Datasets:
Tasks:
Text Generation
Modalities:
Text
Sub-tasks:
language-modeling
Languages:
English
Size:
100K - 1M
License:
(* Author: Tobias Nipkow *) | |
section "Annotated Commands" | |
theory ACom | |
imports "HOL-IMP.Com" | |
begin | |
datatype 'a acom = | |
SKIP 'a ("SKIP {_}" 61) | | |
Assign vname aexp 'a ("(_ ::= _/ {_})" [1000, 61, 0] 61) | | |
Seq "('a acom)" "('a acom)" ("_;;//_" [60, 61] 60) | | |
If bexp "('a acom)" "('a acom)" 'a | |
("(IF _/ THEN _/ ELSE _//{_})" [0, 0, 61, 0] 61) | | |
While 'a bexp "('a acom)" 'a | |
("({_}//WHILE _/ DO (_)//{_})" [0, 0, 61, 0] 61) | |
fun post :: "'a acom \<Rightarrow>'a" where | |
"post (SKIP {P}) = P" | | |
"post (x ::= e {P}) = P" | | |
"post (c1;; c2) = post c2" | | |
"post (IF b THEN c1 ELSE c2 {P}) = P" | | |
"post ({Inv} WHILE b DO c {P}) = P" | |
fun strip :: "'a acom \<Rightarrow> com" where | |
"strip (SKIP {P}) = com.SKIP" | | |
"strip (x ::= e {P}) = (x ::= e)" | | |
"strip (c1;;c2) = (strip c1;; strip c2)" | | |
"strip (IF b THEN c1 ELSE c2 {P}) = (IF b THEN strip c1 ELSE strip c2)" | | |
"strip ({Inv} WHILE b DO c {P}) = (WHILE b DO strip c)" | |
fun anno :: "'a \<Rightarrow> com \<Rightarrow> 'a acom" where | |
"anno a com.SKIP = SKIP {a}" | | |
"anno a (x ::= e) = (x ::= e {a})" | | |
"anno a (c1;;c2) = (anno a c1;; anno a c2)" | | |
"anno a (IF b THEN c1 ELSE c2) = | |
(IF b THEN anno a c1 ELSE anno a c2 {a})" | | |
"anno a (WHILE b DO c) = | |
({a} WHILE b DO anno a c {a})" | |
fun annos :: "'a acom \<Rightarrow> 'a list" where | |
"annos (SKIP {a}) = [a]" | | |
"annos (x::=e {a}) = [a]" | | |
"annos (C1;;C2) = annos C1 @ annos C2" | | |
"annos (IF b THEN C1 ELSE C2 {a}) = a # annos C1 @ annos C2" | | |
"annos ({i} WHILE b DO C {a}) = i # a # annos C" | |
fun map_acom :: "('a \<Rightarrow> 'b) \<Rightarrow> 'a acom \<Rightarrow> 'b acom" where | |
"map_acom f (SKIP {P}) = SKIP {f P}" | | |
"map_acom f (x ::= e {P}) = (x ::= e {f P})" | | |
"map_acom f (c1;;c2) = (map_acom f c1;; map_acom f c2)" | | |
"map_acom f (IF b THEN c1 ELSE c2 {P}) = | |
(IF b THEN map_acom f c1 ELSE map_acom f c2 {f P})" | | |
"map_acom f ({Inv} WHILE b DO c {P}) = | |
({f Inv} WHILE b DO map_acom f c {f P})" | |
lemma post_map_acom[simp]: "post(map_acom f c) = f(post c)" | |
by (induction c) simp_all | |
lemma strip_acom[simp]: "strip (map_acom f c) = strip c" | |
by (induction c) auto | |
lemma map_acom_SKIP: | |
"map_acom f c = SKIP {S'} \<longleftrightarrow> (\<exists>S. c = SKIP {S} \<and> S' = f S)" | |
by (cases c) auto | |
lemma map_acom_Assign: | |
"map_acom f c = x ::= e {S'} \<longleftrightarrow> (\<exists>S. c = x::=e {S} \<and> S' = f S)" | |
by (cases c) auto | |
lemma map_acom_Seq: | |
"map_acom f c = c1';;c2' \<longleftrightarrow> | |
(\<exists>c1 c2. c = c1;;c2 \<and> map_acom f c1 = c1' \<and> map_acom f c2 = c2')" | |
by (cases c) auto | |
lemma map_acom_If: | |
"map_acom f c = IF b THEN c1' ELSE c2' {S'} \<longleftrightarrow> | |
(\<exists>S c1 c2. c = IF b THEN c1 ELSE c2 {S} \<and> map_acom f c1 = c1' \<and> map_acom f c2 = c2' \<and> S' = f S)" | |
by (cases c) auto | |
lemma map_acom_While: | |
"map_acom f w = {I'} WHILE b DO c' {P'} \<longleftrightarrow> | |
(\<exists>I P c. w = {I} WHILE b DO c {P} \<and> map_acom f c = c' \<and> I' = f I \<and> P' = f P)" | |
by (cases w) auto | |
lemma strip_anno[simp]: "strip (anno a c) = c" | |
by(induct c) simp_all | |
lemma strip_eq_SKIP: | |
"strip c = com.SKIP \<longleftrightarrow> (\<exists>P. c = SKIP {P})" | |
by (cases c) simp_all | |
lemma strip_eq_Assign: | |
"strip c = x::=e \<longleftrightarrow> (\<exists>P. c = x::=e {P})" | |
by (cases c) simp_all | |
lemma strip_eq_Seq: | |
"strip c = c1;;c2 \<longleftrightarrow> (\<exists>d1 d2. c = d1;;d2 & strip d1 = c1 & strip d2 = c2)" | |
by (cases c) simp_all | |
lemma strip_eq_If: | |
"strip c = IF b THEN c1 ELSE c2 \<longleftrightarrow> | |
(\<exists>d1 d2 P. c = IF b THEN d1 ELSE d2 {P} & strip d1 = c1 & strip d2 = c2)" | |
by (cases c) simp_all | |
lemma strip_eq_While: | |
"strip c = WHILE b DO c1 \<longleftrightarrow> | |
(\<exists>I d1 P. c = {I} WHILE b DO d1 {P} & strip d1 = c1)" | |
by (cases c) simp_all | |
lemma set_annos_anno[simp]: "set (annos (anno a C)) = {a}" | |
by(induction C)(auto) | |
lemma size_annos_same: "strip C1 = strip C2 \<Longrightarrow> size(annos C1) = size(annos C2)" | |
apply(induct C2 arbitrary: C1) | |
apply (auto simp: strip_eq_SKIP strip_eq_Assign strip_eq_Seq strip_eq_If strip_eq_While) | |
done | |
lemmas size_annos_same2 = eqTrueI[OF size_annos_same] | |
end | |