Datasets:
Tasks:
Text Generation
Modalities:
Text
Sub-tasks:
language-modeling
Languages:
English
Size:
100K - 1M
License:
(* | |
Author: René Thiemann | |
License: BSD | |
*) | |
section \<open>Explicit Constants for External Code\<close> | |
theory Algebraic_Numbers_External_Code | |
imports Algebraic_Number_Tests | |
begin | |
text \<open>We define constants for most operations on real- and complex- algebraic numbers, so that | |
they are easily accessible in target languages. In particular, we use target languages | |
integers, pairs of integers, strings, and integer lists, resp., | |
in order to represent the Isabelle types @{typ int}/@{typ nat}, @{typ rat}, @{typ string}, | |
and @{typ "int poly"}, resp.\<close> | |
definition "decompose_rat = map_prod integer_of_int integer_of_int o quotient_of" | |
subsection \<open>Operations on Real Algebraic Numbers\<close> | |
definition "zero_ra = (0 :: real_alg)" | |
definition "one_ra = (1 :: real_alg)" | |
definition "of_integer_ra = (of_int o int_of_integer :: integer \<Rightarrow> real_alg)" | |
definition "of_rational_ra = ((\<lambda> (num, denom). of_rat_real_alg (Rat.Fract (int_of_integer num) (int_of_integer denom))) | |
:: integer \<times> integer \<Rightarrow> real_alg)" | |
definition "plus_ra = ((+) :: real_alg \<Rightarrow> real_alg \<Rightarrow> real_alg)" | |
definition "minus_ra = ((-) :: real_alg \<Rightarrow> real_alg \<Rightarrow> real_alg)" | |
definition "uminus_ra = (uminus :: real_alg \<Rightarrow> real_alg)" | |
definition "times_ra = ((*) :: real_alg \<Rightarrow> real_alg \<Rightarrow> real_alg)" | |
definition "divide_ra = ((/) :: real_alg \<Rightarrow> real_alg \<Rightarrow> real_alg)" | |
definition "inverse_ra = (inverse :: real_alg \<Rightarrow> real_alg)" | |
definition "abs_ra = (abs :: real_alg \<Rightarrow> real_alg)" | |
definition "floor_ra = (integer_of_int o floor :: real_alg \<Rightarrow> integer)" | |
definition "ceiling_ra = (integer_of_int o ceiling :: real_alg \<Rightarrow> integer)" | |
definition "minimum_ra = (min :: real_alg \<Rightarrow> real_alg \<Rightarrow> real_alg)" | |
definition "maximum_ra = (max :: real_alg \<Rightarrow> real_alg \<Rightarrow> real_alg)" | |
definition "equals_ra = ((=) :: real_alg \<Rightarrow> real_alg \<Rightarrow> bool)" | |
definition "less_ra = ((<) :: real_alg \<Rightarrow> real_alg \<Rightarrow> bool)" | |
definition "less_equal_ra = ((\<le>) :: real_alg \<Rightarrow> real_alg \<Rightarrow> bool)" | |
definition "compare_ra = (compare :: real_alg \<Rightarrow> real_alg \<Rightarrow> order)" | |
definition "roots_of_poly_ra = (roots_of_real_alg o poly_of_list o map int_of_integer :: integer list \<Rightarrow> real_alg list)" | |
definition "root_ra = (root_real_alg o nat_of_integer :: integer \<Rightarrow> real_alg \<Rightarrow> real_alg)" | |
definition "show_ra = ((String.implode o show) :: real_alg \<Rightarrow> String.literal)" | |
definition "is_rational_ra = (is_rat_real_alg :: real_alg \<Rightarrow> bool)" | |
definition "to_rational_ra = (decompose_rat o to_rat_real_alg :: real_alg \<Rightarrow> integer \<times> integer)" | |
definition "sign_ra = (fst o to_rational_ra o sgn :: real_alg \<Rightarrow> integer)" | |
definition "decompose_ra = (map_sum decompose_rat (map_prod (map integer_of_int o coeffs) integer_of_nat) o info_real_alg | |
:: real_alg \<Rightarrow> integer \<times> integer + integer list \<times> integer)" | |
subsection \<open>Operations on Complex Algebraic Numbers\<close> | |
definition "zero_ca = (0 :: complex)" | |
definition "one_ca = (1 :: complex)" | |
definition "imag_unit_ca = (\<i> :: complex)" | |
definition "of_integer_ca = (of_int o int_of_integer :: integer \<Rightarrow> complex)" | |
definition "of_rational_ca = ((\<lambda> (num, denom). of_rat (Rat.Fract (int_of_integer num) (int_of_integer denom))) | |
:: integer \<times> integer \<Rightarrow> complex)" | |
definition "of_real_imag_ca = ((\<lambda> (real, imag). Complex (real_of real) (real_of imag)) :: real_alg \<times> real_alg \<Rightarrow> complex)" | |
definition "plus_ca = ((+) :: complex \<Rightarrow> complex \<Rightarrow> complex)" | |
definition "minus_ca = ((-) :: complex \<Rightarrow> complex \<Rightarrow> complex)" | |
definition "uminus_ca = (uminus :: complex \<Rightarrow> complex)" | |
definition "times_ca = ((*) :: complex \<Rightarrow> complex \<Rightarrow> complex)" | |
definition "divide_ca = ((/) :: complex \<Rightarrow> complex \<Rightarrow> complex)" | |
definition "inverse_ca = (inverse :: complex \<Rightarrow> complex)" | |
definition "equals_ca = ((=) :: complex \<Rightarrow> complex \<Rightarrow> bool)" | |
definition "roots_of_poly_ca = (complex_roots_of_int_poly o poly_of_list o map int_of_integer :: integer list \<Rightarrow> complex list)" | |
definition "csqrt_ca = (csqrt :: complex \<Rightarrow> complex)" | |
definition "show_ca = ((String.implode o show) :: complex \<Rightarrow> String.literal)" | |
definition "real_of_ca = (real_alg_of_real o Re :: complex \<Rightarrow> real_alg)" | |
definition "imag_of_ca = (real_alg_of_real o Im :: complex \<Rightarrow> real_alg)" | |
subsection \<open>Export Constants in Haskell\<close> | |
export_code | |
(* preliminary operations *) | |
order.Eq order.Lt order.Gt \<comment> \<open>for comparison\<close> | |
Inl Inr \<comment> \<open>make disjoint sums available for decomposition information\<close> | |
(* real algebraic operations *) | |
zero_ra | |
one_ra | |
of_integer_ra | |
of_rational_ra | |
plus_ra | |
minus_ra | |
uminus_ra | |
times_ra | |
divide_ra | |
inverse_ra | |
abs_ra | |
floor_ra | |
ceiling_ra | |
minimum_ra | |
maximum_ra | |
equals_ra | |
less_ra | |
less_equal_ra | |
compare_ra | |
roots_of_poly_ra | |
root_ra | |
show_ra | |
is_rational_ra | |
to_rational_ra | |
sign_ra | |
decompose_ra | |
(* complex algebraic operations *) | |
zero_ca | |
one_ca | |
imag_unit_ca | |
of_integer_ca | |
of_rational_ca | |
of_real_imag_ca | |
plus_ca | |
minus_ca | |
uminus_ca | |
times_ca | |
divide_ca | |
inverse_ca | |
equals_ca | |
roots_of_poly_ca | |
csqrt_ca | |
show_ca | |
real_of_ca | |
imag_of_ca | |
in Haskell module_name Algebraic_Numbers (* file \<open>~/Code/Algebraic_Numbers\<close> *) | |
end | |