / 2) l r (sgn (ipoly p r)) = (l',r',sr')" | |
by (cases rule: prod_cases3, auto) | |
let ?fr = "floor r'" | |
let ?fl = "floor l'" | |
let ?fr' = "rat_of_int ?fr" | |
obtain l'' r'' sr'' where tbx: "tighten_poly_bounds_for_x p ?fr' l' r' sr' = (l'',r'',sr'')" | |
by (cases rule: prod_cases3, auto) | |
note rc = assms[unfolded fields] | |
hence rc1: "invariant_1 (p,l,r)" by auto | |
have id: "floor_1 x = ((if ?fr = ?fl then ?fr | |
else if ?fr' < l'' then ?fr else ?fl))" | |
unfolding fields floor_1.simps tbe Let_def split tbx by simp | |
let ?x = "real_of_1 x" | |
have x: "?x = the_unique_root (p,l,r)" unfolding fields by simp | |
have bnd: "l \<le> l'" "r' \<le> r" "r' - l' \<le> 1 / 2" | |
and rc': "root_cond (p, l', r') (the_unique_root (p, l, r))" | |
and sr': "sr' = sgn (ipoly p r')" | |
by (atomize(full), intro conjI tighten_poly_bounds_epsilon[OF _ _ tbe refl],insert rc,auto elim!: invariant_1E) | |
let ?r = real_of_rat | |
from rc'[folded x, unfolded split] | |
have ineq: "?r l' \<le> ?x" "?x \<le> ?r r'" "?r l' \<le> ?r r'" by auto | |
hence lr': "l' \<le> r'" unfolding of_rat_less_eq by simp | |
have flr: "?fl \<le> ?fr" | |
by (rule floor_mono[OF lr']) | |
from invariant_1_sub_interval[OF rc1 rc' bnd(1,2)] | |
have rc': "invariant_1 (p, l', r')" | |
and id': "the_unique_root (p, l', r') = the_unique_root (p, l, r)" by auto | |
with rc have rc2': "invariant_1_2 (p, l', r')" by auto | |
have x: "?x = the_unique_root (p,l',r')" | |
unfolding fields using id' by simp | |
{ | |
assume "?fr \<noteq> ?fl" | |
with flr have flr: "?fl \<le> ?fr - 1" by simp | |
have "?fr' \<le> r'" "l' \<le> ?fr'" using flr bnd by linarith+ | |
} note fl_diff = this | |
show ?thesis | |
proof (cases "?fr = ?fl") | |
case True | |
hence id1: "floor_1 x = ?fr" unfolding id by auto | |
from True have id: "floor (?r l') = floor (?r r')" | |
by simp | |
have "floor ?x \<le> floor (?r r')" | |
by (rule floor_mono[OF ineq(2)]) | |
moreover have "floor (?r l') \<le> floor ?x" | |
by (rule floor_mono[OF ineq(1)]) | |
ultimately have "floor ?x = floor (?r r')" | |
unfolding id by (simp add: id) | |
then show ?thesis by (simp add: id1) | |
next | |
case False | |
with id have id: "floor_1 x = (if ?fr' < l'' then ?fr else ?fl)" by simp | |
from rc2' have "unique_root (p,l',r')" "poly_cond2 p" by auto | |
from tighten_poly_bounds_for_x[OF this tbx sr'] | |
have ineq': "l' \<le> l''" "r'' \<le> r'" and lr'': "l'' \<le> r''" and rc'': "root_cond (p,l'',r'') ?x" | |
and fr': "\<not> (l'' \<le> ?fr' \<and> ?fr' \<le> r'')" unfolding x by auto | |
from rc''[unfolded split] | |
have ineq'': "?r l'' \<le> ?x" "?x \<le> ?r r''" by auto | |
from False have "?fr \<noteq> ?fl" by auto | |
note fr = fl_diff[OF this] | |
show ?thesis | |
proof (cases "?fr' < l''") | |
case True | |
with id have id: "floor_1 x = ?fr" by simp | |
have "floor ?x \<le> ?fr" using floor_mono[OF ineq(2)] by simp | |
moreover | |
from True have "?r ?fr' < ?r l''" unfolding of_rat_less . | |
with ineq''(1) have "?r ?fr' \<le> ?x" by simp | |
from floor_mono[OF this] | |
have "?fr \<le> floor ?x" by simp | |
ultimately show ?thesis unfolding id by auto | |
next | |
case False | |
with id have id: "floor_1 x = ?fl" by simp | |
from False have "l'' \<le> ?fr'" by auto | |
from floor_mono[OF ineq(1)] have "?fl \<le> floor ?x" by simp | |
moreover have "floor ?x \<le> ?fl" | |
proof - | |
from False fr' have fr': "r'' < ?fr'" by auto | |
hence "floor r'' < ?fr" by linarith | |
with floor_mono[OF ineq''(2)] | |
have "floor ?x \<le> ?fr - 1" by auto | |
also have "?fr - 1 = floor (r' - 1)" by simp | |
also have "\<dots> \<le> ?fl" | |
by (rule floor_mono, insert bnd, auto) | |
finally show ?thesis . | |
qed | |
ultimately show ?thesis unfolding id by auto | |
qed | |
qed | |
qed | |
(* ********************* *) | |
subsubsection\<open>Generic Factorization and Bisection Framework\<close> | |
lemma card_1_Collect_ex1: assumes "card (Collect P) = 1" | |
shows "\<exists>! x. P x" | |
proof - | |
from assms[unfolded card_eq_1_iff] obtain x where "Collect P = {x}" by auto | |
thus ?thesis | |
by (intro ex1I[of _ x], auto) | |
qed | |
fun sub_interval :: "rat \<times> rat \<Rightarrow> rat \<times> rat \<Rightarrow> bool" where | |
"sub_interval (l,r) (l',r') = (l' \<le> l \<and> r \<le> r')" | |
fun in_interval :: "rat \<times> rat \<Rightarrow> real \<Rightarrow> bool" where | |
"in_interval (l,r) x = (of_rat l \<le> x \<and> x \<le> of_rat r)" | |
definition converges_to :: "(nat \<Rightarrow> rat \<times> rat) \<Rightarrow> real \<Rightarrow> bool" where | |
"converges_to f x \<equiv> (\<forall> n. in_interval (f n) x \<and> sub_interval (f (Suc n)) (f n)) | |
\<and> (\<forall> (eps :: real) > 0. \<exists> n l r. f n = (l,r) \<and> of_rat r - of_rat l \<le> eps)" | |
context | |
fixes bnd_update :: "'a \<Rightarrow> 'a" | |
and bnd_get :: "'a \<Rightarrow> rat \<times> rat" | |
begin | |
definition at_step :: "(nat \<Rightarrow> rat \<times> rat) \<Rightarrow> nat \<Rightarrow> 'a \<Rightarrow> bool" where | |
"at_step f n a \<equiv> \<forall> i. bnd_get ((bnd_update ^^ i) a) = f (n + i)" | |
partial_function (tailrec) select_correct_factor_main | |
:: "'a \<Rightarrow> (int poly \<times> root_info)list \<Rightarrow> (int poly \<times> root_info)list | |
\<Rightarrow> rat \<Rightarrow> rat \<Rightarrow> nat \<Rightarrow> (int poly \<times> root_info) \<times> rat \<times> rat" where | |
[code]: "select_correct_factor_main bnd todo old l r n = (case todo of Nil | |
\<Rightarrow> if n = 1 then (hd old, l, r) else let bnd' = bnd_update bnd in (case bnd_get bnd' of (l,r) \<Rightarrow> | |
select_correct_factor_main bnd' old [] l r 0) | |
| Cons (p,ri) todo \<Rightarrow> let m = root_info.l_r ri l r in | |
if m = 0 then select_correct_factor_main bnd todo old l r n | |
else select_correct_factor_main bnd todo ((p,ri) # old) l r (n + m))" | |
definition select_correct_factor :: "'a \<Rightarrow> (int poly \<times> root_info)list \<Rightarrow> | |
(int poly \<times> root_info) \<times> rat \<times> rat" where | |
"select_correct_factor init polys = (case bnd_get init of (l,r) \<Rightarrow> | |
select_correct_factor_main init polys [] l r 0)" | |
lemma select_correct_factor_main: assumes conv: "converges_to f x" | |
and at: "at_step f i a" | |
and res: "select_correct_factor_main a todo old l r n = ((q,ri_fin),(l_fin,r_fin))" | |
and bnd: "bnd_get a = (l,r)" | |
and ri: "\<And> q ri. (q,ri) \<in> set todo \<union> set old \<Longrightarrow> root_info_cond ri q" | |
and q0: "\<And> q ri. (q,ri) \<in> set todo \<union> set old \<Longrightarrow> q \<noteq> 0" | |
and ex: "\<exists>q. q \<in> fst ` set todo \<union> fst ` set old \<and> ipoly q x = 0" | |
and dist: "distinct (map fst (todo @ old))" | |
and old: "\<And> q ri. (q,ri) \<in> set old \<Longrightarrow> root_info.l_r ri l r \<noteq> 0" | |
and un: "\<And> x :: real. (\<exists>q. q \<in> fst ` set todo \<union> fst ` set old \<and> ipoly q x = 0) \<Longrightarrow> | |
\<exists>!q. q \<in> fst ` set todo \<union> fst ` set old \<and> ipoly q x = 0" | |
and n: "n = sum_list (map (\<lambda> (q,ri). root_info.l_r ri l r) old)" | |
shows "unique_root (q,l_fin,r_fin) \<and> (q,ri_fin) \<in> set todo \<union> set old \<and> x = the_unique_root (q,l_fin,r_fin)" | |
proof - | |
define orig where "orig = set todo \<union> set old" | |
have orig: "set todo \<union> set old \<subseteq> orig" unfolding orig_def by auto | |
let ?rts = "{x :: real. \<exists> q ri. (q,ri) \<in> orig \<and> ipoly q x = 0}" | |
define rts where "rts = ?rts" | |
let ?h = "\<lambda> (x,y). abs (x - y)" | |
let ?r = real_of_rat | |
have rts: "?rts = (\<Union> ((\<lambda> (q,ri). {x. ipoly q x = 0}) ` set (todo @ old)))" unfolding orig_def by auto | |
have "finite rts" unfolding rts rts_def | |
using finite_ipoly_roots[OF q0] finite_set[of "todo @ old"] by auto | |
hence fin: "finite (rts \<times> rts - Id)" by auto | |
define diffs where "diffs = insert 1 {abs (x - y) | x y. x \<in> rts \<and> y \<in> rts \<and> x \<noteq> y}" | |
have "finite {abs (x - y) | x y. x \<in> rts \<and> y \<in> rts \<and> x \<noteq> y}" | |
by (rule subst[of _ _ finite, OF _ finite_imageI[OF fin, of ?h]], auto) | |
hence diffs: "finite diffs" "diffs \<noteq> {}" unfolding diffs_def by auto | |
define eps where "eps = Min diffs / 2" | |
have "\<And> x. x \<in> diffs \<Longrightarrow> x > 0" unfolding diffs_def by auto | |
with Min_gr_iff[OF diffs] have eps: "eps > 0" unfolding eps_def by auto | |
note conv = conv[unfolded converges_to_def] | |
from conv eps obtain N L R where | |
N: "f N = (L,R)" "?r R - ?r L \<le> eps" by auto | |
obtain pair where pair: "pair = (todo,i)" by auto | |
define rel where "rel = measures [ \<lambda> (t,i). N - i, \<lambda> (t :: (int poly \<times> root_info) list,i). length t]" | |
have wf: "wf rel" unfolding rel_def by simp | |
show ?thesis | |
using at res bnd ri q0 ex dist old un n pair orig | |
proof (induct pair arbitrary: todo i old a l r n rule: wf_induct[OF wf]) | |
case (1 pair todo i old a l r n) | |
note IH = 1(1)[rule_format] | |
note at = 1(2) | |
note res = 1(3)[unfolded select_correct_factor_main.simps[of _ todo]] | |
note bnd = 1(4) | |
note ri = 1(5) | |
note q0 = 1(6) | |
note ex = 1(7) | |
note dist = 1(8) | |
note old = 1(9) | |
note un = 1(10) | |
note n = 1(11) | |
note pair = 1(12) | |
note orig = 1(13) | |
from at[unfolded at_step_def, rule_format, of 0] bnd have fi: "f i = (l,r)" by auto | |
with conv have inx: "in_interval (f i) x" by blast | |
hence lxr: "?r l \<le> x" "x \<le> ?r r" unfolding fi by auto | |
from order.trans[OF this] have lr: "l \<le> r" unfolding of_rat_less_eq . | |
show ?case | |
proof (cases todo) | |
case (Cons rri tod) | |
obtain s ri where rri: "rri = (s,ri)" by force | |
with Cons have todo: "todo = (s,ri) # tod" by simp | |
note res = res[unfolded todo list.simps split Let_def] | |
from root_info_condD(1)[OF ri[of s ri, unfolded todo] lr] | |
have ri': "root_info.l_r ri l r = card {x. root_cond (s, l, r) x}" by auto | |
from q0 have s0: "s \<noteq> 0" unfolding todo by auto | |
from finite_ipoly_roots[OF s0] have fins: "finite {x. root_cond (s, l, r) x}" | |
unfolding root_cond_def by auto | |
have rel: "((tod,i), pair) \<in> rel" unfolding rel_def pair todo by simp | |
show ?thesis | |
proof (cases "root_info.l_r ri l r = 0") | |
case True | |
with res have res: "select_correct_factor_main a tod old l r n = ((q, ri_fin), l_fin, r_fin)" by auto | |
from ri'[symmetric, unfolded True] fins have empty: "{x. root_cond (s, l, r) x} = {}" by simp | |
from ex lxr empty have ex': "(\<exists>q. q \<in> fst ` set tod \<union> fst ` set old \<and> ipoly q x = 0)" | |
unfolding todo root_cond_def split by auto | |
have "unique_root (q, l_fin, r_fin) \<and> (q, ri_fin) \<in> set tod \<union> set old \<and> | |
x = the_unique_root (q, l_fin, r_fin)" | |
proof (rule IH[OF rel at res bnd ri _ ex' _ _ _ n refl], goal_cases) | |
case (5 y) thus ?case using un[of y] unfolding todo by auto | |
next | |
case 2 thus ?case using q0 unfolding todo by auto | |
qed (insert dist old orig, auto simp: todo) | |
thus ?thesis unfolding todo by auto | |
next | |
case False | |
with res have res: "select_correct_factor_main a tod ((s, ri) # old) l r | |
(n + root_info.l_r ri l r) = ((q, ri_fin), l_fin, r_fin)" by auto | |
from ex have ex': "\<exists>q. q \<in> fst ` set tod \<union> fst ` set ((s, ri) # old) \<and> ipoly q x = 0" | |
unfolding todo by auto | |
from dist have dist: "distinct (map fst (tod @ (s, ri) # old))" unfolding todo by auto | |
have id: "set todo \<union> set old = set tod \<union> set ((s, ri) # old)" unfolding todo by simp | |
show ?thesis unfolding id | |
proof (rule IH[OF rel at res bnd ri _ ex' dist], goal_cases) | |
case 4 thus ?case using un unfolding todo by auto | |
qed (insert old False orig, auto simp: q0 todo n) | |
qed | |
next | |
case Nil | |
note res = res[unfolded Nil list.simps Let_def] | |
from ex[unfolded Nil] lxr obtain s where "s \<in> fst ` set old \<and> root_cond (s,l,r) x" | |
unfolding root_cond_def by auto | |
then obtain q1 ri1 old' where old': "old = (q1,ri1) # old'" using id by (cases old, auto) | |
let ?ri = "root_info.l_r ri1 l r" | |
from old[unfolded old'] have 0: "?ri \<noteq> 0" by auto | |
from n[unfolded old'] 0 have n0: "n \<noteq> 0" by auto | |
from ri[unfolded old'] have ri': "root_info_cond ri1 q1" by auto | |
show ?thesis | |
proof (cases "n = 1") | |
case False | |
with n0 have n1: "n > 1" by auto | |
obtain l' r' where bnd': "bnd_get (bnd_update a) = (l',r')" by force | |
with res False have res: "select_correct_factor_main (bnd_update a) old [] l' r' 0 = | |
((q, ri_fin), l_fin, r_fin)" by auto | |
have at': "at_step f (Suc i) (bnd_update a)" unfolding at_step_def | |
proof (intro allI, goal_cases) | |
case (1 n) | |
have id: "(bnd_update ^^ Suc n) a = (bnd_update ^^ n) (bnd_update a)" | |
by (induct n, auto) | |
from at[unfolded at_step_def, rule_format, of "Suc n"] | |
show ?case unfolding id by simp | |
qed | |
from 0[unfolded root_info_condD(1)[OF ri' lr]] obtain y1 where y1: "root_cond (q1,l,r) y1" | |
by (cases "Collect (root_cond (q1, l, r)) = {}", auto) | |
from n1[unfolded n old'] | |
have "?ri > 1 \<or> sum_list (map (\<lambda> (q,ri). root_info.l_r ri l r) old') \<noteq> 0" | |
by (cases "sum_list (map (\<lambda> (q,ri). root_info.l_r ri l r) old')", auto) | |
hence "\<exists> q2 ri2 y2. (q2,ri2) \<in> set old \<and> root_cond (q2,l,r) y2 \<and> y1 \<noteq> y2" | |
proof | |
assume "?ri > 1" | |
with root_info_condD(1)[OF ri' lr] have "card {x. root_cond (q1, l, r) x} > 1" by simp | |
from card_gt_1D[OF this] y1 obtain y2 where "root_cond (q1,l,r) y2" and "y1 \<noteq> y2" by auto | |
thus ?thesis unfolding old' by auto | |
next | |
assume "sum_list (map (\<lambda> (q,ri). root_info.l_r ri l r) old') \<noteq> 0" | |
then obtain q2 ri2 where mem: "(q2,ri2) \<in> set old'" and ri2: "root_info.l_r ri2 l r \<noteq> 0" by auto | |
with q0 ri have "root_info_cond ri2 q2" unfolding old' by auto | |
from ri2[unfolded root_info_condD(1)[OF this lr]] obtain y2 where y2: "root_cond (q2,l,r) y2" | |
by (cases "Collect (root_cond (q2, l, r)) = {}", auto) | |
from dist[unfolded old'] split_list[OF mem] have diff: "q1 \<noteq> q2" by auto | |
from y1 have q1: "q1 \<in> fst ` set todo \<union> fst ` set old \<and> ipoly q1 y1 = 0" | |
unfolding old' root_cond_def by auto | |
from y2 have q2: "q2 \<in> fst ` set todo \<union> fst ` set old \<and> ipoly q2 y2 = 0" | |
unfolding old' root_cond_def using mem by force | |
have "y1 \<noteq> y2" | |
proof | |
assume id: "y1 = y2" | |
from q1 have "\<exists> q1. q1 \<in> fst ` set todo \<union> fst ` set old \<and> ipoly q1 y1 = 0" by blast | |
from un[OF this] q1 q2[folded id] have "q1 = q2" by auto | |
with diff show False by simp | |
qed | |
with mem y2 show ?thesis unfolding old' by auto | |
qed | |
then obtain q2 ri2 y2 where | |
mem2: "(q2,ri2) \<in> set old" and y2: "root_cond (q2,l,r) y2" and diff: "y1 \<noteq> y2" by auto | |
from mem2 orig have "(q1,ri1) \<in> orig" "(q2,ri2) \<in> orig" unfolding old' by auto | |
with y1 y2 diff have "abs (y1 - y2) \<in> diffs" unfolding diffs_def rts_def root_cond_def by auto | |
from Min_le[OF diffs(1) this] have "abs (y1 - y2) \<ge> 2 * eps" unfolding eps_def by auto | |
with eps have eps: "abs (y1 - y2) > eps" by auto | |
from y1 y2 have l: "of_rat l \<le> min y1 y2" unfolding root_cond_def by auto | |
from y1 y2 have r: "of_rat r \<ge> max y1 y2" unfolding root_cond_def by auto | |
from l r eps have eps: "of_rat r - of_rat l > eps" by auto | |
have "i < N" | |
proof (rule ccontr) | |
assume "\<not> i < N" | |
hence "\<exists> k. i = N + k" by presburger | |
then obtain k where i: "i = N + k" by auto | |
{ | |
fix k l r | |
assume "f (N + k) = (l,r)" | |
hence "of_rat r - of_rat l \<le> eps" | |
proof (induct k arbitrary: l r) | |
case 0 | |
with N show ?case by auto | |
next | |
case (Suc k l r) | |
obtain l' r' where f: "f (N + k) = (l',r')" by force | |
from Suc(1)[OF this] have IH: "?r r' - ?r l' \<le> eps" by auto | |
from f Suc(2) conv[THEN conjunct1, rule_format, of "N + k"] | |
have "?r l \<ge> ?r l'" "?r r \<le> ?r r'" | |
by (auto simp: of_rat_less_eq) | |
thus ?case using IH by auto | |
qed | |
} note * = this | |
from at[unfolded at_step_def i, rule_format, of 0] bnd have "f (N + k) = (l,r)" by auto | |
from *[OF this] eps | |
show False by auto | |
qed | |
hence rel: "((old, Suc i), pair) \<in> rel" unfolding pair rel_def by auto | |
from dist have dist: "distinct (map fst (old @ []))" unfolding Nil by auto | |
have id: "set todo \<union> set old = set old \<union> set []" unfolding Nil by auto | |
show ?thesis unfolding id | |
proof (rule IH[OF rel at' res bnd' ri _ _ dist _ _ _ refl], goal_cases) | |
case 2 thus ?case using q0 by auto | |
qed (insert ex un orig Nil, auto) | |
next | |
case True | |
with res old' have id: "q = q1" "ri_fin = ri1" "l_fin = l" "r_fin = r" by auto | |
from n[unfolded True old'] 0 have 1: "?ri = 1" | |
by (cases ?ri; cases "?ri - 1", auto) | |
from root_info_condD(1)[OF ri' lr] 1 have "card {x. root_cond (q1,l,r) x} = 1" by auto | |
from card_1_Collect_ex1[OF this] | |
have unique: "unique_root (q1,l,r)" . | |
from ex[unfolded Nil old'] consider (A) "ipoly q1 x = 0" | |
| (B) q where "q \<in> fst ` set old'" "ipoly q x = 0" by auto | |
hence "x = the_unique_root (q1,l,r)" | |
proof (cases) | |
case A | |
with lxr have "root_cond (q1,l,r) x" unfolding root_cond_def by auto | |
from the_unique_root_eqI[OF unique this] show ?thesis by simp | |
next | |
case (B q) | |
with lxr have "root_cond (q,l,r) x" unfolding root_cond_def by auto | |
hence empty: "{x. root_cond (q,l,r) x} \<noteq> {}" by auto | |
from B(1) obtain ri' where mem: "(q,ri') \<in> set old'" by force | |
from q0[unfolded old'] mem have q0: "q \<noteq> 0" by auto | |
from finite_ipoly_roots[OF this] have "finite {x. root_cond (q,l,r) x}" | |
unfolding root_cond_def by auto | |
with empty have card: "card {x. root_cond (q,l,r) x} \<noteq> 0" by simp | |
from ri[unfolded old'] mem have "root_info_cond ri' q" by auto | |
from root_info_condD(1)[OF this lr] card have "root_info.l_r ri' l r \<noteq> 0" by auto | |
with n[unfolded True old'] 1 split_list[OF mem] have False by auto | |
thus ?thesis by simp | |
qed | |
thus ?thesis unfolding id using unique ri' unfolding old' by auto | |
qed | |
qed | |
qed | |
qed | |
lemma select_correct_factor: assumes | |
conv: "converges_to (\<lambda> i. bnd_get ((bnd_update ^^ i) init)) x" | |
and res: "select_correct_factor init polys = ((q,ri),(l,r))" | |
and ri: "\<And> q ri. (q,ri) \<in> set polys \<Longrightarrow> root_info_cond ri q" | |
and q0: "\<And> q ri. (q,ri) \<in> set polys \<Longrightarrow> q \<noteq> 0" | |
and ex: "\<exists>q. q \<in> fst ` set polys \<and> ipoly q x = 0" | |
and dist: "distinct (map fst polys)" | |
and un: "\<And> x :: real. (\<exists>q. q \<in> fst ` set polys \<and> ipoly q x = 0) \<Longrightarrow> | |
\<exists>!q. q \<in> fst ` set polys \<and> ipoly q x = 0" | |
shows "unique_root (q,l,r) \<and> (q,ri) \<in> set polys \<and> x = the_unique_root (q,l,r)" | |
proof - | |
obtain l' r' where init: "bnd_get init = (l',r')" by force | |
from res[unfolded select_correct_factor_def init split] | |
have res: "select_correct_factor_main init polys [] l' r' 0 = ((q, ri), l, r)" by auto | |
have at: "at_step (\<lambda> i. bnd_get ((bnd_update ^^ i) init)) 0 init" unfolding at_step_def by auto | |
have "unique_root (q,l,r) \<and> (q,ri) \<in> set polys \<union> set [] \<and> x = the_unique_root (q,l,r)" | |
by (rule select_correct_factor_main[OF conv at res init ri], insert dist un ex q0, auto) | |
thus ?thesis by auto | |
qed | |
definition real_alg_2' :: "root_info \<Rightarrow> int poly \<Rightarrow> rat \<Rightarrow> rat \<Rightarrow> real_alg_2" where | |
[code del]: "real_alg_2' ri p l r = ( | |
if degree p = 1 then Rational (Rat.Fract (- coeff p 0) (coeff p 1)) else | |
real_alg_2_main ri (case tighten_poly_bounds_for_x p 0 l r (sgn (ipoly p r)) of | |
(l',r',sr') \<Rightarrow> (p, l', r')))" | |
lemma real_alg_2'_code[code]: "real_alg_2' ri p l r = | |
(if degree p = 1 then Rational (Rat.Fract (- coeff p 0) (coeff p 1)) | |
else case normalize_bounds_1 | |
(case tighten_poly_bounds_for_x p 0 l r (sgn (ipoly p r)) of (l', r', sr') \<Rightarrow> (p, l', r')) | |
of (p', l, r) \<Rightarrow> Irrational (root_info.number_root ri r) (p', l, r))" | |
unfolding real_alg_2'_def real_alg_2_main_def | |
by (cases "tighten_poly_bounds_for_x p 0 l r (sgn (ipoly p r))", simp add: Let_def) | |
definition real_alg_2'' :: "root_info \<Rightarrow> int poly \<Rightarrow> rat \<Rightarrow> rat \<Rightarrow> real_alg_2" where | |
"real_alg_2'' ri p l r = (case normalize_bounds_1 | |
(case tighten_poly_bounds_for_x p 0 l r (sgn (ipoly p r)) of (l', r', sr') \<Rightarrow> (p, l', r')) | |
of (p', l, r) \<Rightarrow> Irrational (root_info.number_root ri r) (p', l, r))" | |
lemma real_alg_2'': "degree p \<noteq> 1 \<Longrightarrow> real_alg_2'' ri p l r = real_alg_2' ri p l r" | |
unfolding real_alg_2'_code real_alg_2''_def by auto | |
lemma poly_cond_degree_0_imp_no_root: | |
fixes x :: "'b :: {comm_ring_1,ring_char_0}" | |
assumes pc: "poly_cond p" and deg: "degree p = 0" shows "ipoly p x \<noteq> 0" | |
proof | |
from pc have "p \<noteq> 0" by auto | |
moreover assume "ipoly p x = 0" | |
note poly_zero[OF this] | |
ultimately show False using deg by auto | |
qed | |
lemma real_alg_2': | |
assumes ur: "unique_root (q,l,r)" and pc: "poly_cond q" and ri: "root_info_cond ri q" | |
shows "invariant_2 (real_alg_2' ri q l r) \<and> real_of_2 (real_alg_2' ri q l r) = the_unique_root (q,l,r)" (is "_ \<and> _ = ?x") | |
proof (cases "degree q" "Suc 0" rule: linorder_cases) | |
case deg: less | |
then have "degree q = 0" by auto | |
from poly_cond_degree_0_imp_no_root[OF pc this] ur have False by force | |
then show ?thesis by auto | |
next | |
case deg: equal | |
hence id: "real_alg_2' ri q l r = Rational (Rat.Fract (- coeff q 0) (coeff q 1))" | |
unfolding real_alg_2'_def by auto | |
show ?thesis unfolding id using degree_1_ipoly[OF deg] | |
using unique_rootD(4)[OF ur] by auto | |
next | |
case deg: greater | |
with pc have pc2: "poly_cond2 q" by auto | |
let ?rai = "real_alg_2' ri q l r" | |
let ?r = real_of_rat | |
obtain l' r' sr' where tight: "tighten_poly_bounds_for_x q 0 l r (sgn (ipoly q r)) = (l',r',sr')" | |
by (cases rule: prod_cases3, auto) | |
let ?rai' = "(q, l', r')" | |
have rai': "?rai = real_alg_2_main ri ?rai'" | |
unfolding real_alg_2'_def using deg tight by auto | |
hence rai: "real_of_1 ?rai' = the_unique_root (q,l',r')" by auto | |
note tight = tighten_poly_bounds_for_x[OF ur pc2 tight refl] | |
let ?x = "the_unique_root (q, l, r)" | |
from tight have tight: "root_cond (q,l',r') ?x" "l \<le> l'" "l' \<le> r'" "r' \<le> r" "l' > 0 \<or> r' < 0" by auto | |
from unique_root_sub_interval[OF ur tight(1) tight(2,4)] poly_condD[OF pc] | |
have ur': "unique_root (q, l', r')" and x: "?x = the_unique_root (q,l',r')" by auto | |
from tight(2-) have sgn: "sgn l' = sgn r'" by auto | |
show ?thesis unfolding rai' using real_alg_2_main[of ?rai' ri] invariant_1_realI[of ?rai' ?x] | |
by (auto simp: tight(1) sgn pc ri ur') | |
qed | |
definition select_correct_factor_int_poly :: "'a \<Rightarrow> int poly \<Rightarrow> real_alg_2" where | |
"select_correct_factor_int_poly init p \<equiv> | |
let qs = factors_of_int_poly p; | |
polys = map (\<lambda> q. (q, root_info q)) qs; | |
((q,ri),(l,r)) = select_correct_factor init polys | |
in real_alg_2' ri q l r" | |
lemma select_correct_factor_int_poly: assumes | |
conv: "converges_to (\<lambda> i. bnd_get ((bnd_update ^^ i) init)) x" | |
and rai: "select_correct_factor_int_poly init p = rai" | |
and x: "ipoly p x = 0" | |
and p: "p \<noteq> 0" | |
shows "invariant_2 rai \<and> real_of_2 rai = x" | |
proof - | |
obtain qs where fact: "factors_of_int_poly p = qs" by auto | |
define polys where "polys = map (\<lambda> q. (q, root_info q)) qs" | |
obtain q ri l r where res: "select_correct_factor init polys = ((q,ri),(l,r))" | |
by (cases "select_correct_factor init polys", auto) | |
have fst: "map fst polys = qs" "fst ` set polys = set qs" unfolding polys_def map_map o_def | |
by force+ | |
note fact' = factors_of_int_poly[OF fact] | |
note rai = rai[unfolded select_correct_factor_int_poly_def Let_def fact, | |
folded polys_def, unfolded res split] | |
from fact' fst have dist: "distinct (map fst polys)" by auto | |
from fact'(2)[OF p, of x] x fst | |
have ex: "\<exists>q. q \<in> fst ` set polys \<and> ipoly q x = 0" by auto | |
{ | |
fix q ri | |
assume "(q,ri) \<in> set polys" | |
hence ri: "ri = root_info q" and q: "q \<in> set qs" unfolding polys_def by auto | |
from fact'(1)[OF q] have *: "lead_coeff q > 0" "irreducible q" "degree q > 0" by auto | |
from * have q0: "q \<noteq> 0" by auto | |
from root_info[OF *(2-3)] ri have ri: "root_info_cond ri q" by auto | |
note ri q0 * | |
} note polys = this | |
have "unique_root (q, l, r) \<and> (q, ri) \<in> set polys \<and> x = the_unique_root (q, l, r)" | |
by (rule select_correct_factor[OF conv res polys(1) _ ex dist, unfolded fst, OF _ _ fact'(3)[OF p]], | |
insert fact'(2)[OF p] polys(2), auto) | |
hence ur: "unique_root (q,l,r)" and mem: "(q,ri) \<in> set polys" and x: "x = the_unique_root (q,l,r)" by auto | |
note polys = polys[OF mem] | |
from polys(3-4) have ty: "poly_cond q" by (simp add: poly_cond_def) | |
show ?thesis unfolding x rai[symmetric] by (intro real_alg_2' ur ty polys(1)) | |
qed | |
end | |
(* ********************* *) | |
subsubsection\<open>Addition\<close> | |
lemma ipoly_0_0[simp]: "ipoly f (0::'a::{comm_ring_1,ring_char_0}) = 0 \<longleftrightarrow> poly f 0 = 0" | |
unfolding poly_0_coeff_0 by simp | |
lemma add_rat_roots_below[simp]: "roots_below (poly_add_rat r p) x = (\<lambda>y. y + of_rat r) ` roots_below p (x - of_rat r)" | |
proof (unfold add_rat_roots image_def, intro Collect_eqI, goal_cases) | |
case (1 y) then show ?case by (auto intro: exI[of _ "y - real_of_rat r"]) | |
qed | |
lemma add_rat_root_cond: | |
shows "root_cond (cf_pos_poly (poly_add_rat m p),l,r) x = root_cond (p, l - m, r - m) (x - of_rat m)" | |
by (unfold root_cond_def, auto simp add: add_rat_roots hom_distribs) | |
lemma add_rat_unique_root: "unique_root (cf_pos_poly (poly_add_rat m p), l, r) = unique_root (p, l-m, r-m)" | |
by (auto simp: add_rat_root_cond) | |
fun add_rat_1 :: "rat \<Rightarrow> real_alg_1 \<Rightarrow> real_alg_1" where | |
"add_rat_1 r1 (p2,l2,r2) = ( | |
let p = cf_pos_poly (poly_add_rat r1 p2); | |
(l,r,sr) = tighten_poly_bounds_for_x p 0 (l2+r1) (r2+r1) (sgn (ipoly p (r2+r1))) | |
in | |
(p,l,r))" | |
lemma poly_real_alg_1_add_rat[simp]: | |
"poly_real_alg_1 (add_rat_1 r y) = cf_pos_poly (poly_add_rat r (poly_real_alg_1 y))" | |
by (cases y, auto simp: Let_def split: prod.split) | |
lemma sgn_cf_pos: | |
assumes "lead_coeff p > 0" shows "sgn (ipoly (cf_pos_poly p) (x::'a::linordered_field)) = sgn (ipoly p x)" | |
proof (cases "p = 0") | |
case True with assms show ?thesis by auto | |
next | |
case False | |
from cf_pos_poly_main False obtain d where p': "Polynomial.smult d (cf_pos_poly p) = p" by auto | |
have "d > 0" | |
proof (rule zero_less_mult_pos2) | |
from False assms have "0 < lead_coeff p" by (auto simp: cf_pos_def) | |
also from p' have "\<dots> = d * lead_coeff (cf_pos_poly p)" by (metis lead_coeff_smult) | |
finally show "0 < \<dots>". | |
show "lead_coeff (cf_pos_poly p) > 0" using False by (unfold lead_coeff_cf_pos_poly) | |
qed | |
moreover from p' have "ipoly p x = of_int d * ipoly (cf_pos_poly p) x" | |
by (fold poly_smult of_int_hom.map_poly_hom_smult, auto) | |
ultimately show ?thesis by (auto simp: sgn_mult[where 'a='a]) | |
qed | |
lemma add_rat_1: fixes r1 :: rat assumes inv_y: "invariant_1_2 y" | |
defines "z \<equiv> add_rat_1 r1 y" | |
shows "invariant_1_2 z \<and> (real_of_1 z = of_rat r1 + real_of_1 y)" | |
proof (cases y) | |
case y_def: (fields p2 l2 r2) | |
define p where "p \<equiv> cf_pos_poly (poly_add_rat r1 p2)" | |
obtain l r sr where lr: "tighten_poly_bounds_for_x p 0 (l2+r1) (r2+r1) (sgn (ipoly p (r2+r1))) = (l,r,sr)" | |
by (metis surj_pair) | |
from lr have z: "z = (p,l,r)" by (auto simp: y_def z_def p_def Let_def) | |
from inv_y have ur: "unique_root (p, l2 + r1, r2 + r1)" | |
by (auto simp: p_def add_rat_root_cond y_def add_rat_unique_root) | |
from inv_y[unfolded y_def invariant_1_2_def,simplified] have pc2: "poly_cond2 p" | |
unfolding p_def | |
apply (intro poly_cond2I poly_add_rat_irreducible poly_condI, unfold lead_coeff_cf_pos_poly) | |
apply (auto elim!: invariant_1E) | |
done | |
note main = tighten_poly_bounds_for_x[OF ur pc2 lr refl, simplified] | |
then have "sgn l = sgn r" unfolding sgn_if apply simp apply linarith done | |
from invariant_1_2_realI[OF main(4) _ main(7), simplified, OF this pc2] main(1-3) ur | |
show ?thesis by (auto simp: z p_def y_def add_rat_root_cond ex1_the_shift) | |
qed | |
fun tighten_poly_bounds_binary :: "int poly \<Rightarrow> int poly \<Rightarrow> (rat \<times> rat \<times> rat) \<times> rat \<times> rat \<times> rat \<Rightarrow> (rat \<times> rat \<times> rat) \<times> rat \<times> rat \<times> rat" where | |
"tighten_poly_bounds_binary cr1 cr2 ((l1,r1,sr1),(l2,r2,sr2)) = | |
(tighten_poly_bounds cr1 l1 r1 sr1, tighten_poly_bounds cr2 l2 r2 sr2)" | |
lemma tighten_poly_bounds_binary: | |
assumes ur: "unique_root (p1,l1,r1)" "unique_root (p2,l2,r2)" and pt: "poly_cond2 p1" "poly_cond2 p2" | |
defines "x \<equiv> the_unique_root (p1,l1,r1)" and "y \<equiv> the_unique_root (p2,l2,r2)" | |
assumes bnd: "\<And> l1 r1 l2 r2 l r sr1 sr2. I l1 \<Longrightarrow> I l2 \<Longrightarrow> root_cond (p1,l1,r1) x \<Longrightarrow> root_cond (p2,l2,r2) y \<Longrightarrow> | |
bnd ((l1,r1,sr1),(l2,r2,sr2)) = (l,r) \<Longrightarrow> of_rat l \<le> f x y \<and> f x y \<le> of_rat r" | |
and approx: "\<And> l1 r1 l2 r2 l1' r1' l2' r2' l l' r r' sr1 sr2 sr1' sr2'. | |
I l1 \<Longrightarrow> I l2 \<Longrightarrow> | |
l1 \<le> r1 \<Longrightarrow> l2 \<le> r2 \<Longrightarrow> | |
(l,r) = bnd ((l1,r1,sr1), (l2,r2,sr2)) \<Longrightarrow> | |
(l',r') = bnd ((l1',r1',sr1'), (l2',r2',sr2')) \<Longrightarrow> | |
(l1',r1') \<in> {(l1,(l1+r1)/2),((l1+r1)/2,r1)} \<Longrightarrow> | |
(l2',r2') \<in> {(l2,(l2+r2)/2),((l2+r2)/2,r2)} \<Longrightarrow> | |
(r' - l') \<le> 3/4 * (r - l) \<and> l \<le> l' \<and> r' \<le> r" | |
and I_mono: "\<And> l l'. I l \<Longrightarrow> l \<le> l' \<Longrightarrow> I l'" | |
and I: "I l1" "I l2" | |
and sr: "sr1 = sgn (ipoly p1 r1)" "sr2 = sgn (ipoly p2 r2)" | |
shows "converges_to (\<lambda> i. bnd ((tighten_poly_bounds_binary p1 p2 ^^ i) ((l1,r1,sr1),(l2,r2,sr2)))) | |
(f x y)" | |
proof - | |
let ?upd = "tighten_poly_bounds_binary p1 p2" | |
define upd where "upd = ?upd" | |
define init where "init = ((l1, r1, sr1), l2, r2, sr2)" | |
let ?g = "(\<lambda>i. bnd ((upd ^^ i) init))" | |
obtain l r where bnd_init: "bnd init = (l,r)" by force | |
note ur1 = unique_rootD[OF ur(1)] | |
note ur2 = unique_rootD[OF ur(2)] | |
from ur1(4) ur2(4) x_def y_def | |
have rc1: "root_cond (p1,l1,r1) x" and rc2: "root_cond (p2,l2,r2) y" by auto | |
define g where "g = ?g" | |
{ | |
fix i L1 R1 L2 R2 L R j SR1 SR2 | |
assume "((upd ^^ i)) init = ((L1,R1,SR1),(L2,R2,SR2))" "g i = (L,R)" | |
hence "I L1 \<and> I L2 \<and> root_cond (p1,L1,R1) x \<and> root_cond (p2,L2,R2) y \<and> | |
unique_root (p1, L1, R1) \<and> unique_root (p2, L2, R2) \<and> in_interval (L,R) (f x y) \<and> | |
(i = Suc j \<longrightarrow> sub_interval (g i) (g j) \<and> (R - L \<le> 3/4 * (snd (g j) - fst (g j)))) | |
\<and> SR1 = sgn (ipoly p1 R1) \<and> SR2 = sgn (ipoly p2 R2)" | |
proof (induct i arbitrary: L1 R1 L2 R2 L R j SR1 SR2) | |
case 0 | |
thus ?case using I rc1 rc2 ur bnd[of l1 l2 r1 r2 sr1 sr2 L R] g_def sr unfolding init_def by auto | |
next | |
case (Suc i) | |
obtain l1 r1 l2 r2 sr1 sr2 where updi: "(upd ^^ i) init = ((l1, r1, sr1), l2, r2, sr2)" by (cases "(upd ^^ i) init", auto) | |
obtain l r where bndi: "bnd ((l1, r1, sr1), l2, r2, sr2) = (l,r)" by force | |
hence gi: "g i = (l,r)" using updi unfolding g_def by auto | |
have "(upd ^^ Suc i) init = upd ((l1, r1, sr1), l2, r2, sr2)" using updi by simp | |
from Suc(2)[unfolded this] have upd: "upd ((l1, r1, sr1), l2, r2, sr2) = ((L1, R1, SR1), L2, R2, SR2)" . | |
from upd updi Suc(3) have bndsi: "bnd ((L1, R1, SR1), L2, R2, SR2) = (L,R)" by (auto simp: g_def) | |
from Suc(1)[OF updi gi] have I: "I l1" "I l2" | |
and rc: "root_cond (p1,l1,r1) x" "root_cond (p2,l2,r2) y" | |
and ur: "unique_root (p1, l1, r1)" "unique_root (p2, l2, r2)" | |
and sr: "sr1 = sgn (ipoly p1 r1)" "sr2 = sgn (ipoly p2 r2)" | |
by auto | |
from upd[unfolded upd_def] | |
have tight: "tighten_poly_bounds p1 l1 r1 sr1 = (L1, R1, SR1)" "tighten_poly_bounds p2 l2 r2 sr2 = (L2, R2, SR2)" | |
by auto | |
note tight1 = tighten_poly_bounds[OF tight(1) ur(1) pt(1) sr(1)] | |
note tight2 = tighten_poly_bounds[OF tight(2) ur(2) pt(2) sr(2)] | |
from tight1 have lr1: "l1 \<le> r1" by auto | |
from tight2 have lr2: "l2 \<le> r2" by auto | |
note ur1 = unique_rootD[OF ur(1)] | |
note ur2 = unique_rootD[OF ur(2)] | |
from tight1 I_mono[OF I(1)] have I1: "I L1" by auto | |
from tight2 I_mono[OF I(2)] have I2: "I L2" by auto | |
note ur1 = unique_root_sub_interval[OF ur(1) tight1(1,2,4)] | |
note ur2 = unique_root_sub_interval[OF ur(2) tight2(1,2,4)] | |
from rc(1) ur ur1 have x: "x = the_unique_root (p1,L1,R1)" by (auto intro!:the_unique_root_eqI) | |
from rc(2) ur ur2 have y: "y = the_unique_root (p2,L2,R2)" by (auto intro!:the_unique_root_eqI) | |
from unique_rootD[OF ur1(1)] x have x: "root_cond (p1,L1,R1) x" by auto | |
from unique_rootD[OF ur2(1)] y have y: "root_cond (p2,L2,R2) y" by auto | |
from tight(1) have half1: "(L1, R1) \<in> {(l1, (l1 + r1) / 2), ((l1 + r1) / 2, r1)}" | |
unfolding tighten_poly_bounds_def Let_def by (auto split: if_splits) | |
from tight(2) have half2: "(L2, R2) \<in> {(l2, (l2 + r2) / 2), ((l2 + r2) / 2, r2)}" | |
unfolding tighten_poly_bounds_def Let_def by (auto split: if_splits) | |
from approx[OF I lr1 lr2 bndi[symmetric] bndsi[symmetric] half1 half2] | |
have "R - L \<le> 3 / 4 * (r - l) \<and> l \<le> L \<and> R \<le> r" . | |
hence "sub_interval (g (Suc i)) (g i)" "R - L \<le> 3/4 * (snd (g i) - fst (g i))" | |
unfolding gi Suc(3) by auto | |
with bnd[OF I1 I2 x y bndsi] | |
show ?case using I1 I2 x y ur1 ur2 tight1(6) tight2(6) by auto | |
qed | |
} note invariants = this | |
define L where "L = (\<lambda> i. fst (g i))" | |
define R where "R = (\<lambda> i. snd (g i))" | |
{ | |
fix i | |
obtain l1 r1 l2 r2 sr1 sr2 where updi: "(upd ^^ i) init = ((l1, r1, sr1), l2, r2, sr2)" by (cases "(upd ^^ i) init", auto) | |
obtain l r where bnd': "bnd ((l1, r1, sr1), l2, r2, sr2) = (l,r)" by force | |
have gi: "g i = (l,r)" unfolding g_def updi bnd' by auto | |
hence id: "l = L i" "r = R i" unfolding L_def R_def by auto | |
from invariants[OF updi gi[unfolded id]] | |
have "in_interval (L i, R i) (f x y)" | |
"\<And> j. i = Suc j \<Longrightarrow> sub_interval (g i) (g j) \<and> R i - L i \<le> 3 / 4 * (R j - L j)" | |
unfolding L_def R_def by auto | |
} note * = this | |
{ | |
fix i | |
from *(1)[of i] *(2)[of "Suc i", OF refl] | |
have "in_interval (g i) (f x y)" "sub_interval (g (Suc i)) (g i)" | |
"R (Suc i) - L (Suc i) \<le> 3 / 4 * (R i - L i)" unfolding L_def R_def by auto | |
} note * = this | |
show ?thesis unfolding upd_def[symmetric] init_def[symmetric] g_def[symmetric] | |
unfolding converges_to_def | |
proof (intro conjI allI impI, rule *(1), rule *(2)) | |
fix eps :: real | |
assume eps: "0 < eps" | |
let ?r = real_of_rat | |
define r where "r = (\<lambda> n. ?r (R n))" | |
define l where "l = (\<lambda> n. ?r (L n))" | |
define diff where "diff = (\<lambda> n. r n - l n)" | |
{ | |
fix n | |
from *(3)[of n] have "?r (R (Suc n) - L (Suc n)) \<le> ?r (3 / 4 * (R n - L n))" | |
unfolding of_rat_less_eq by simp | |
also have "?r (R (Suc n) - L (Suc n)) = (r (Suc n) - l (Suc n))" | |
unfolding of_rat_diff r_def l_def by simp | |
also have "?r (3 / 4 * (R n - L n)) = 3 / 4 * (r n - l n)" | |
unfolding r_def l_def by (simp add: hom_distribs) | |
finally have "diff (Suc n) \<le> 3 / 4 * diff n" unfolding diff_def . | |
} note * = this | |
{ | |
fix i | |
have "diff i \<le> (3/4)^i * diff 0" | |
proof (induct i) | |
case (Suc i) | |
from Suc *[of i] show ?case by auto | |
qed auto | |
} | |
then obtain c where *: "\<And> i. diff i \<le> (3/4)^i * c" by auto | |
have "\<exists> n. diff n \<le> eps" | |
proof (cases "c \<le> 0") | |
case True | |
with *[of 0] eps show ?thesis by (intro exI[of _ 0], auto) | |
next | |
case False | |
hence c: "c > 0" by auto | |
with eps have "inverse c * eps > 0" by auto | |
from exp_tends_to_zero[of "3/4 :: real", OF _ _ this] obtain n where | |
"(3/4) ^ n \<le> inverse c * eps" by auto | |
from mult_right_mono[OF this, of c] c | |
have "(3/4) ^ n * c \<le> eps" by (auto simp: field_simps) | |
with *[of n] show ?thesis by (intro exI[of _ n], auto) | |
qed | |
then obtain n where "?r (R n) - ?r (L n) \<le> eps" unfolding l_def r_def diff_def by blast | |
thus "\<exists>n l r. g n = (l, r) \<and> ?r r - ?r l \<le> eps" unfolding L_def R_def by (intro exI[of _ n], force) | |
qed | |
qed | |
fun add_1 :: "real_alg_1 \<Rightarrow> real_alg_1 \<Rightarrow> real_alg_2" where | |
"add_1 (p1,l1,r1) (p2,l2,r2) = ( | |
select_correct_factor_int_poly | |
(tighten_poly_bounds_binary p1 p2) | |
(\<lambda> ((l1,r1,sr1),(l2,r2,sr2)). (l1 + l2, r1 + r2)) | |
((l1,r1,sgn (ipoly p1 r1)),(l2,r2, sgn (ipoly p2 r2))) | |
(poly_add p1 p2))" | |
lemma add_1: | |
assumes x: "invariant_1_2 x" and y: "invariant_1_2 y" | |
defines z: "z \<equiv> add_1 x y" | |
shows "invariant_2 z \<and> (real_of_2 z = real_of_1 x + real_of_1 y)" | |
proof (cases x) | |
case xt: (fields p1 l1 r1) | |
show ?thesis | |
proof (cases y) | |
case yt: (fields p2 l2 r2) | |
let ?x = "real_of_1 (p1, l1, r1)" | |
let ?y = "real_of_1 (p2, l2, r2)" | |
let ?p = "poly_add p1 p2" | |
note x = x[unfolded xt] | |
note y = y[unfolded yt] | |
from x have ax: "p1 represents ?x" unfolding represents_def by (auto elim!: invariant_1E) | |
from y have ay: "p2 represents ?y" unfolding represents_def by (auto elim!: invariant_1E) | |
let ?bnd = "(\<lambda>((l1, r1, sr1 :: rat), l2 :: rat, r2 :: rat, sr2 :: rat). (l1 + l2, r1 + r2))" | |
define bnd where "bnd = ?bnd" | |
have "invariant_2 z \<and> real_of_2 z = ?x + ?y" | |
proof (intro select_correct_factor_int_poly) | |
from represents_add[OF ax ay] | |
show "?p \<noteq> 0" "ipoly ?p (?x + ?y) = 0" by auto | |
from z[unfolded xt yt] | |
show sel: "select_correct_factor_int_poly | |
(tighten_poly_bounds_binary p1 p2) | |
bnd | |
((l1,r1,sgn (ipoly p1 r1)),(l2,r2, sgn (ipoly p2 r2))) | |
(poly_add p1 p2) = z" by (auto simp: bnd_def) | |
have ur1: "unique_root (p1,l1,r1)" "poly_cond2 p1" using x by auto | |
have ur2: "unique_root (p2,l2,r2)" "poly_cond2 p2" using y by auto | |
show "converges_to | |
(\<lambda>i. bnd ((tighten_poly_bounds_binary p1 p2 ^^ i) | |
((l1,r1,sgn (ipoly p1 r1)),(l2,r2, sgn (ipoly p2 r2))))) (?x + ?y)" | |
by (intro tighten_poly_bounds_binary ur1 ur2; force simp: bnd_def hom_distribs) | |
qed | |
thus ?thesis unfolding xt yt . | |
qed | |
qed | |
declare add_rat_1.simps[simp del] | |
declare add_1.simps[simp del] | |
(* ********************* *) | |
subsubsection\<open>Multiplication\<close> | |
context | |
begin | |
private fun mult_rat_1_pos :: "rat \<Rightarrow> real_alg_1 \<Rightarrow> real_alg_2" where | |
"mult_rat_1_pos r1 (p2,l2,r2) = real_alg_2 (cf_pos_poly (poly_mult_rat r1 p2), l2*r1, r2*r1)" | |
private fun mult_1_pos :: "real_alg_1 \<Rightarrow> real_alg_1 \<Rightarrow> real_alg_2" where | |
"mult_1_pos (p1,l1,r1) (p2,l2,r2) = | |
select_correct_factor_int_poly | |
(tighten_poly_bounds_binary p1 p2) | |
(\<lambda> ((l1,r1,sr1),(l2,r2,sr2)). (l1 * l2, r1 * r2)) | |
((l1,r1,sgn (ipoly p1 r1)),(l2,r2, sgn (ipoly p2 r2))) | |
(poly_mult p1 p2)" | |
fun mult_rat_1 :: "rat \<Rightarrow> real_alg_1 \<Rightarrow> real_alg_2" where | |
"mult_rat_1 x y = | |
(if x < 0 then uminus_2 (mult_rat_1_pos (-x) y) | |
else if x = 0 then Rational 0 else (mult_rat_1_pos x y))" | |
fun mult_1 :: "real_alg_1 \<Rightarrow> real_alg_1 \<Rightarrow> real_alg_2" where | |
"mult_1 x y = (case (x,y) of ((p1,l1,r1),(p2,l2,r2)) \<Rightarrow> | |
if r1 > 0 then | |
if r2 > 0 then mult_1_pos x y | |
else uminus_2 (mult_1_pos x (uminus_1 y)) | |
else if r2 > 0 then uminus_2 (mult_1_pos (uminus_1 x) y) | |
else mult_1_pos (uminus_1 x) (uminus_1 y))" | |
lemma mult_rat_1_pos: fixes r1 :: rat assumes r1: "r1 > 0" and y: "invariant_1 y" | |
defines z: "z \<equiv> mult_rat_1_pos r1 y" | |
shows "invariant_2 z \<and> (real_of_2 z = of_rat r1 * real_of_1 y)" | |
proof - | |
obtain p2 l2 r2 where yt: "y = (p2,l2,r2)" by (cases y, auto) | |
let ?x = "real_of_rat r1" | |
let ?y = "real_of_1 (p2, l2, r2)" | |
let ?p = "poly_mult_rat r1 p2" | |
let ?mp = "cf_pos_poly ?p" | |
note y = y[unfolded yt] | |
note yD = invariant_1D[OF y] | |
from yD r1 have p: "?p \<noteq> 0" and r10: "r1 \<noteq> 0" by auto | |
hence mp: "?mp \<noteq> 0" by simp | |
from yD(1) | |
have rt: "ipoly p2 ?y = 0" and bnd: "of_rat l2 \<le> ?y" "?y \<le> of_rat r2" by auto | |
from rt r1 have rt: "ipoly ?mp (?x * ?y) = 0" by (auto simp add: field_simps ipoly_mult_rat[OF r10]) | |
from yD(5) have irr: "irreducible p2" | |
unfolding represents_def using y unfolding root_cond_def split by auto | |
from poly_mult_rat_irreducible[OF this _ r10] yD | |
have irr: "irreducible ?mp" by simp | |
from p have mon: "cf_pos ?mp" by auto | |
obtain l r where lr: "l = l2 * r1" "r = r2 * r1" by force | |
from bnd r1 have bnd: "of_rat l \<le> ?x * ?y" "?x * ?y \<le> of_rat r" unfolding lr of_rat_mult by auto | |
with rt have rc: "root_cond (?mp,l,r) (?x * ?y)" unfolding root_cond_def by auto | |
have ur: "unique_root (?mp,l,r)" | |
proof (rule ex1I, rule rc) | |
fix z | |
assume "root_cond (?mp,l,r) z" | |
from this[unfolded root_cond_def split] have bndz: "of_rat l \<le> z" "z \<le> of_rat r" | |
and rt: "ipoly ?mp z = 0" by auto | |
have "fst (quotient_of r1) \<noteq> 0" using quotient_of_div[of r1] r10 by (cases "quotient_of r1", auto) | |
with rt have rt: "ipoly p2 (z * inverse ?x) = 0" by (auto simp: ipoly_mult_rat[OF r10]) | |
from bndz r1 have "of_rat l2 \<le> z * inverse ?x" "z * inverse ?x \<le> of_rat r2" unfolding lr of_rat_mult | |
by (auto simp: field_simps) | |
with rt have "root_cond (p2,l2,r2) (z * inverse ?x)" unfolding root_cond_def by auto | |
also note invariant_1_root_cond[OF y] | |
finally have "?y = z * inverse ?x" by auto | |
thus "z = ?x * ?y" using r1 by auto | |
qed | |
from r1 have sgnr: "sgn r = sgn r2" unfolding lr | |
by (cases "r2 = 0"; cases "r2 < 0"; auto simp: mult_neg_pos mult_less_0_iff) | |
from r1 have sgnl: "sgn l = sgn l2" unfolding lr | |
by (cases "l2 = 0"; cases "l2 < 0"; auto simp: mult_neg_pos mult_less_0_iff) | |
from the_unique_root_eqI[OF ur rc] have xy: "?x * ?y = the_unique_root (?mp,l,r)" by auto | |
from z[unfolded yt, simplified, unfolded Let_def lr[symmetric] split] | |
have z: "z = real_alg_2 (?mp, l, r)" by simp | |
have yp2: "p2 represents ?y" using yD unfolding root_cond_def split represents_def by auto | |
with irr mon have pc: "poly_cond ?mp" by (auto simp: poly_cond_def cf_pos_def) | |
have rc: "invariant_1 (?mp, l, r)" unfolding z using yD(2) pc ur | |
by (auto simp add: invariant_1_def ur mp sgnr sgnl) | |
show ?thesis unfolding z using real_alg_2[OF rc] | |
unfolding yt xy unfolding z by simp | |
qed | |
lemma mult_1_pos: assumes x: "invariant_1_2 x" and y: "invariant_1_2 y" | |
defines z: "z \<equiv> mult_1_pos x y" | |
assumes pos: "real_of_1 x > 0" "real_of_1 y > 0" | |
shows "invariant_2 z \<and> (real_of_2 z = real_of_1 x * real_of_1 y)" | |
proof - | |
obtain p1 l1 r1 where xt: "x = (p1,l1,r1)" by (cases x, auto) | |
obtain p2 l2 r2 where yt: "y = (p2,l2,r2)" by (cases y, auto) | |
let ?x = "real_of_1 (p1, l1, r1)" | |
let ?y = "real_of_1 (p2, l2, r2)" | |
let ?r = "real_of_rat" | |
let ?p = "poly_mult p1 p2" | |
note x = x[unfolded xt] | |
note y = y[unfolded yt] | |
from x y have basic: "unique_root (p1, l1, r1)" "poly_cond2 p1" "unique_root (p2, l2, r2)" "poly_cond2 p2" by auto | |
from basic have irr1: "irreducible p1" and irr2: "irreducible p2" by auto | |
from x have ax: "p1 represents ?x" unfolding represents_def by (auto elim!:invariant_1E) | |
from y have ay: "p2 represents ?y" unfolding represents_def by (auto elim!:invariant_1E) | |
from ax ay pos[unfolded xt yt] have axy: "?p represents (?x * ?y)" | |
by (intro represents_mult represents_irr_non_0[OF irr2], auto) | |
from representsD[OF this] have p: "?p \<noteq> 0" and rt: "ipoly ?p (?x * ?y) = 0" . | |
from x pos(1)[unfolded xt] have "?r r1 > 0" unfolding split by auto | |
hence "sgn r1 = 1" unfolding sgn_rat_def by (auto split: if_splits) | |
with x have "sgn l1 = 1" by auto | |
hence l1_pos: "l1 > 0" unfolding sgn_rat_def by (cases "l1 = 0"; cases "l1 < 0"; auto) | |
from y pos(2)[unfolded yt] have "?r r2 > 0" unfolding split by auto | |
hence "sgn r2 = 1" unfolding sgn_rat_def by (auto split: if_splits) | |
with y have "sgn l2 = 1" by auto | |
hence l2_pos: "l2 > 0" unfolding sgn_rat_def by (cases "l2 = 0"; cases "l2 < 0"; auto) | |
let ?bnd = "(\<lambda>((l1, r1, sr1 :: rat), l2 :: rat, r2 :: rat, sr2 :: rat). (l1 * l2, r1 * r2))" | |
define bnd where "bnd = ?bnd" | |
obtain z' where sel: "select_correct_factor_int_poly | |
(tighten_poly_bounds_binary p1 p2) | |
bnd | |
((l1,r1,sgn (ipoly p1 r1)),(l2,r2, sgn (ipoly p2 r2))) | |
?p = z'" by auto | |
have main: "invariant_2 z' \<and> real_of_2 z' = ?x * ?y" | |
proof (rule select_correct_factor_int_poly[OF _ sel rt p]) | |
{ | |
fix l1 r1 l2 r2 l1' r1' l2' r2' l l' r r' :: rat | |
let ?m1 = "(l1+r1)/2" let ?m2 = "(l2+r2)/2" | |
define d1 where "d1 = r1 - l1" | |
define d2 where "d2 = r2 - l2" | |
let ?M1 = "l1 + d1/2" let ?M2 = "l2 + d2/2" | |
assume le: "l1 > 0" "l2 > 0" "l1 \<le> r1" "l2 \<le> r2" and id: "(l, r) = (l1 * l2, r1 * r2)" | |
"(l', r') = (l1' * l2', r1' * r2')" | |
and mem: "(l1', r1') \<in> {(l1, ?m1), (?m1, r1)}" | |
"(l2', r2') \<in> {(l2, ?m2), (?m2, r2)}" | |
hence id: "l = l1 * l2" "r = (l1 + d1) * (l2 + d2)" "l' = l1' * l2'" "r' = r1' * r2'" | |
"r1 = l1 + d1" "r2 = l2 + d2" and id': "?m1 = ?M1" "?m2 = ?M2" | |
unfolding d1_def d2_def by (auto simp: field_simps) | |
define l1d1 where "l1d1 = l1 + d1" | |
from le have ge0: "d1 \<ge> 0" "d2 \<ge> 0" "l1 \<ge> 0" "l2 \<ge> 0" unfolding d1_def d2_def by auto | |
have "4 * (r' - l') \<le> 3 * (r - l)" | |
proof (cases "l1' = l1 \<and> r1' = ?M1 \<and> l2' = l2 \<and> r2' = ?M2") | |
case True | |
hence id2: "l1' = l1" "r1' = ?M1" "l2' = l2" "r2' = ?M2" by auto | |
show ?thesis unfolding id id2 unfolding ring_distribs using ge0 by simp | |
next | |
case False note 1 = this | |
show ?thesis | |
proof (cases "l1' = l1 \<and> r1' = ?M1 \<and> l2' = ?M2 \<and> r2' = r2") | |
case True | |
hence id2: "l1' = l1" "r1' = ?M1" "l2' = ?M2" "r2' = r2" by auto | |
show ?thesis unfolding id id2 unfolding ring_distribs using ge0 by simp | |
next | |
case False note 2 = this | |
show ?thesis | |
proof (cases "l1' = ?M1 \<and> r1' = r1 \<and> l2' = l2 \<and> r2' = ?M2") | |
case True | |
hence id2: "l1' = ?M1" "r1' = r1" "l2' = l2" "r2' = ?M2" by auto | |
show ?thesis unfolding id id2 unfolding ring_distribs using ge0 by simp | |
next | |
case False note 3 = this | |
from 1 2 3 mem have id2: "l1' = ?M1" "r1' = r1" "l2' = ?M2" "r2' = r2" | |
unfolding id' by auto | |
show ?thesis unfolding id id2 unfolding ring_distribs using ge0 by simp | |
qed | |
qed | |
qed | |
hence "r' - l' \<le> 3 / 4 * (r - l)" by simp | |
} note decr = this | |
show "converges_to | |
(\<lambda>i. bnd ((tighten_poly_bounds_binary p1 p2 ^^ i) | |
((l1,r1,sgn (ipoly p1 r1)),(l2,r2, sgn (ipoly p2 r2))))) (?x * ?y)" | |
proof (intro tighten_poly_bounds_binary[where f = "(*)" and I = "\<lambda> l. l > 0"] | |
basic l1_pos l2_pos, goal_cases) | |
case (1 L1 R1 L2 R2 L R) | |
hence "L = L1 * L2" "R = R1 * R2" unfolding bnd_def by auto | |
hence id: "?r L = ?r L1 * ?r L2" "?r R = ?r R1 * ?r R2" by (auto simp: hom_distribs) | |
from 1(3-4) have le: "?r L1 \<le> ?x" "?x \<le> ?r R1" "?r L2 \<le> ?y" "?y \<le> ?r R2" | |
unfolding root_cond_def by auto | |
from 1(1-2) have lt: "0 < ?r L1" "0 < ?r L2" by auto | |
from mult_mono[OF le(1,3), folded id] lt le have L: "?r L \<le> ?x * ?y" by linarith | |
have R: "?x * ?y \<le> ?r R" | |
by (rule mult_mono[OF le(2,4), folded id], insert lt le, linarith+) | |
show ?case using L R by blast | |
next | |
case (2 l1 r1 l2 r2 l1' r1' l2' r2' l l' r r') | |
from 2(5-6) have lr: "l = l1 * l2" "r = r1 * r2" "l' = l1' * l2'" "r' = r1' * r2'" | |
unfolding bnd_def by auto | |
from 2(1-4) have le: "0 < l1" "0 < l2" "l1 \<le> r1" "l2 \<le> r2" by auto | |
from 2(7-8) le have le': "l1 \<le> l1'" "r1' \<le> r1" "l2 \<le> l2'" "r2' \<le> r2" "0 < r2'" "0 < r2" by auto | |
from mult_mono[OF le'(1,3), folded lr] le le' have l: "l \<le> l'" by auto | |
have r: "r' \<le> r" by (rule mult_mono[OF le'(2,4), folded lr], insert le le', linarith+) | |
have "r' - l' \<le> 3 / 4 * (r - l)" | |
by (rule decr[OF _ _ _ _ _ _ 2(7-8)], insert le le' lr, auto) | |
thus ?case using l r by blast | |
qed auto | |
qed | |
have z': "z' = z" unfolding z[unfolded xt yt, simplified, unfolded bnd_def[symmetric] sel] | |
by auto | |
from main[unfolded this] show ?thesis unfolding xt yt by simp | |
qed | |
lemma mult_1: assumes x: "invariant_1_2 x" and y: "invariant_1_2 y" | |
defines z[simp]: "z \<equiv> mult_1 x y" | |
shows "invariant_2 z \<and> (real_of_2 z = real_of_1 x * real_of_1 y)" | |
proof - | |
obtain p1 l1 r1 where xt[simp]: "x = (p1,l1,r1)" by (cases x) | |
obtain p2 l2 r2 where yt[simp]: "y = (p2,l2,r2)" by (cases y) | |
let ?xt = "(p1, l1, r1)" | |
let ?yt = "(p2, l2, r2)" | |
let ?x = "real_of_1 ?xt" | |
let ?y = "real_of_1 ?yt" | |
let ?mxt = "uminus_1 ?xt" | |
let ?myt = "uminus_1 ?yt" | |
let ?mx = "real_of_1 ?mxt" | |
let ?my = "real_of_1 ?myt" | |
let ?r = "real_of_rat" | |
from invariant_1_2_of_rat[OF x, of 0] have x0: "?x < 0 \<or> ?x > 0" by auto | |
from invariant_1_2_of_rat[OF y, of 0] have y0: "?y < 0 \<or> ?y > 0" by auto | |
from uminus_1_2[OF x] have mx: "invariant_1_2 ?mxt" and [simp]: "?mx = - ?x" by auto | |
from uminus_1_2[OF y] have my: "invariant_1_2 ?myt" and [simp]: "?my = - ?y" by auto | |
have id: "r1 > 0 \<longleftrightarrow> ?x > 0" "r1 < 0 \<longleftrightarrow> ?x < 0" "r2 > 0 \<longleftrightarrow> ?y > 0" "r2 < 0 \<longleftrightarrow> ?y < 0" | |
using x y by auto | |
show ?thesis | |
proof (cases "?x > 0") | |
case x0: True | |
show ?thesis | |
proof (cases "?y > 0") | |
case y0: True | |
with x y x0 mult_1_pos[OF x y] show ?thesis by auto | |
next | |
case False | |
with y0 have y0: "?y < 0" by auto | |
with x0 have z: "z = uminus_2 (mult_1_pos ?xt ?myt)" | |
unfolding z xt yt mult_1.simps split id by simp | |
from x0 y0 mult_1_pos[OF x my] uminus_2[of "mult_1_pos ?xt ?myt"] | |
show ?thesis unfolding z by simp | |
qed | |
next | |
case False | |
with x0 have x0: "?x0 < 0" by simp | |
show ?thesis | |
proof (cases "?y > 0") | |
case y0: True | |
with x0 x y id have z: "z = uminus_2 (mult_1_pos ?mxt ?yt)" by simp | |
from x0 y0 mult_1_pos[OF mx y] uminus_2[of "mult_1_pos ?mxt ?yt"] | |
show ?thesis unfolding z by auto | |
next | |
case False | |
with y0 have y0: "?y < 0" by simp | |
with x0 x y have z: "z = mult_1_pos ?mxt ?myt" by auto | |
with x0 y0 x y mult_1_pos[OF mx my] | |
show ?thesis unfolding z by auto | |
qed | |
qed | |
qed | |
lemma mult_rat_1: fixes x assumes y: "invariant_1 y" | |
defines z: "z \<equiv> mult_rat_1 x y" | |
shows "invariant_2 z \<and> (real_of_2 z = of_rat x * real_of_1 y)" | |
proof (cases y) | |
case yt: (fields p2 l2 r2) | |
let ?yt = "(p2, l2, r2)" | |
let ?x = "real_of_rat x" | |
let ?y = "real_of_1 ?yt" | |
let ?myt = "mult_rat_1_pos (- x) ?yt" | |
note y = y[unfolded yt] | |
note z = z[unfolded yt] | |
show ?thesis | |
proof(cases x "0::rat" rule:linorder_cases) | |
case x: greater | |
with z have z: "z = mult_rat_1_pos x ?yt" by simp | |
from mult_rat_1_pos[OF x y] | |
show ?thesis unfolding yt z by auto | |
next | |
case less | |
then have x: "- x > 0" by auto | |
hence z: "z = uminus_2 ?myt" unfolding z by simp | |
from mult_rat_1_pos[OF x y] have rc: "invariant_2 ?myt" | |
and rr: "real_of_2 ?myt = - ?x * ?y" by (auto simp: hom_distribs) | |
from uminus_2[OF rc] rr show ?thesis unfolding z[symmetric] unfolding yt[symmetric] | |
by simp | |
qed (auto simp: z) | |
qed | |
end | |
declare mult_1.simps[simp del] | |
declare mult_rat_1.simps[simp del] | |
(* ********************* *) | |
subsubsection\<open>Root\<close> | |
definition ipoly_root_delta :: "int poly \<Rightarrow> real" where | |
"ipoly_root_delta p = Min (insert 1 { abs (x - y) | x y. ipoly p x = 0 \<and> ipoly p y = 0 \<and> x \<noteq> y}) / 4" | |
lemma ipoly_root_delta: assumes "p \<noteq> 0" | |
shows "ipoly_root_delta p > 0" | |
"2 \<le> card (Collect (root_cond (p, l, r))) \<Longrightarrow> ipoly_root_delta p \<le> real_of_rat (r - l) / 4" | |
proof - | |
let ?z = "0 :: real" | |
let ?R = "{x. ipoly p x = ?z}" | |
let ?set = "{ abs (x - y) | x y. ipoly p x = ?z \<and> ipoly p y = 0 \<and> x \<noteq> y}" | |
define S where "S = insert 1 ?set" | |
from finite_ipoly_roots[OF assms] have finR: "finite ?R" and fin: "finite (?R \<times> ?R)" by auto | |
have "finite ?set" | |
by (rule finite_subset[OF _ finite_imageI[OF fin, of "\<lambda> (x,y). abs (x - y)"]], force) | |
hence fin: "finite S" and ne: "S \<noteq> {}" and pos: "\<And> x. x \<in> S \<Longrightarrow> x > 0" unfolding S_def by auto | |
have delta: "ipoly_root_delta p = Min S / 4" unfolding ipoly_root_delta_def S_def .. | |
have pos: "Min S > 0" using fin ne pos by auto | |
show "ipoly_root_delta p > 0" unfolding delta using pos by auto | |
let ?S = "Collect (root_cond (p, l, r))" | |
assume "2 \<le> card ?S" | |
hence 2: "Suc (Suc 0) \<le> card ?S" by simp | |
from 2[unfolded card_le_Suc_iff[of _ ?S]] obtain x T where | |
ST: "?S = insert x T" and xT: "x \<notin> T" and 1: "Suc 0 \<le> card T" by auto | |
from 1[unfolded card_le_Suc_iff[of _ T]] obtain y where yT: "y \<in> T" by auto | |
from ST xT yT have x: "x \<in> ?S" and y: "y \<in> ?S" and xy: "x \<noteq> y" by auto | |
hence "abs (x - y) \<in> S" unfolding S_def root_cond_def[abs_def] by auto | |
with fin have "Min S \<le> abs (x - y)" by auto | |
with pos have le: "Min S / 2 \<le> abs (x - y) / 2" by auto | |
from x y have "abs (x - y) \<le> of_rat r - of_rat l" unfolding root_cond_def[abs_def] by auto | |
also have "\<dots> = of_rat (r - l)" by (auto simp: of_rat_diff) | |
finally have "abs (x - y) / 2 \<le> of_rat (r - l) / 2" by auto | |
with le show "ipoly_root_delta p \<le> real_of_rat (r - l) / 4" unfolding delta by auto | |
qed | |
lemma sgn_less_eq_1_rat: fixes a b :: rat | |
shows "sgn a = 1 \<Longrightarrow> a \<le> b \<Longrightarrow> sgn b = 1" | |
by (metis (no_types, opaque_lifting) not_less one_neq_neg_one one_neq_zero order_trans sgn_rat_def) | |
lemma sgn_less_eq_1_real: fixes a b :: real | |
shows "sgn a = 1 \<Longrightarrow> a \<le> b \<Longrightarrow> sgn b = 1" | |
by (metis (no_types, opaque_lifting) not_less one_neq_neg_one one_neq_zero order_trans sgn_real_def) | |
definition compare_1_rat :: "real_alg_1 \<Rightarrow> rat \<Rightarrow> order" where | |
"compare_1_rat rai = (let p = poly_real_alg_1 rai in | |
if degree p = 1 then let x = Rat.Fract (- coeff p 0) (coeff p 1) | |
in (\<lambda> y. compare y x) | |
else (\<lambda> y. compare_rat_1 y rai))" | |
lemma compare_real_of_rat: "compare (real_of_rat x) (of_rat y) = compare x y" | |
unfolding compare_rat_def compare_real_def comparator_of_def of_rat_less by auto | |
lemma compare_1_rat: assumes rc: "invariant_1 y" | |
shows "compare_1_rat y x = compare (of_rat x) (real_of_1 y)" | |
proof (cases "degree (poly_real_alg_1 y)" "Suc 0" rule: linorder_cases) | |
case less with invariant_1_degree_0[OF rc] show ?thesis by auto | |
next | |
case deg: greater | |
with rc have rc: "invariant_1_2 y" by auto | |
from deg compare_rat_1[OF rc, of x] | |
show ?thesis unfolding compare_1_rat_def by auto | |
next | |
case deg: equal | |
obtain p l r where y: "y = (p,l,r)" by (cases y) | |
note rc = invariant_1D[OF rc[unfolded y]] | |
from deg have p: "degree p = Suc 0" | |
and id: "compare_1_rat y x = compare x (Rat.Fract (- coeff p 0) (coeff p 1))" | |
unfolding compare_1_rat_def by (auto simp: Let_def y) | |
from rc(1)[unfolded split] have "ipoly p (real_of_1 y) = 0" | |
unfolding y by auto | |
with degree_1_ipoly[OF p, of "real_of_1 y"] | |
have id': "real_of_1 y = real_of_rat (Rat.Fract (- coeff p 0) (coeff p 1))" by simp | |
show ?thesis unfolding id id' compare_real_of_rat .. | |
qed | |
context | |
fixes n :: nat | |
begin | |
private definition initial_lower_bound :: "rat \<Rightarrow> rat" where | |
"initial_lower_bound l = (if l \<le> 1 then l else of_int (root_rat_floor n l))" | |
private definition initial_upper_bound :: "rat \<Rightarrow> rat" where | |
"initial_upper_bound r = (of_int (root_rat_ceiling n r))" | |
context | |
fixes cmpx :: "rat \<Rightarrow> order" | |
begin | |
fun tighten_bound_root :: | |
"rat \<times> rat \<Rightarrow> rat \<times> rat" where | |
"tighten_bound_root (l',r') = (let | |
m' = (l' + r') / 2; | |
m = m' ^ n | |
in case cmpx m of | |
Eq \<Rightarrow> (m',m') | |
| Lt \<Rightarrow> (m',r') | |
| Gt \<Rightarrow> (l',m'))" | |
lemma tighten_bound_root: assumes sgn: "sgn il = 1" "real_of_1 x \<ge> 0" and | |
il: "real_of_rat il \<le> root n (real_of_1 x)" and | |
ir: "root n (real_of_1 x) \<le> real_of_rat ir" and | |
rai: "invariant_1 x" and | |
cmpx: "cmpx = compare_1_rat x" and | |
n: "n \<noteq> 0" | |
shows "converges_to (\<lambda> i. (tighten_bound_root ^^ i) (il, ir)) | |
(root n (real_of_1 x))" (is "converges_to ?f ?x") | |
unfolding converges_to_def | |
proof (intro conjI impI allI) | |
{ | |
fix x :: real | |
have "x \<ge> 0 \<Longrightarrow> (root n x) ^ n = x" using n by simp | |
} note root_exp_cancel = this | |
{ | |
fix x :: real | |
have "x \<ge> 0 \<Longrightarrow> root n (x ^ n) = x" using n | |
using real_root_pos_unique by blast | |
} note root_exp_cancel' = this | |
from il ir have "real_of_rat il \<le> of_rat ir" by auto | |
hence ir_il: "il \<le> ir" by (auto simp: of_rat_less_eq) | |
from n have n': "n > 0" by auto | |
{ | |
fix i | |
have "in_interval (?f i) ?x \<and> sub_interval (?f i) (il,ir) \<and> (i \<noteq> 0 \<longrightarrow> sub_interval (?f i) (?f (i - 1))) | |
\<and> snd (?f i) - fst (?f i) \<le> (ir - il) / 2^i" | |
proof (induct i) | |
case 0 | |
show ?case using il ir by auto | |
next | |
case (Suc i) | |
obtain l' r' where id: "(tighten_bound_root ^^ i) (il, ir) = (l',r')" | |
by (cases "(tighten_bound_root ^^ i) (il, ir)", auto) | |
let ?m' = "(l' + r') / 2" | |
let ?m = "?m' ^ n" | |
define m where "m = ?m" | |
note IH = Suc[unfolded id split snd_conv fst_conv] | |
from IH have "sub_interval (l', r') (il, ir)" by auto | |
hence ill': "il \<le> l'" "r' \<le> ir" by auto | |
with sgn have l'0: "l' > 0" using sgn_1_pos sgn_less_eq_1_rat by blast | |
from IH have lr'x: "in_interval (l', r') ?x" by auto | |
hence lr'': "real_of_rat l' \<le> of_rat r'" by auto | |
hence lr': "l' \<le> r'" unfolding of_rat_less_eq . | |
with l'0 have r'0: "r' > 0" by auto | |
note compare = compare_1_rat[OF rai, of ?m, folded cmpx] | |
from IH have *: "r' - l' \<le> (ir - il) / 2 ^ i" by auto | |
have "r' - (l' + r') / 2 = (r' - l') / 2" by (simp add: field_simps) | |
also have "\<dots> \<le> (ir - il) / 2 ^ i / 2" using * | |
by (rule divide_right_mono, auto) | |
finally have size: "r' - (l' + r') / 2 \<le> (ir - il) / (2 * 2 ^ i)" by simp | |
also have "r' - (l' + r') / 2 = (l' + r') / 2 - l'" by auto | |
finally have size': "(l' + r') / 2 - l' \<le> (ir - il) / (2 * 2 ^ i)" by simp | |
have "root n (real_of_rat ?m) = root n ((real_of_rat ?m') ^ n)" by (simp add: hom_distribs) | |
also have "\<dots> = real_of_rat ?m'" | |
by (rule root_exp_cancel', insert l'0 lr', auto) | |
finally have root: "root n (of_rat ?m) = of_rat ?m'" . | |
show ?case | |
proof (cases "cmpx ?m") | |
case Eq | |
from compare[unfolded Eq] have "real_of_1 x = of_rat ?m" | |
unfolding compare_real_def comparator_of_def by (auto split: if_splits) | |
from arg_cong[OF this, of "root n"] have "?x = root n (of_rat ?m)" . | |
also have "\<dots> = root n (real_of_rat ?m') ^ n" | |
using n real_root_power by (auto simp: hom_distribs) | |
also have "\<dots> = of_rat ?m'" | |
by (rule root_exp_cancel, insert IH sgn(2) l'0 r'0, auto) | |
finally have x: "?x = of_rat ?m'" . | |
show ?thesis using x id Eq lr' ill' ir_il by (auto simp: Let_def) | |
next | |
case Lt | |
from compare[unfolded Lt] have lt: "of_rat ?m \<le> real_of_1 x" | |
unfolding compare_real_def comparator_of_def by (auto split: if_splits) | |
have id'': "?f (Suc i) = (?m',r')" "?f (Suc i - 1) = (l',r')" | |
using Lt id by (auto simp add: Let_def) | |
from real_root_le_mono[OF n' lt] | |
have "of_rat ?m' \<le> ?x" unfolding root by simp | |
with lr'x lr'' have ineq': "real_of_rat l' + real_of_rat r' \<le> ?x * 2" by (auto simp: hom_distribs) | |
show ?thesis unfolding id'' | |
by (auto simp: Let_def hom_distribs, insert size ineq' lr' ill' lr'x ir_il, auto) | |
next | |
case Gt | |
from compare[unfolded Gt] have lt: "of_rat ?m \<ge> real_of_1 x" | |
unfolding compare_real_def comparator_of_def by (auto split: if_splits) | |
have id'': "?f (Suc i) = (l',?m')" "?f (Suc i - 1) = (l',r')" | |
using Gt id by (auto simp add: Let_def) | |
from real_root_le_mono[OF n' lt] | |
have "?x \<le> of_rat ?m'" unfolding root by simp | |
with lr'x lr'' have ineq': "?x * 2 \<le> real_of_rat l' + real_of_rat r'" by (auto simp: hom_distribs) | |
show ?thesis unfolding id'' | |
by (auto simp: Let_def hom_distribs, insert size' ineq' lr' ill' lr'x ir_il, auto) | |
qed | |
qed | |
} note main = this | |
fix i | |
from main[of i] show "in_interval (?f i) ?x" by auto | |
from main[of "Suc i"] show "sub_interval (?f (Suc i)) (?f i)" by auto | |
fix eps :: real | |
assume eps: "0 < eps" | |
define c where "c = eps / (max (real_of_rat (ir - il)) 1)" | |
have c0: "c > 0" using eps unfolding c_def by auto | |
from exp_tends_to_zero[OF _ _ this, of "1/2"] obtain i where c: "(1/2)^i \<le> c" by auto | |
obtain l' r' where fi: "?f i = (l',r')" by force | |
from main[of i, unfolded fi] have le: "r' - l' \<le> (ir - il) / 2 ^ i" by auto | |
have iril: "real_of_rat (ir - il) \<ge> 0" using ir_il by (auto simp: of_rat_less_eq) | |
show "\<exists>n la ra. ?f n = (la, ra) \<and> real_of_rat ra - real_of_rat la \<le> eps" | |
proof (intro conjI exI, rule fi) | |
have "real_of_rat r' - of_rat l' = real_of_rat (r' - l')" by (auto simp: hom_distribs) | |
also have "\<dots> \<le> real_of_rat ((ir - il) / 2 ^ i)" using le unfolding of_rat_less_eq . | |
also have "\<dots> = (real_of_rat (ir - il)) * ((1/2) ^ i)" by (simp add: field_simps hom_distribs) | |
also have "\<dots> \<le> (real_of_rat (ir - il)) * c" | |
by (rule mult_left_mono[OF c iril]) | |
also have "\<dots> \<le> eps" | |
proof (cases "real_of_rat (ir - il) \<le> 1") | |
case True | |
hence "c = eps" unfolding c_def by (auto simp: hom_distribs) | |
thus ?thesis using eps True by auto | |
next | |
case False | |
hence "max (real_of_rat (ir - il)) 1 = real_of_rat (ir - il)" "real_of_rat (ir - il) \<noteq> 0" | |
by (auto simp: hom_distribs) | |
hence "(real_of_rat (ir - il)) * c = eps" unfolding c_def by auto | |
thus ?thesis by simp | |
qed | |
finally show "real_of_rat r' - of_rat l' \<le> eps" . | |
qed | |
qed | |
end | |
private fun root_pos_1 :: "real_alg_1 \<Rightarrow> real_alg_2" where | |
"root_pos_1 (p,l,r) = ( | |
(select_correct_factor_int_poly | |
(tighten_bound_root (compare_1_rat (p,l,r))) | |
(\<lambda> x. x) | |
(initial_lower_bound l, initial_upper_bound r) | |
(poly_nth_root n p)))" | |
fun root_1 :: "real_alg_1 \<Rightarrow> real_alg_2" where | |
"root_1 (p,l,r) = ( | |
if n = 0 \<or> r = 0 then Rational 0 | |
else if r > 0 then root_pos_1 (p,l,r) | |
else uminus_2 (root_pos_1 (uminus_1 (p,l,r))))" | |
context | |
assumes n: "n \<noteq> 0" | |
begin | |
lemma initial_upper_bound: assumes x: "x > 0" and xr: "x \<le> of_rat r" | |
shows "sgn (initial_upper_bound r) = 1" "root n x \<le> of_rat (initial_upper_bound r)" | |
proof - | |
have n: "n > 0" using n by auto | |
note d = initial_upper_bound_def | |
let ?r = "initial_upper_bound r" | |
from x xr have r0: "r > 0" by (meson not_less of_rat_le_0_iff order_trans) | |
hence "of_rat r > (0 :: real)" by auto | |
hence "root n (of_rat r) > 0" using n by simp | |
hence "1 \<le> ceiling (root n (of_rat r))" by auto | |
hence "(1 :: rat) \<le> of_int (ceiling (root n (of_rat r)))" by linarith | |
also have "\<dots> = ?r" unfolding d by simp | |
finally show "sgn ?r = 1" unfolding sgn_rat_def by auto | |
have "root n x \<le> root n (of_rat r)" | |
unfolding real_root_le_iff[OF n] by (rule xr) | |
also have "\<dots> \<le> of_rat ?r" unfolding d by simp | |
finally show "root n x \<le> of_rat ?r" . | |
qed | |
lemma initial_lower_bound: assumes l: "l > 0" and lx: "of_rat l \<le> x" | |
shows "sgn (initial_lower_bound l) = 1" "of_rat (initial_lower_bound l) \<le> root n x" | |
proof - | |
have n: "n > 0" using n by auto | |
note d = initial_lower_bound_def | |
let ?l = "initial_lower_bound l" | |
from l lx have x0: "x > 0" by (meson not_less of_rat_le_0_iff order_trans) | |
have "sgn ?l = 1 \<and> of_rat ?l \<le> root n x" | |
proof (cases "l \<le> 1") | |
case True | |
hence ll: "?l = l" and l0: "of_rat l \<ge> (0 :: real)" and l1: "of_rat l \<le> (1 :: real)" | |
using l unfolding True d by auto | |
have sgn: "sgn ?l = 1" using l unfolding ll by auto | |
have "of_rat ?l = of_rat l" unfolding ll by simp | |
also have "of_rat l \<le> root n (of_rat l)" using real_root_increasing[OF _ _ l0 l1, of 1 n] n | |
by (cases "n = 1", auto) | |
also have "\<dots> \<le> root n x" using lx unfolding real_root_le_iff[OF n] . | |
finally show ?thesis using sgn by auto | |
next | |
case False | |
hence l: "(1 :: real) \<le> of_rat l" and ll: "?l = of_int (floor (root n (of_rat l)))" | |
unfolding d by auto | |
hence "root n 1 \<le> root n (of_rat l)" | |
unfolding real_root_le_iff[OF n] by auto | |
hence "1 \<le> root n (of_rat l)" using n by auto | |
from floor_mono[OF this] have "1 \<le> ?l" | |
using one_le_floor unfolding ll by fastforce | |
hence sgn: "sgn ?l = 1" by simp | |
have "of_rat ?l \<le> root n (of_rat l)" unfolding ll by simp | |
also have "\<dots> \<le> root n x" using lx unfolding real_root_le_iff[OF n] . | |
finally have "of_rat ?l \<le> root n x" . | |
with sgn show ?thesis by auto | |
qed | |
thus "sgn ?l = 1" "of_rat ?l \<le> root n x" by auto | |
qed | |
lemma root_pos_1: | |
assumes x: "invariant_1 x" and pos: "rai_ub x > 0" | |
defines y: "y \<equiv> root_pos_1 x" | |
shows "invariant_2 y \<and> real_of_2 y = root n (real_of_1 x)" | |
proof (cases x) | |
case (fields p l r) | |
let ?l = "initial_lower_bound l" | |
let ?r = "initial_upper_bound r" | |
from x fields have rai: "invariant_1 (p,l,r)" by auto | |
note * = invariant_1D[OF this] | |
let ?x = "the_unique_root (p,l,r)" | |
from pos[unfolded fields] * | |
have sgnl: "sgn l = 1" by auto | |
from sgnl have l0: "l > 0" by (unfold sgn_1_pos) | |
hence ll0: "real_of_rat l > 0" by auto | |
from * have lx: "of_rat l \<le> ?x" by auto | |
with ll0 have x0: "?x > 0" by linarith | |
note il = initial_lower_bound[OF l0 lx] | |
from * have "?x \<le> of_rat r" by auto | |
note iu = initial_upper_bound[OF x0 this] | |
let ?p = "poly_nth_root n p" | |
from x0 have id: "root n ?x ^ n = ?x" using n real_root_pow_pos by blast | |
have rc: "root_cond (?p, ?l, ?r) (root n ?x)" | |
using il iu * by (intro root_condI, auto simp: ipoly_nth_root id) | |
hence root: "ipoly ?p (root n (real_of_1 x)) = 0" | |
unfolding root_cond_def fields by auto | |
from * have "p \<noteq> 0" by auto | |
hence p': "?p \<noteq> 0" using poly_nth_root_0[of n p] n by auto | |
have tbr: "0 \<le> real_of_1 x" | |
"real_of_rat (initial_lower_bound l) \<le> root n (real_of_1 x)" | |
"root n (real_of_1 x) \<le> real_of_rat (initial_upper_bound r)" | |
using x0 il(2) iu(2) fields by auto | |
from select_correct_factor_int_poly[OF tighten_bound_root[OF il(1)[folded fields] tbr x refl n] refl root p'] | |
show ?thesis by (simp add: y fields) | |
qed | |
end | |
lemma root_1: assumes x: "invariant_1 x" | |
defines y: "y \<equiv> root_1 x" | |
shows "invariant_2 y \<and> (real_of_2 y = root n (real_of_1 x))" | |
proof (cases "n = 0 \<or> rai_ub x = 0") | |
case True | |
with x have "n = 0 \<or> real_of_1 x = 0" by (cases x, auto) | |
then have "root n (real_of_1 x) = 0" by auto | |
then show ?thesis unfolding y root_1.simps | |
using x by (cases x, auto) | |
next | |
case False with x have n: "n \<noteq> 0" and x0: "real_of_1 x \<noteq> 0" by (simp, cases x, auto) | |
note rt = root_pos_1 | |
show ?thesis | |
proof (cases "rai_ub x" "0::rat" rule:linorder_cases) | |
case greater | |
with rt[OF n x this] n show ?thesis by (unfold y, cases x, simp) | |
next | |
case less | |
let ?um = "uminus_1" | |
let ?rt = "root_pos_1" | |
from n less y x0 have y: "y = uminus_2 (?rt (?um x))" by (cases x, auto) | |
from uminus_1[OF x] have umx: "invariant_1 (?um x)" and umx2: "real_of_1 (?um x) = - real_of_1 x" by auto | |
with x less have "0 < rai_ub (uminus_1 x)" | |
by (cases x, auto simp: uminus_1.simps Let_def) | |
from rt[OF n umx this] umx2 have rumx: "invariant_2 (?rt (?um x))" | |
and rumx2: "real_of_2 (?rt (?um x)) = root n (- real_of_1 x)" | |
by auto | |
from uminus_2[OF rumx] rumx2 y real_root_minus show ?thesis by auto | |
next | |
case equal with x0 x show ?thesis by (cases x, auto) | |
qed | |
qed | |
end | |
declare root_1.simps[simp del] | |
(* ********************** *) | |
subsubsection \<open>Embedding of Rational Numbers\<close> | |
definition of_rat_1 :: "rat \<Rightarrow> real_alg_1" where | |
"of_rat_1 x \<equiv> (poly_rat x,x,x)" | |
lemma of_rat_1: | |
shows "invariant_1 (of_rat_1 x)" and "real_of_1 (of_rat_1 x) = of_rat x" | |
unfolding of_rat_1_def | |
by (atomize(full), intro invariant_1_realI unique_rootI poly_condI, auto ) | |
fun info_2 :: "real_alg_2 \<Rightarrow> rat + int poly \<times> nat" where | |
"info_2 (Rational x) = Inl x" | |
| "info_2 (Irrational n (p,l,r)) = Inr (p,n)" | |
lemma info_2_card: assumes rc: "invariant_2 x" | |
shows "info_2 x = Inr (p,n) \<Longrightarrow> poly_cond p \<and> ipoly p (real_of_2 x) = 0 \<and> degree p \<ge> 2 | |
\<and> card (roots_below p (real_of_2 x)) = n" | |
"info_2 x = Inl y \<Longrightarrow> real_of_2 x = of_rat y" | |
proof (atomize(full), goal_cases) | |
case 1 | |
show ?case | |
proof (cases x) | |
case (Irrational m rai) | |
then obtain q l r where x: "x = Irrational m (q,l,r)" by (cases rai, auto) | |
show ?thesis | |
proof (cases "q = p \<and> m = n") | |
case False | |
thus ?thesis using x by auto | |
next | |
case True | |
with x have x: "x = Irrational n (p,l,r)" by auto | |
from rc[unfolded x, simplified] have inv: "invariant_1_2 (p,l,r)" and | |
n: "card (roots_below p (real_of_2 x)) = n" and 1: "degree p \<noteq> 1" | |
by (auto simp: x) | |
from inv have "degree p \<noteq> 0" unfolding irreducible_def by auto | |
with 1 have "degree p \<ge> 2" by linarith | |
thus ?thesis unfolding n using inv x by (auto elim!: invariant_1E) | |
qed | |
qed auto | |
qed | |
lemma real_of_2_Irrational: "invariant_2 (Irrational n rai) \<Longrightarrow> real_of_2 (Irrational n rai) \<noteq> of_rat x" | |
proof | |
assume "invariant_2 (Irrational n rai)" and rat: "real_of_2 (Irrational n rai) = real_of_rat x" | |
hence "real_of_1 rai \<in> \<rat>" "invariant_1_2 rai" by auto | |
from invariant_1_2_of_rat[OF this(2)] rat show False by auto | |
qed | |
lemma info_2: assumes | |
ix: "invariant_2 x" and iy: "invariant_2 y" | |
shows "info_2 x = info_2 y \<longleftrightarrow> real_of_2 x = real_of_2 y" | |
proof (cases x) | |
case x: (Irrational n1 rai1) | |
note ix = ix[unfolded x] | |
show ?thesis | |
proof (cases y) | |
case (Rational y) | |
with real_of_2_Irrational[OF ix, of y] show ?thesis unfolding x by (cases rai1, auto) | |
next | |
case y: (Irrational n2 rai2) | |
obtain p1 l1 r1 where rai1: "rai1 = (p1,l1,r1)" by (cases rai1) | |
obtain p2 l2 r2 where rai2: "rai2 = (p2,l2,r2)" by (cases rai2) | |
let ?rx = "the_unique_root (p1,l1,r1)" | |
let ?ry = "the_unique_root (p2,l2,r2)" | |
have id: "(info_2 x = info_2 y) = (p1 = p2 \<and> n1 = n2)" | |
"(real_of_2 x = real_of_2 y) = (?rx = ?ry)" | |
unfolding x y rai1 rai2 by auto | |
from ix[unfolded x rai1] | |
have ix: "invariant_1 (p1, l1, r1)" and deg1: "degree p1 > 1" and n1: "n1 = card (roots_below p1 ?rx)" by auto | |
note Ix = invariant_1D[OF ix] | |
from deg1 have p1_0: "p1 \<noteq> 0" by auto | |
from iy[unfolded y rai2] | |
have iy: "invariant_1 (p2, l2, r2)" and "degree p2 > 1" and n2: "n2 = card (roots_below p2 ?ry)" by auto | |
note Iy = invariant_1D[OF iy] | |
show ?thesis unfolding id | |
proof | |
assume eq: "?rx = ?ry" | |
from Ix | |
have algx: "p1 represents ?rx \<and> irreducible p1 \<and> lead_coeff p1 > 0" unfolding represents_def by auto | |
from iy | |
have algy: "p2 represents ?rx \<and> irreducible p2 \<and> lead_coeff p2 > 0" unfolding represents_def eq by (auto elim!: invariant_1E) | |
from algx have "algebraic ?rx" unfolding algebraic_altdef_ipoly by auto | |
note unique = algebraic_imp_represents_unique[OF this] | |
with algx algy have id: "p2 = p1" by auto | |
from eq id n1 n2 show "p1 = p2 \<and> n1 = n2" by auto | |
next | |
assume "p1 = p2 \<and> n1 = n2" | |
hence id: "p1 = p2" "n1 = n2" by auto | |
hence card: "card (roots_below p1 ?rx) = card (roots_below p1 ?ry)" unfolding n1 n2 by auto | |
show "?rx = ?ry" | |
proof (cases ?rx ?ry rule: linorder_cases) | |
case less | |
have "roots_below p1 ?rx = roots_below p1 ?ry" | |
proof (intro card_subset_eq finite_subset[OF _ ipoly_roots_finite] card) | |
from less show "roots_below p1 ?rx \<subseteq> roots_below p1 ?ry" by auto | |
qed (insert p1_0, auto) | |
then show ?thesis using id less unique_rootD(3)[OF Iy(4)] by (auto simp: less_eq_real_def) | |
next | |
case equal | |
then show ?thesis by (simp add: id) | |
next | |
case greater | |
have "roots_below p1 ?ry = roots_below p1 ?rx" | |
proof (intro card_subset_eq card[symmetric] finite_subset[OF _ ipoly_roots_finite[OF p1_0]]) | |
from greater show "roots_below p1 ?ry \<subseteq> roots_below p1 ?rx" by auto | |
qed auto | |
hence "roots_below p2 ?ry = roots_below p2 ?rx" unfolding id by auto | |
thus ?thesis using id greater unique_rootD(3)[OF Ix(4)] by (auto simp: less_eq_real_def) | |
qed | |
qed | |
qed | |
next | |
case x: (Rational x) | |
show ?thesis | |
proof (cases y) | |
case (Rational y) | |
thus ?thesis using x by auto | |
next | |
case y: (Irrational n rai) | |
with real_of_2_Irrational[OF iy[unfolded y], of x] show ?thesis unfolding x by (cases rai, auto) | |
qed | |
qed | |
lemma info_2_unique: "invariant_2 x \<Longrightarrow> invariant_2 y \<Longrightarrow> | |
real_of_2 x = real_of_2 y \<Longrightarrow> info_2 x = info_2 y" | |
using info_2 by blast | |
lemma info_2_inj: "invariant_2 x \<Longrightarrow> invariant_2 y \<Longrightarrow> info_2 x = info_2 y \<Longrightarrow> | |
real_of_2 x = real_of_2 y" | |
using info_2 by blast | |
context | |
fixes cr1 cr2 :: "rat \<Rightarrow> rat \<Rightarrow> nat" | |
begin | |
partial_function (tailrec) compare_1 :: "int poly \<Rightarrow> int poly \<Rightarrow> rat \<Rightarrow> rat \<Rightarrow> rat \<Rightarrow> rat \<Rightarrow> rat \<Rightarrow> rat \<Rightarrow> order" where | |
[code]: "compare_1 p1 p2 l1 r1 sr1 l2 r2 sr2 = (if r1 < l2 then Lt else if r2 < l1 then Gt | |
else let | |
(l1',r1',sr1') = tighten_poly_bounds p1 l1 r1 sr1; | |
(l2',r2',sr2') = tighten_poly_bounds p2 l2 r2 sr2 | |
in compare_1 p1 p2 l1' r1' sr1' l2' r2' sr2') | |
" | |
lemma compare_1: | |
assumes ur1: "unique_root (p1,l1,r1)" | |
and ur2: "unique_root (p2,l2,r2)" | |
and pc: "poly_cond2 p1" "poly_cond2 p2" | |
and diff: "the_unique_root (p1,l1,r1) \<noteq> the_unique_root (p2,l2,r2)" | |
and sr: "sr1 = sgn (ipoly p1 r1)" "sr2 = sgn (ipoly p2 r2)" | |
shows "compare_1 p1 p2 l1 r1 sr1 l2 r2 sr2 = compare (the_unique_root (p1,l1,r1)) (the_unique_root (p2,l2,r2))" | |
proof - | |
let ?r = real_of_rat | |
{ | |
fix d x y | |
assume d: "d = (r1 - l1) + (r2 - l2)" and xy: "x = the_unique_root (p1,l1,r1)" "y = the_unique_root (p2,l2,r2)" | |
define delta where "delta = abs (x - y) / 4" | |
have delta: "delta > 0" and diff: "x \<noteq> y" unfolding delta_def using diff xy by auto | |
let ?rel' = "{(x, y). 0 \<le> y \<and> delta_gt delta x y}" | |
let ?rel = "inv_image ?rel' ?r" | |
have SN: "SN ?rel" by (rule SN_inv_image[OF delta_gt_SN[OF delta]]) | |
from d ur1 ur2 | |
have ?thesis unfolding xy[symmetric] using xy sr | |
proof (induct d arbitrary: l1 r1 l2 r2 sr1 sr2 rule: SN_induct[OF SN]) | |
case (1 d l1 r1 l2 r2) | |
note IH = 1(1) | |
note d = 1(2) | |
note ur = 1(3-4) | |
note xy = 1(5-6) | |
note sr = 1(7-8) | |
note simps = compare_1.simps[of p1 p2 l1 r1 sr1 l2 r2 sr2] | |
note urx = unique_rootD[OF ur(1), folded xy] | |
note ury = unique_rootD[OF ur(2), folded xy] | |
show ?case (is "?l = _") | |
proof (cases "r1 < l2") | |
case True | |
hence l: "?l = Lt" and lt: "?r r1 < ?r l2" unfolding simps of_rat_less by auto | |
show ?thesis unfolding l using lt True urx(2) ury(1) | |
by (auto simp: compare_real_def comparator_of_def) | |
next | |
case False note le = this | |
show ?thesis | |
proof (cases "r2 < l1") | |
case True | |
with le have l: "?l = Gt" and lt: "?r r2 < ?r l1" unfolding simps of_rat_less by auto | |
show ?thesis unfolding l using lt True ury(2) urx(1) | |
by (auto simp: compare_real_def comparator_of_def) | |
next | |
case False | |
obtain l1' r1' sr1' where tb1: "tighten_poly_bounds p1 l1 r1 sr1 = (l1',r1',sr1')" | |
by (cases rule: prod_cases3, auto) | |
obtain l2' r2' sr2' where tb2: "tighten_poly_bounds p2 l2 r2 sr2 = (l2',r2',sr2')" | |
by (cases rule: prod_cases3, auto) | |
from False le tb1 tb2 have l: "?l = compare_1 p1 p2 l1' r1' sr1' l2' r2' sr2'" unfolding simps | |
by auto | |
from tighten_poly_bounds[OF tb1 ur(1) pc(1) sr(1)] | |
have rc1: "root_cond (p1, l1', r1') (the_unique_root (p1, l1, r1))" | |
and bnd1: "l1 \<le> l1'" "l1' \<le> r1'" "r1' \<le> r1" and d1: "r1' - l1' = (r1 - l1) / 2" | |
and sr1: "sr1' = sgn (ipoly p1 r1')" by auto | |
from pc have "p1 \<noteq> 0" "p2 \<noteq> 0" by auto | |
from unique_root_sub_interval[OF ur(1) rc1 bnd1(1,3)] xy ur this | |
have ur1: "unique_root (p1, l1', r1')" and x: "x = the_unique_root (p1, l1', r1')" by (auto intro!: the_unique_root_eqI) | |
from tighten_poly_bounds[OF tb2 ur(2) pc(2) sr(2)] | |
have rc2: "root_cond (p2, l2', r2') (the_unique_root (p2, l2, r2))" | |
and bnd2: "l2 \<le> l2'" "l2' \<le> r2'" "r2' \<le> r2" and d2: "r2' - l2' = (r2 - l2) / 2" | |
and sr2: "sr2' = sgn (ipoly p2 r2')" by auto | |
from unique_root_sub_interval[OF ur(2) rc2 bnd2(1,3)] xy ur pc | |
have ur2: "unique_root (p2, l2', r2')" and y: "y = the_unique_root (p2, l2', r2')" by auto | |
define d' where "d' = d/2" | |
have d': "d' = r1' - l1' + (r2' - l2')" unfolding d'_def d d1 d2 by (simp add: field_simps) | |
have d'0: "d' \<ge> 0" using bnd1 bnd2 unfolding d' by auto | |
have dd: "d - d' = d/2" unfolding d'_def by simp | |
have "abs (x - y) \<le> 2 * ?r d" | |
proof (rule ccontr) | |
assume "\<not> ?thesis" | |
hence lt: "2 * ?r d < abs (x - y)" by auto | |
have "r1 - l1 \<le> d" "r2 - l2 \<le> d" unfolding d using bnd1 bnd2 by auto | |
from this[folded of_rat_less_eq[where 'a = real]] lt | |
have "?r (r1 - l1) < abs (x - y) / 2" "?r (r2 - l2) < abs (x - y) / 2" | |
and dd: "?r r1 - ?r l1 \<le> ?r d" "?r r2 - ?r l2 \<le> ?r d" by (auto simp: of_rat_diff) | |
from le have "r1 \<ge> l2" by auto hence r1l2: "?r r1 \<ge> ?r l2" unfolding of_rat_less_eq by auto | |
from False have "r2 \<ge> l1" by auto hence r2l1: "?r r2 \<ge> ?r l1" unfolding of_rat_less_eq by auto | |
show False | |
proof (cases "x \<le> y") | |
case True | |
from urx(1-2) dd(1) have "?r r1 \<le> x + ?r d" by auto | |
with r1l2 have "?r l2 \<le> x + ?r d" by auto | |
with True lt ury(2) dd(2) show False by auto | |
next | |
case False | |
from ury(1-2) dd(2) have "?r r2 \<le> y + ?r d" by auto | |
with r2l1 have "?r l1 \<le> y + ?r d" by auto | |
with False lt urx(2) dd(1) show False by auto | |
qed | |
qed | |
hence dd': "delta_gt delta (?r d) (?r d')" | |
unfolding delta_gt_def delta_def using dd by (auto simp: hom_distribs) | |
show ?thesis unfolding l | |
by (rule IH[OF _ d' ur1 ur2 x y sr1 sr2], insert d'0 dd', auto) | |
qed | |
qed | |
qed | |
} | |
thus ?thesis by auto | |
qed | |
end | |
(* **************************************************************** *) | |
fun real_alg_1 :: "real_alg_2 \<Rightarrow> real_alg_1" where | |
"real_alg_1 (Rational r) = of_rat_1 r" | |
| "real_alg_1 (Irrational n rai) = rai" | |
lemma real_alg_1: "real_of_1 (real_alg_1 x) = real_of_2 x" | |
by (cases x, auto simp: of_rat_1) | |
definition root_2 :: "nat \<Rightarrow> real_alg_2 \<Rightarrow> real_alg_2" where | |
"root_2 n x = root_1 n (real_alg_1 x)" | |
lemma root_2: assumes "invariant_2 x" | |
shows "real_of_2 (root_2 n x) = root n (real_of_2 x)" | |
"invariant_2 (root_2 n x)" | |
proof (atomize(full), cases x, goal_cases) | |
case (1 y) | |
from of_rat_1[of y] root_1[of "of_rat_1 y" n] assms 1 real_alg_2 | |
show ?case by (simp add: root_2_def) | |
next | |
case (2 i rai) | |
from root_1[of rai n] assms 2 real_alg_2 | |
show ?case by (auto simp: root_2_def) | |
qed | |
fun add_2 :: "real_alg_2 \<Rightarrow> real_alg_2 \<Rightarrow> real_alg_2" where | |
"add_2 (Rational r) (Rational q) = Rational (r + q)" | |
| "add_2 (Rational r) (Irrational n x) = Irrational n (add_rat_1 r x)" | |
| "add_2 (Irrational n x) (Rational q) = Irrational n (add_rat_1 q x)" | |
| "add_2 (Irrational n x) (Irrational m y) = add_1 x y" | |
lemma add_2: assumes x: "invariant_2 x" and y: "invariant_2 y" | |
shows "invariant_2 (add_2 x y)" (is ?g1) | |
and "real_of_2 (add_2 x y) = real_of_2 x + real_of_2 y" (is ?g2) | |
using assms add_rat_1 add_1 | |
by (atomize (full), (cases x; cases y), auto simp: hom_distribs) | |
fun mult_2 :: "real_alg_2 \<Rightarrow> real_alg_2 \<Rightarrow> real_alg_2" where | |
"mult_2 (Rational r) (Rational q) = Rational (r * q)" | |
| "mult_2 (Rational r) (Irrational n y) = mult_rat_1 r y" | |
| "mult_2 (Irrational n x) (Rational q) = mult_rat_1 q x" | |
| "mult_2 (Irrational n x) (Irrational m y) = mult_1 x y" | |
lemma mult_2: assumes "invariant_2 x" "invariant_2 y" | |
shows "real_of_2 (mult_2 x y) = real_of_2 x * real_of_2 y" | |
"invariant_2 (mult_2 x y)" | |
using assms | |
by (atomize(full), (cases x; cases y; auto simp: mult_rat_1 mult_1 hom_distribs)) | |
fun to_rat_2 :: "real_alg_2 \<Rightarrow> rat option" where | |
"to_rat_2 (Rational r) = Some r" | |
| "to_rat_2 (Irrational n rai) = None" | |
lemma to_rat_2: assumes rc: "invariant_2 x" | |
shows "to_rat_2 x = (if real_of_2 x \<in> \<rat> then Some (THE q. real_of_2 x = of_rat q) else None)" | |
proof (cases x) | |
case (Irrational n rai) | |
from real_of_2_Irrational[OF rc[unfolded this]] show ?thesis | |
unfolding Irrational Rats_def by auto | |
qed simp | |
fun equal_2 :: "real_alg_2 \<Rightarrow> real_alg_2 \<Rightarrow> bool" where | |
"equal_2 (Rational r) (Rational q) = (r = q)" | |
| "equal_2 (Irrational n (p,_)) (Irrational m (q,_)) = (p = q \<and> n = m)" | |
| "equal_2 (Rational r) (Irrational _ yy) = False" | |
| "equal_2 (Irrational _ xx) (Rational q) = False" | |
lemma equal_2[simp]: assumes rc: "invariant_2 x" "invariant_2 y" | |
shows "equal_2 x y = (real_of_2 x = real_of_2 y)" | |
using info_2[OF rc] | |
by (cases x; cases y, auto) | |
fun compare_2 :: "real_alg_2 \<Rightarrow> real_alg_2 \<Rightarrow> order" where | |
"compare_2 (Rational r) (Rational q) = (compare r q)" | |
| "compare_2 (Irrational n (p,l,r)) (Irrational m (q,l',r')) = (if p = q \<and> n = m then Eq | |
else compare_1 p q l r (sgn (ipoly p r)) l' r' (sgn (ipoly q r')))" | |
| "compare_2 (Rational r) (Irrational _ xx) = (compare_rat_1 r xx)" | |
| "compare_2 (Irrational _ xx) (Rational r) = (invert_order (compare_rat_1 r xx))" | |
lemma compare_2: assumes rc: "invariant_2 x" "invariant_2 y" | |
shows "compare_2 x y = compare (real_of_2 x) (real_of_2 y)" | |
proof (cases x) | |
case (Rational r) note xx = this | |
show ?thesis | |
proof (cases y) | |
case (Rational q) note yy = this | |
show ?thesis unfolding xx yy by (simp add: compare_rat_def compare_real_def comparator_of_def of_rat_less) | |
next | |
case (Irrational n yy) note yy = this | |
from compare_rat_1 rc | |
show ?thesis unfolding xx yy by (simp add: of_rat_1) | |
qed | |
next | |
case (Irrational n xx) note xx = this | |
show ?thesis | |
proof (cases y) | |
case (Rational q) note yy = this | |
from compare_rat_1 rc | |
show ?thesis unfolding xx yy by simp | |
next | |
case (Irrational m yy) note yy = this | |
obtain p l r where xxx: "xx = (p,l,r)" by (cases xx) | |
obtain q l' r' where yyy: "yy = (q,l',r')" by (cases yy) | |
note rc = rc[unfolded xx xxx yy yyy] | |
from rc have I: "invariant_1_2 (p,l,r)" "invariant_1_2 (q,l',r')" by auto | |
then have "unique_root (p,l,r)" "unique_root (q,l',r')" "poly_cond2 p" "poly_cond2 q" by auto | |
from compare_1[OF this _ refl refl] | |
show ?thesis using equal_2[OF rc] unfolding xx xxx yy yyy by simp | |
qed | |
qed | |
fun sgn_2 :: "real_alg_2 \<Rightarrow> rat" where | |
"sgn_2 (Rational r) = sgn r" | |
| "sgn_2 (Irrational n rai) = sgn_1 rai" | |
lemma sgn_2: "invariant_2 x \<Longrightarrow> real_of_rat (sgn_2 x) = sgn (real_of_2 x)" | |
using sgn_1 by (cases x, auto simp: real_of_rat_sgn) | |
fun floor_2 :: "real_alg_2 \<Rightarrow> int" where | |
"floor_2 (Rational r) = floor r" | |
| "floor_2 (Irrational n rai) = floor_1 rai" | |
lemma floor_2: "invariant_2 x \<Longrightarrow> floor_2 x = floor (real_of_2 x)" | |
by (cases x, auto simp: floor_1) | |
(* *************** *) | |
subsubsection \<open>Definitions and Algorithms on Type with Invariant\<close> | |
lift_definition of_rat_3 :: "rat \<Rightarrow> real_alg_3" is of_rat_2 | |
by (auto simp: of_rat_2) | |
lemma of_rat_3: "real_of_3 (of_rat_3 x) = of_rat x" | |
by (transfer, auto simp: of_rat_2) | |
lift_definition root_3 :: "nat \<Rightarrow> real_alg_3 \<Rightarrow> real_alg_3" is root_2 | |
by (auto simp: root_2) | |
lemma root_3: "real_of_3 (root_3 n x) = root n (real_of_3 x)" | |
by (transfer, auto simp: root_2) | |
lift_definition equal_3 :: "real_alg_3 \<Rightarrow> real_alg_3 \<Rightarrow> bool" is equal_2 . | |
lemma equal_3: "equal_3 x y = (real_of_3 x = real_of_3 y)" | |
by (transfer, auto) | |
lift_definition compare_3 :: "real_alg_3 \<Rightarrow> real_alg_3 \<Rightarrow> order" is compare_2 . | |
lemma compare_3: "compare_3 x y = (compare (real_of_3 x) (real_of_3 y))" | |
by (transfer, auto simp: compare_2) | |
lift_definition add_3 :: "real_alg_3 \<Rightarrow> real_alg_3 \<Rightarrow> real_alg_3" is add_2 | |
by (auto simp: add_2) | |
lemma add_3: "real_of_3 (add_3 x y) = real_of_3 x + real_of_3 y" | |
by (transfer, auto simp: add_2) | |
lift_definition mult_3 :: "real_alg_3 \<Rightarrow> real_alg_3 \<Rightarrow> real_alg_3" is mult_2 | |
by (auto simp: mult_2) | |
lemma mult_3: "real_of_3 (mult_3 x y) = real_of_3 x * real_of_3 y" | |
by (transfer, auto simp: mult_2) | |
lift_definition sgn_3 :: "real_alg_3 \<Rightarrow> rat" is sgn_2 . | |
lemma sgn_3: "real_of_rat (sgn_3 x) = sgn (real_of_3 x)" | |
by (transfer, auto simp: sgn_2) | |
lift_definition to_rat_3 :: "real_alg_3 \<Rightarrow> rat option" is to_rat_2 . | |
lemma to_rat_3: "to_rat_3 x = | |
(if real_of_3 x \<in> \<rat> then Some (THE q. real_of_3 x = of_rat q) else None)" | |
by (transfer, simp add: to_rat_2) | |
lift_definition floor_3 :: "real_alg_3 \<Rightarrow> int" is floor_2 . | |
lemma floor_3: "floor_3 x = floor (real_of_3 x)" | |
by (transfer, auto simp: floor_2) | |
(* *************** *) | |
(* info *) | |
lift_definition info_3 :: "real_alg_3 \<Rightarrow> rat + int poly \<times> nat" is info_2 . | |
lemma info_3_fun: "real_of_3 x = real_of_3 y \<Longrightarrow> info_3 x = info_3 y" | |
by (transfer, intro info_2_unique, auto) | |
lift_definition info_real_alg :: "real_alg \<Rightarrow> rat + int poly \<times> nat" is info_3 | |
by (metis info_3_fun) | |
lemma info_real_alg: | |
"info_real_alg x = Inr (p,n) \<Longrightarrow> p represents (real_of x) \<and> card {y. y \<le> real_of x \<and> ipoly p y = 0} = n \<and> irreducible p" | |
"info_real_alg x = Inl q \<Longrightarrow> real_of x = of_rat q" | |
proof (atomize(full), transfer, transfer, goal_cases) | |
case (1 x p n q) | |
from 1 have x: "invariant_2 x" by auto | |
note info = info_2_card[OF this] | |
show ?case | |
proof (cases x) | |
case irr: (Irrational m rai) | |
from info(1)[of p n] | |
show ?thesis unfolding irr by (cases rai, auto simp: poly_cond_def) | |
qed (insert 1 info, auto) | |
qed | |
(* add *) | |
instantiation real_alg :: plus | |
begin | |
lift_definition plus_real_alg :: "real_alg \<Rightarrow> real_alg \<Rightarrow> real_alg" is add_3 | |
by (simp add: add_3) | |
instance .. | |
end | |
lemma plus_real_alg: "(real_of x) + (real_of y) = real_of (x + y)" | |
by (transfer, rule add_3[symmetric]) | |
(* minus *) | |
instantiation real_alg :: minus | |
begin | |
definition minus_real_alg :: "real_alg \<Rightarrow> real_alg \<Rightarrow> real_alg" where | |
"minus_real_alg x y = x + (-y)" | |
instance .. | |
end | |
lemma minus_real_alg: "(real_of x) - (real_of y) = real_of (x - y)" | |
unfolding minus_real_alg_def minus_real_def uminus_real_alg plus_real_alg .. | |
(* of_rat *) | |
lift_definition of_rat_real_alg :: "rat \<Rightarrow> real_alg" is of_rat_3 . | |
lemma of_rat_real_alg: "real_of_rat x = real_of (of_rat_real_alg x)" | |
by (transfer, rule of_rat_3[symmetric]) | |
(* zero *) | |
instantiation real_alg :: zero | |
begin | |
definition zero_real_alg :: "real_alg" where "zero_real_alg \<equiv> of_rat_real_alg 0" | |
instance .. | |
end | |
lemma zero_real_alg: "0 = real_of 0" | |
unfolding zero_real_alg_def by (simp add: of_rat_real_alg[symmetric]) | |
(* one *) | |
instantiation real_alg :: one | |
begin | |
definition one_real_alg :: "real_alg" where "one_real_alg \<equiv> of_rat_real_alg 1" | |
instance .. | |
end | |
lemma one_real_alg: "1 = real_of 1" | |
unfolding one_real_alg_def by (simp add: of_rat_real_alg[symmetric]) | |
(* times *) | |
instantiation real_alg :: times | |
begin | |
lift_definition times_real_alg :: "real_alg \<Rightarrow> real_alg \<Rightarrow> real_alg" is mult_3 | |
by (simp add: mult_3) | |
instance .. | |
end | |
lemma times_real_alg: "(real_of x) * (real_of y) = real_of (x * y)" | |
by (transfer, rule mult_3[symmetric]) | |
(* inverse *) | |
instantiation real_alg :: inverse | |
begin | |
lift_definition inverse_real_alg :: "real_alg \<Rightarrow> real_alg" is inverse_3 | |
by (simp add: inverse_3) | |
definition divide_real_alg :: "real_alg \<Rightarrow> real_alg \<Rightarrow> real_alg" where | |
"divide_real_alg x y = x * inverse y" (* TODO: better to use poly_div *) | |
instance .. | |
end | |
lemma inverse_real_alg: "inverse (real_of x) = real_of (inverse x)" | |
by (transfer, rule inverse_3[symmetric]) | |
lemma divide_real_alg: "(real_of x) / (real_of y) = real_of (x / y)" | |
unfolding divide_real_alg_def times_real_alg[symmetric] divide_real_def inverse_real_alg .. | |
(* group *) | |
instance real_alg :: ab_group_add | |
apply intro_classes | |
apply (transfer, unfold add_3, force) | |
apply (unfold zero_real_alg_def, transfer, unfold add_3 of_rat_3, force) | |
apply (transfer, unfold add_3 of_rat_3, force) | |
apply (transfer, unfold add_3 uminus_3 of_rat_3, force) | |
apply (unfold minus_real_alg_def, force) | |
done | |
(* field *) | |
instance real_alg :: field | |
apply intro_classes | |
apply (transfer, unfold mult_3, force) | |
apply (transfer, unfold mult_3, force) | |
apply (unfold one_real_alg_def, transfer, unfold mult_3 of_rat_3, force) | |
apply (transfer, unfold mult_3 add_3, force simp: field_simps) | |
apply (unfold zero_real_alg_def, transfer, unfold of_rat_3, force) | |
apply (transfer, unfold mult_3 inverse_3 of_rat_3, force simp: field_simps) | |
apply (unfold divide_real_alg_def, force) | |
apply (transfer, unfold inverse_3 of_rat_3, force) | |
done | |
(* numeral *) | |
instance real_alg :: numeral .. | |
(* root *) | |
lift_definition root_real_alg :: "nat \<Rightarrow> real_alg \<Rightarrow> real_alg" is root_3 | |
by (simp add: root_3) | |
lemma root_real_alg: "root n (real_of x) = real_of (root_real_alg n x)" | |
by (transfer, rule root_3[symmetric]) | |
(* sgn *) | |
lift_definition sgn_real_alg_rat :: "real_alg \<Rightarrow> rat" is sgn_3 | |
by (insert sgn_3, metis to_rat_of_rat) | |
lemma sgn_real_alg_rat: "real_of_rat (sgn_real_alg_rat x) = sgn (real_of x)" | |
by (transfer, auto simp: sgn_3) | |
instantiation real_alg :: sgn | |
begin | |
definition sgn_real_alg :: "real_alg \<Rightarrow> real_alg" where | |
"sgn_real_alg x = of_rat_real_alg (sgn_real_alg_rat x)" | |
instance .. | |
end | |
lemma sgn_real_alg: "sgn (real_of x) = real_of (sgn x)" | |
unfolding sgn_real_alg_def of_rat_real_alg[symmetric] | |
by (transfer, simp add: sgn_3) | |
(* equal *) | |
instantiation real_alg :: equal | |
begin | |
lift_definition equal_real_alg :: "real_alg \<Rightarrow> real_alg \<Rightarrow> bool" is equal_3 | |
by (simp add: equal_3) | |
instance | |
proof | |
fix x y :: real_alg | |
show "equal_class.equal x y = (x = y)" | |
by (transfer, simp add: equal_3) | |
qed | |
end | |
lemma equal_real_alg: "HOL.equal (real_of x) (real_of y) = (x = y)" | |
unfolding equal_real_def by (transfer, auto) | |
(* comparisons *) | |
instantiation real_alg :: ord | |
begin | |
definition less_real_alg :: "real_alg \<Rightarrow> real_alg \<Rightarrow> bool" where | |
[code del]: "less_real_alg x y = (real_of x < real_of y)" | |
definition less_eq_real_alg :: "real_alg \<Rightarrow> real_alg \<Rightarrow> bool" where | |
[code del]: "less_eq_real_alg x y = (real_of x \<le> real_of y)" | |
instance .. | |
end | |
lemma less_real_alg: "less (real_of x) (real_of y) = (x < y)" unfolding less_real_alg_def .. | |
lemma less_eq_real_alg: "less_eq (real_of x) (real_of y) = (x \<le> y)" unfolding less_eq_real_alg_def .. | |
instantiation real_alg :: compare_order | |
begin | |
lift_definition compare_real_alg :: "real_alg \<Rightarrow> real_alg \<Rightarrow> order" is compare_3 | |
by (simp add: compare_3) | |
lemma compare_real_alg: "compare (real_of x) (real_of y) = (compare x y)" | |
by (transfer, simp add: compare_3) | |
instance | |
proof (intro_classes, unfold compare_real_alg[symmetric, abs_def]) | |
show "le_of_comp (\<lambda>x y. compare (real_of x) (real_of y)) = (\<le>)" | |
by (intro ext, auto simp: compare_real_def comparator_of_def le_of_comp_def less_eq_real_alg_def) | |
show "lt_of_comp (\<lambda>x y. compare (real_of x) (real_of y)) = (<)" | |
by (intro ext, auto simp: compare_real_def comparator_of_def lt_of_comp_def less_real_alg_def) | |
show "comparator (\<lambda>x y. compare (real_of x) (real_of y))" | |
unfolding comparator_def | |
proof (intro conjI impI allI) | |
fix x y z :: "real_alg" | |
let ?r = real_of | |
note rc = comparator_compare[where 'a = real, unfolded comparator_def] | |
from rc show "invert_order (compare (?r x) (?r y)) = compare (?r y) (?r x)" by blast | |
from rc show "compare (?r x) (?r y) = Lt \<Longrightarrow> compare (?r y) (?r z) = Lt \<Longrightarrow> compare (?r x) (?r z) = Lt" by blast | |
assume "compare (?r x) (?r y) = Eq" | |
with rc have "?r x = ?r y" by blast | |
thus "x = y" unfolding real_of_inj . | |
qed | |
qed | |
end | |
lemma less_eq_real_alg_code[code]: | |
"(less_eq :: real_alg \<Rightarrow> real_alg \<Rightarrow> bool) = le_of_comp compare" | |
"(less :: real_alg \<Rightarrow> real_alg \<Rightarrow> bool) = lt_of_comp compare" | |
by (rule ord_defs(1)[symmetric], rule ord_defs(2)[symmetric]) | |
instantiation real_alg :: abs | |
begin | |
definition abs_real_alg :: "real_alg \<Rightarrow> real_alg" where | |
"abs_real_alg x = (if real_of x < 0 then uminus x else x)" | |
instance .. | |
end | |
lemma abs_real_alg: "abs (real_of x) = real_of (abs x)" | |
unfolding abs_real_alg_def abs_real_def if_distrib | |
by (auto simp: uminus_real_alg) | |
lemma sgn_real_alg_sound: "sgn x = (if x = 0 then 0 else if 0 < real_of x then 1 else - 1)" | |
(is "_ = ?r") | |
proof - | |
have "real_of (sgn x) = sgn (real_of x)" by (simp add: sgn_real_alg) | |
also have "\<dots> = real_of ?r" unfolding sgn_real_def if_distrib | |
by (auto simp: less_real_alg_def | |
zero_real_alg_def one_real_alg_def of_rat_real_alg[symmetric] equal_real_alg[symmetric] | |
equal_real_def uminus_real_alg[symmetric]) | |
finally show "sgn x = ?r" unfolding equal_real_alg[symmetric] equal_real_def by simp | |
qed | |
lemma real_of_of_int: "real_of_rat (rat_of_int z) = real_of (of_int z)" | |
proof (cases "z \<ge> 0") | |
case True | |
define n where "n = nat z" | |
from True have z: "z = int n" unfolding n_def by simp | |
show ?thesis unfolding z | |
by (induct n, auto simp: zero_real_alg plus_real_alg[symmetric] one_real_alg hom_distribs) | |
next | |
case False | |
define n where "n = nat (-z)" | |
from False have z: "z = - int n" unfolding n_def by simp | |
show ?thesis unfolding z | |
by (induct n, auto simp: zero_real_alg plus_real_alg[symmetric] one_real_alg uminus_real_alg[symmetric] | |
minus_real_alg[symmetric] hom_distribs) | |
qed | |
instance real_alg :: linordered_field | |
apply standard | |
apply (unfold less_eq_real_alg_def plus_real_alg[symmetric], force) | |
apply (unfold abs_real_alg_def less_real_alg_def zero_real_alg[symmetric], rule refl) | |
apply (unfold less_real_alg_def times_real_alg[symmetric], force) | |
apply (rule sgn_real_alg_sound) | |
done | |
instantiation real_alg :: floor_ceiling | |
begin | |
lift_definition floor_real_alg :: "real_alg \<Rightarrow> int" is floor_3 | |
by (auto simp: floor_3) | |
lemma floor_real_alg: "floor (real_of x) = floor x" | |
by (transfer, auto simp: floor_3) | |
instance | |
proof | |
fix x :: real_alg | |
show "of_int \<lfloor>x\<rfloor> \<le> x \<and> x < of_int (\<lfloor>x\<rfloor> + 1)" unfolding floor_real_alg[symmetric] | |
using floor_correct[of "real_of x"] unfolding less_eq_real_alg_def less_real_alg_def | |
real_of_of_int[symmetric] by (auto simp: hom_distribs) | |
hence "x \<le> of_int (\<lfloor>x\<rfloor> + 1)" by auto | |
thus "\<exists>z. x \<le> of_int z" by blast | |
qed | |
end | |
instantiation real_alg :: | |
"{unique_euclidean_ring, normalization_euclidean_semiring, normalization_semidom_multiplicative}" | |
begin | |
definition [simp]: "normalize_real_alg = (normalize_field :: real_alg \<Rightarrow> _)" | |
definition [simp]: "unit_factor_real_alg = (unit_factor_field :: real_alg \<Rightarrow> _)" | |
definition [simp]: "modulo_real_alg = (mod_field :: real_alg \<Rightarrow> _)" | |
definition [simp]: "euclidean_size_real_alg = (euclidean_size_field :: real_alg \<Rightarrow> _)" | |
definition [simp]: "division_segment (x :: real_alg) = 1" | |
instance | |
by standard | |
(simp_all add: dvd_field_iff field_split_simps split: if_splits) | |
end | |
instantiation real_alg :: euclidean_ring_gcd | |
begin | |
definition gcd_real_alg :: "real_alg \<Rightarrow> real_alg \<Rightarrow> real_alg" where | |
"gcd_real_alg = Euclidean_Algorithm.gcd" | |
definition lcm_real_alg :: "real_alg \<Rightarrow> real_alg \<Rightarrow> real_alg" where | |
"lcm_real_alg = Euclidean_Algorithm.lcm" | |
definition Gcd_real_alg :: "real_alg set \<Rightarrow> real_alg" where | |
"Gcd_real_alg = Euclidean_Algorithm.Gcd" | |
definition Lcm_real_alg :: "real_alg set \<Rightarrow> real_alg" where | |
"Lcm_real_alg = Euclidean_Algorithm.Lcm" | |
instance by standard (simp_all add: gcd_real_alg_def lcm_real_alg_def Gcd_real_alg_def Lcm_real_alg_def) | |
end | |
instance real_alg :: field_gcd .. | |
definition min_int_poly_real_alg :: "real_alg \<Rightarrow> int poly" where | |
"min_int_poly_real_alg x = (case info_real_alg x of Inl r \<Rightarrow> poly_rat r | Inr (p,_) \<Rightarrow> p)" | |
lemma min_int_poly_real_alg_real_of: "min_int_poly_real_alg x = min_int_poly (real_of x)" | |
proof (cases "info_real_alg x") | |
case (Inl r) | |
show ?thesis unfolding info_real_alg(2)[OF Inl] min_int_poly_real_alg_def Inl | |
by (simp add: min_int_poly_of_rat) | |
next | |
case (Inr pair) | |
then obtain p n where Inr: "info_real_alg x = Inr (p,n)" by (cases pair, auto) | |
hence "poly_cond p" by (transfer, transfer, auto simp: info_2_card) | |
hence "min_int_poly (real_of x) = p" using info_real_alg(1)[OF Inr] | |
by (intro min_int_poly_unique, auto) | |
thus ?thesis unfolding min_int_poly_real_alg_def Inr by simp | |
qed | |
lemma min_int_poly_real_code: "min_int_poly_real (real_of x) = min_int_poly_real_alg x" | |
by (simp add: min_int_poly_real_alg_real_of) | |
lemma min_int_poly_real_of: "min_int_poly (real_of x) = min_int_poly x" | |
proof (rule min_int_poly_unique[OF _ min_int_poly_irreducible lead_coeff_min_int_poly_pos]) | |
show "min_int_poly x represents real_of x" oops (* TODO: this gives an implementation of min-int-poly | |
on type real-alg | |
qed | |
lemma min_int_poly_real_alg_code_unfold [code_unfold]: "min_int_poly = min_int_poly_real_alg" | |
by (intro ext, unfold min_int_poly_real_alg_real_of, simp add: min_int_poly_real_of) *) | |
definition real_alg_of_real :: "real \<Rightarrow> real_alg" where | |
"real_alg_of_real x = (if (\<exists> y. x = real_of y) then (THE y. x = real_of y) else 0)" | |
lemma real_alg_of_real_code[code]: "real_alg_of_real (real_of x) = x" | |
using real_of_inj unfolding real_alg_of_real_def by auto | |
lift_definition to_rat_real_alg_main :: "real_alg \<Rightarrow> rat option" is to_rat_3 | |
by (simp add: to_rat_3) | |
lemma to_rat_real_alg_main: "to_rat_real_alg_main x = (if real_of x \<in> \<rat> then | |
Some (THE q. real_of x = of_rat q) else None)" | |
by (transfer, simp add: to_rat_3) | |
definition to_rat_real_alg :: "real_alg \<Rightarrow> rat" where | |
"to_rat_real_alg x = (case to_rat_real_alg_main x of Some q \<Rightarrow> q | None \<Rightarrow> 0)" | |
definition is_rat_real_alg :: "real_alg \<Rightarrow> bool" where | |
"is_rat_real_alg x = (case to_rat_real_alg_main x of Some q \<Rightarrow> True | None \<Rightarrow> False)" | |
lemma is_rat_real_alg: "is_rat (real_of x) = (is_rat_real_alg x)" | |
unfolding is_rat_real_alg_def is_rat to_rat_real_alg_main by auto | |
lemma to_rat_real_alg: "to_rat (real_of x) = (to_rat_real_alg x)" | |
unfolding to_rat to_rat_real_alg_def to_rat_real_alg_main by auto | |
definition algebraic_real :: "real \<Rightarrow> bool" where | |
[simp]: "algebraic_real = algebraic" | |
lemma algebraic_real_iff[code_unfold]: "algebraic = algebraic_real" by simp | |
lemma algebraic_real_code[code]: "algebraic_real (real_of x) = True" | |
proof (cases "info_real_alg x") | |
case (Inl r) | |
show ?thesis using info_real_alg(2)[OF Inl] by (auto simp: algebraic_of_rat) | |
next | |
case (Inr pair) | |
then obtain p n where Inr: "info_real_alg x = Inr (p,n)" by (cases pair, auto) | |
from info_real_alg(1)[OF Inr] have "p represents (real_of x)" by auto | |
thus ?thesis by (auto simp: algebraic_altdef_ipoly) | |
qed | |
subsection \<open>Real Algebraic Numbers as Implementation for Real Numbers\<close> | |
lemmas real_alg_code_eqns = | |
one_real_alg | |
zero_real_alg | |
uminus_real_alg | |
root_real_alg | |
minus_real_alg | |
plus_real_alg | |
times_real_alg | |
inverse_real_alg | |
divide_real_alg | |
equal_real_alg | |
less_real_alg | |
less_eq_real_alg | |
compare_real_alg | |
sgn_real_alg | |
abs_real_alg | |
floor_real_alg | |
is_rat_real_alg | |
to_rat_real_alg | |
min_int_poly_real_code | |
code_datatype real_of | |
declare [[code drop: | |
"plus :: real \<Rightarrow> real \<Rightarrow> real" | |
"uminus :: real \<Rightarrow> real" | |
"minus :: real \<Rightarrow> real \<Rightarrow> real" | |
"times :: real \<Rightarrow> real \<Rightarrow> real" | |
"inverse :: real \<Rightarrow> real" | |
"divide :: real \<Rightarrow> real \<Rightarrow> real" | |
"floor :: real \<Rightarrow> int" | |
"HOL.equal :: real \<Rightarrow> real \<Rightarrow> bool" | |
"compare :: real \<Rightarrow> real \<Rightarrow> order" | |
"less_eq :: real \<Rightarrow> real \<Rightarrow> bool" | |
"less :: real \<Rightarrow> real \<Rightarrow> bool" | |
"0 :: real" | |
"1 :: real" | |
"sgn :: real \<Rightarrow> real" | |
"abs :: real \<Rightarrow> real" | |
min_int_poly_real | |
root]] | |
declare real_alg_code_eqns [code equation] | |
lemma Ratreal_code[code]: | |
"Ratreal = real_of \<circ> of_rat_real_alg" | |
by (transfer, transfer) (simp add: fun_eq_iff of_rat_2) | |
lemma real_of_post[code_post]: "real_of (Real_Alg_Quotient (Real_Alg_Invariant (Rational x))) = of_rat x" | |
proof (transfer) | |
fix x | |
show "real_of_3 (Real_Alg_Invariant (Rational x)) = real_of_rat x" | |
by (simp add: Real_Alg_Invariant_inverse real_of_3.rep_eq) | |
qed | |
end | |