Datasets:

Modalities:
Text
Languages:
English
Libraries:
Datasets
License:
proof-pile / formal /afp /AWN /OAWN_Convert.thy
Zhangir Azerbayev
squashed?
4365a98
raw
history blame
16.7 kB
(* Title: OAWN_Convert.thy
License: BSD 2-Clause. See LICENSE.
Author: Timothy Bourke
*)
section "Transfer standard invariants into open invariants"
theory OAWN_Convert
imports AWN_SOS_Labels AWN_Invariants
OAWN_SOS OAWN_Invariants
begin
definition initiali :: "'i \<Rightarrow> (('i \<Rightarrow> 'g) \<times> 'l) set \<Rightarrow> ('g \<times> 'l) set \<Rightarrow> bool"
where "initiali i OI CI \<equiv> ({(\<sigma> i, p)|\<sigma> p. (\<sigma>, p) \<in> OI} = CI)"
lemma initialiI [intro]:
assumes OICI: "\<And>\<sigma> p. (\<sigma>, p) \<in> OI \<Longrightarrow> (\<sigma> i, p) \<in> CI"
and CIOI: "\<And>\<xi> p. (\<xi>, p) \<in> CI \<Longrightarrow> \<exists>\<sigma>. \<xi> = \<sigma> i \<and> (\<sigma>, p) \<in> OI"
shows "initiali i OI CI"
unfolding initiali_def
by (intro set_eqI iffI) (auto elim!: OICI CIOI)
lemma open_from_initialiD [dest]:
assumes "initiali i OI CI"
and "(\<sigma>, p) \<in> OI"
shows "\<exists>\<xi>. \<sigma> i = \<xi> \<and> (\<xi>, p) \<in> CI"
using assms unfolding initiali_def by auto
lemma closed_from_initialiD [dest]:
assumes "initiali i OI CI"
and "(\<xi>, p) \<in> CI"
shows "\<exists>\<sigma>. \<sigma> i = \<xi> \<and> (\<sigma>, p) \<in> OI"
using assms unfolding initiali_def by auto
definition
seql :: "'i \<Rightarrow> (('s \<times> 'l) \<Rightarrow> bool) \<Rightarrow> (('i \<Rightarrow> 's) \<times> 'l) \<Rightarrow> bool"
where
"seql i P \<equiv> (\<lambda>(\<sigma>, p). P (\<sigma> i, p))"
lemma seqlI [intro]:
"P (fst s i, snd s) \<Longrightarrow> seql i P s"
by (clarsimp simp: seql_def)
lemma same_seql [elim]:
assumes "\<forall>j\<in>{i}. \<sigma>' j = \<sigma> j"
and "seql i P (\<sigma>', s)"
shows "seql i P (\<sigma>, s)"
using assms unfolding seql_def by (clarsimp)
lemma seqlsimp:
"seql i P (\<sigma>, p) = P (\<sigma> i, p)"
unfolding seql_def by simp
lemma other_steps_resp_local [intro!, simp]: "other_steps (other A I) I"
by (clarsimp elim!: otherE)
lemma seql_onl_swap:
"seql i (onl \<Gamma> P) = onl \<Gamma> (seql i P)"
unfolding seql_def onl_def by simp
lemma oseqp_sos_resp_local_steps [intro!, simp]:
fixes \<Gamma> :: "'p \<Rightarrow> ('s, 'm, 'p, 'l) seqp"
shows "local_steps (oseqp_sos \<Gamma> i) {i}"
proof
fix \<sigma> \<sigma>' \<zeta> \<zeta>' :: "nat \<Rightarrow> 's" and s a s'
assume tr: "((\<sigma>, s), a, \<sigma>', s') \<in> oseqp_sos \<Gamma> i"
and "\<forall>j\<in>{i}. \<zeta> j = \<sigma> j"
thus "\<exists>\<zeta>'. (\<forall>j\<in>{i}. \<zeta>' j = \<sigma>' j) \<and> ((\<zeta>, s), a, (\<zeta>', s')) \<in> oseqp_sos \<Gamma> i"
proof induction
fix \<sigma> \<sigma>' l ms p
assume "\<sigma>' i = \<sigma> i"
and "\<forall>j\<in>{i}. \<zeta> j = \<sigma> j"
hence "((\<zeta>, {l}broadcast(ms).p), broadcast (ms (\<sigma> i)), (\<sigma>', p)) \<in> oseqp_sos \<Gamma> i"
by (metis obroadcastT singleton_iff)
with \<open>\<forall>j\<in>{i}. \<zeta> j = \<sigma> j\<close> show "\<exists>\<zeta>'. (\<forall>j\<in>{i}. \<zeta>' j = \<sigma>' j) \<and>
((\<zeta>, {l}broadcast(ms).p), broadcast (ms (\<sigma> i)), (\<zeta>', p)) \<in> oseqp_sos \<Gamma> i"
by blast
next
fix \<sigma> \<sigma>' :: "nat \<Rightarrow> 's" and fmsg :: "'m \<Rightarrow> 's \<Rightarrow> 's" and msg l p
assume *: "\<sigma>' i = fmsg msg (\<sigma> i)"
and **: "\<forall>j\<in>{i}. \<zeta> j = \<sigma> j"
hence "\<forall>j\<in>{i}. (\<zeta>(i := fmsg msg (\<zeta> i))) j = \<sigma>' j" by clarsimp
moreover from * **
have "((\<zeta>, {l}receive(fmsg).p), receive msg, (\<zeta>(i := fmsg msg (\<zeta> i)), p)) \<in> oseqp_sos \<Gamma> i"
by (metis fun_upd_same oreceiveT)
ultimately show "\<exists>\<zeta>'. (\<forall>j\<in>{i}. \<zeta>' j = \<sigma>' j) \<and>
((\<zeta>, {l}receive(fmsg).p), receive msg, (\<zeta>', p)) \<in> oseqp_sos \<Gamma> i"
by blast
next
fix \<sigma>' \<sigma> l p and fas :: "'s \<Rightarrow> 's"
assume *: "\<sigma>' i = fas (\<sigma> i)"
and **: "\<forall>j\<in>{i}. \<zeta> j = \<sigma> j"
hence "\<forall>j\<in>{i}. (\<zeta>(i := fas (\<zeta> i))) j = \<sigma>' j" by clarsimp
moreover from * ** have "((\<zeta>, {l}\<lbrakk>fas\<rbrakk> p), \<tau>, (\<zeta>(i := fas (\<zeta> i)), p)) \<in> oseqp_sos \<Gamma> i"
by (metis fun_upd_same oassignT)
ultimately show "\<exists>\<zeta>'. (\<forall>j\<in>{i}. \<zeta>' j = \<sigma>' j) \<and> ((\<zeta>, {l}\<lbrakk>fas\<rbrakk> p), \<tau>, (\<zeta>', p)) \<in> oseqp_sos \<Gamma> i"
by blast
next
fix g :: "'s \<Rightarrow> 's set" and \<sigma> \<sigma>' l p
assume *: "\<sigma>' i \<in> g (\<sigma> i)"
and **: "\<forall>j\<in>{i}. \<zeta> j = \<sigma> j"
hence "\<forall>j\<in>{i}. (SOME \<zeta>'. \<zeta>' i = \<sigma>' i) j = \<sigma>' j" by simp (metis (lifting, full_types) some_eq_ex)
moreover with * ** have "((\<zeta>, {l}\<langle>g\<rangle> p), \<tau>, (SOME \<zeta>'. \<zeta>' i = \<sigma>' i, p)) \<in> oseqp_sos \<Gamma> i"
by simp (metis oguardT step_seq_tau)
ultimately show "\<exists>\<zeta>'. (\<forall>j\<in>{i}. \<zeta>' j = \<sigma>' j) \<and> ((\<zeta>, {l}\<langle>g\<rangle> p), \<tau>, (\<zeta>', p)) \<in> oseqp_sos \<Gamma> i"
by blast
next
fix \<sigma> pn a \<sigma>' p'
assume "((\<sigma>, \<Gamma> pn), a, (\<sigma>', p')) \<in> oseqp_sos \<Gamma> i"
and IH: "\<forall>j\<in>{i}. \<zeta> j = \<sigma> j \<Longrightarrow> \<exists>\<zeta>'. (\<forall>j\<in>{i}. \<zeta>' j = \<sigma>' j) \<and> ((\<zeta>, \<Gamma> pn), a, (\<zeta>', p')) \<in> oseqp_sos \<Gamma> i"
and "\<forall>j\<in>{i}. \<zeta> j = \<sigma> j"
then obtain \<zeta>' where "\<forall>j\<in>{i}. \<zeta>' j = \<sigma>' j"
and "((\<zeta>, \<Gamma> pn), a, (\<zeta>', p')) \<in> oseqp_sos \<Gamma> i"
by blast
thus "\<exists>\<zeta>'. (\<forall>j\<in>{i}. \<zeta>' j = \<sigma>' j) \<and> ((\<zeta>, call(pn)), a, (\<zeta>', p')) \<in> oseqp_sos \<Gamma> i"
by blast
next
fix \<sigma> p a \<sigma>' p' q
assume "((\<sigma>, p), a, (\<sigma>', p')) \<in> oseqp_sos \<Gamma> i"
and "\<forall>j\<in>{i}. \<zeta> j = \<sigma> j \<Longrightarrow> \<exists>\<zeta>'. (\<forall>j\<in>{i}. \<zeta>' j = \<sigma>' j) \<and> ((\<zeta>, p), a, (\<zeta>', p')) \<in> oseqp_sos \<Gamma> i"
and "\<forall>j\<in>{i}. \<zeta> j = \<sigma> j"
then obtain \<zeta>' where "\<forall>j\<in>{i}. \<zeta>' j = \<sigma>' j"
and "((\<zeta>, p), a, (\<zeta>', p')) \<in> oseqp_sos \<Gamma> i"
by blast
thus "\<exists>\<zeta>'. (\<forall>j\<in>{i}. \<zeta>' j = \<sigma>' j) \<and> ((\<zeta>, p \<oplus> q), a, (\<zeta>', p')) \<in> oseqp_sos \<Gamma> i"
by blast
next
fix \<sigma> p a \<sigma>' q q'
assume "((\<sigma>, q), a, (\<sigma>', q')) \<in> oseqp_sos \<Gamma> i"
and "\<forall>j\<in>{i}. \<zeta> j = \<sigma> j \<Longrightarrow> \<exists>\<zeta>'. (\<forall>j\<in>{i}. \<zeta>' j = \<sigma>' j) \<and> ((\<zeta>, q), a, (\<zeta>', q')) \<in> oseqp_sos \<Gamma> i"
and "\<forall>j\<in>{i}. \<zeta> j = \<sigma> j"
then obtain \<zeta>' where "\<forall>j\<in>{i}. \<zeta>' j = \<sigma>' j"
and "((\<zeta>, q), a, (\<zeta>', q')) \<in> oseqp_sos \<Gamma> i"
by blast
thus "\<exists>\<zeta>'. (\<forall>j\<in>{i}. \<zeta>' j = \<sigma>' j) \<and> ((\<zeta>, p \<oplus> q), a, (\<zeta>', q')) \<in> oseqp_sos \<Gamma> i"
by blast
qed (simp_all, (metis ogroupcastT ounicastT onotunicastT osendT odeliverT)+)
qed
lemma oseqp_sos_subreachable [intro!, simp]:
assumes "trans OA = oseqp_sos \<Gamma> i"
shows "subreachable OA (other ANY {i}) {i}"
by rule (clarsimp simp add: assms(1))+
lemma oseq_step_is_seq_step:
fixes \<sigma> :: "ip \<Rightarrow> 's"
assumes "((\<sigma>, p), a :: 'm seq_action, (\<sigma>', p')) \<in> oseqp_sos \<Gamma> i"
and "\<sigma> i = \<xi>"
shows "\<exists>\<xi>'. \<sigma>' i = \<xi>' \<and> ((\<xi>, p), a, (\<xi>', p')) \<in> seqp_sos \<Gamma>"
using assms proof induction
fix \<sigma> \<sigma>' l ms p
assume "\<sigma>' i = \<sigma> i"
and "\<sigma> i = \<xi>"
hence "\<sigma>' i = \<xi>" by simp
have "((\<xi>, {l}broadcast(ms).p), broadcast (ms \<xi>), (\<xi>, p)) \<in> seqp_sos \<Gamma>"
by auto
with \<open>\<sigma> i = \<xi>\<close> and \<open>\<sigma>' i = \<xi>\<close> show "\<exists>\<xi>'. \<sigma>' i = \<xi>'
\<and> ((\<xi>, {l}broadcast(ms).p), broadcast (ms (\<sigma> i)), (\<xi>', p)) \<in> seqp_sos \<Gamma>"
by clarsimp
next
fix fmsg :: "'m \<Rightarrow> 's \<Rightarrow> 's" and msg :: 'm and \<sigma>' \<sigma> l p
assume "\<sigma>' i = fmsg msg (\<sigma> i)"
and "\<sigma> i = \<xi>"
have "((\<xi>, {l}receive(fmsg).p), receive msg, (fmsg msg \<xi>, p)) \<in> seqp_sos \<Gamma>"
by auto
with \<open>\<sigma>' i = fmsg msg (\<sigma> i)\<close> and \<open>\<sigma> i = \<xi>\<close>
show "\<exists>\<xi>'. \<sigma>' i = \<xi>' \<and> ((\<xi>, {l}receive(fmsg).p), receive msg, (\<xi>', p)) \<in> seqp_sos \<Gamma>"
by clarsimp
qed (simp_all, (metis assignT choiceT1 choiceT2 groupcastT guardT
callT unicastT notunicastT sendT deliverT step_seq_tau)+)
lemma reachable_oseq_seqp_sos:
assumes "(\<sigma>, p) \<in> reachable OA I"
and "initiali i (init OA) (init A)"
and spo: "trans OA = oseqp_sos \<Gamma> i"
and sp: "trans A = seqp_sos \<Gamma>"
shows "\<exists>\<xi>. \<sigma> i = \<xi> \<and> (\<xi>, p) \<in> reachable A I"
using assms(1) proof (induction rule: reachable_pair_induct)
fix \<sigma> p
assume "(\<sigma>, p) \<in> init OA"
with \<open>initiali i (init OA) (init A)\<close> obtain \<xi> where "\<sigma> i = \<xi>"
and "(\<xi>, p) \<in> init A"
by auto
from \<open>(\<xi>, p) \<in> init A\<close> have "(\<xi>, p) \<in> reachable A I" ..
with \<open>\<sigma> i = \<xi>\<close> show "\<exists>\<xi>. \<sigma> i = \<xi> \<and> (\<xi>, p) \<in> reachable A I"
by auto
next
fix \<sigma> p \<sigma>' p' a
assume "(\<sigma>, p) \<in> reachable OA I"
and IH: "\<exists>\<xi>. \<sigma> i = \<xi> \<and> (\<xi>, p) \<in> reachable A I"
and otr: "((\<sigma>, p), a, (\<sigma>', p')) \<in> trans OA"
and "I a"
from IH obtain \<xi> where "\<sigma> i = \<xi>"
and cr: "(\<xi>, p) \<in> reachable A I"
by clarsimp
from otr and spo have "((\<sigma>, p), a, (\<sigma>', p')) \<in> oseqp_sos \<Gamma> i" by simp
with \<open>\<sigma> i = \<xi>\<close> obtain \<xi>' where "\<sigma>' i = \<xi>'"
and "((\<xi>, p), a, (\<xi>', p')) \<in> seqp_sos \<Gamma>"
by (auto dest!: oseq_step_is_seq_step)
from this(2) and sp have ctr: "((\<xi>, p), a, (\<xi>', p')) \<in> trans A" by simp
from \<open>(\<xi>, p) \<in> reachable A I\<close> and ctr and \<open>I a\<close>
have "(\<xi>', p') \<in> reachable A I" ..
with \<open>\<sigma>' i = \<xi>'\<close> show "\<exists>\<xi>. \<sigma>' i = \<xi> \<and> (\<xi>, p') \<in> reachable A I"
by blast
qed
lemma reachable_oseq_seqp_sos':
assumes "s \<in> reachable OA I"
and "initiali i (init OA) (init A)"
and "trans OA = oseqp_sos \<Gamma> i"
and "trans A = seqp_sos \<Gamma>"
shows "\<exists>\<xi>. (fst s) i = \<xi> \<and> (\<xi>, snd s) \<in> reachable A I"
using assms
by - (cases s, auto dest: reachable_oseq_seqp_sos)
text \<open>
Any invariant shown in the (simpler) closed semantics can be transferred to an invariant in
the open semantics.
\<close>
theorem open_seq_invariant [intro]:
assumes "A \<TTurnstile> (I \<rightarrow>) P"
and "initiali i (init OA) (init A)"
and spo: "trans OA = oseqp_sos \<Gamma> i"
and sp: "trans A = seqp_sos \<Gamma>"
shows "OA \<Turnstile> (act I, other ANY {i} \<rightarrow>) (seql i P)"
proof -
have "OA \<TTurnstile> (I \<rightarrow>) (seql i P)"
proof (rule invariant_arbitraryI)
fix s
assume "s \<in> reachable OA I"
with \<open>initiali i (init OA) (init A)\<close> obtain \<xi> where "(fst s) i = \<xi>"
and "(\<xi>, snd s) \<in> reachable A I"
by (auto dest: reachable_oseq_seqp_sos' [OF _ _ spo sp])
with \<open>A \<TTurnstile> (I \<rightarrow>) P\<close> have "P (\<xi>, snd s)" by auto
with \<open>(fst s) i = \<xi>\<close> show "seql i P s" by auto
qed
moreover from spo have "subreachable OA (other ANY {i}) {i}" ..
ultimately show ?thesis
proof (rule open_closed_invariant)
fix \<sigma> \<sigma>' s
assume "\<forall>j\<in>{i}. \<sigma>' j = \<sigma> j"
and "seql i P (\<sigma>', s)"
thus "seql i P (\<sigma>, s)" ..
qed
qed
definition
seqll :: "'i \<Rightarrow> ((('s \<times> 'l) \<times> 'a \<times> ('s \<times> 'l)) \<Rightarrow> bool)
\<Rightarrow> ((('i \<Rightarrow> 's) \<times> 'l) \<times> 'a \<times> (('i \<Rightarrow> 's) \<times> 'l)) \<Rightarrow> bool"
where
"seqll i P \<equiv> (\<lambda>((\<sigma>, p), a, (\<sigma>', p')). P ((\<sigma> i, p), a, (\<sigma>' i, p')))"
lemma same_seqll [elim]:
assumes "\<forall>j\<in>{i}. \<sigma>\<^sub>1' j = \<sigma>\<^sub>1 j"
and "\<forall>j\<in>{i}. \<sigma>\<^sub>2' j = \<sigma>\<^sub>2 j"
and "seqll i P ((\<sigma>\<^sub>1', s), a, (\<sigma>\<^sub>2', s'))"
shows "seqll i P ((\<sigma>\<^sub>1, s), a, (\<sigma>\<^sub>2, s'))"
using assms unfolding seqll_def by (clarsimp)
lemma seqllI [intro!]:
assumes "P ((\<sigma> i, p), a, (\<sigma>' i, p'))"
shows "seqll i P ((\<sigma>, p), a, (\<sigma>', p'))"
using assms unfolding seqll_def by simp
lemma seqllD [dest]:
assumes "seqll i P ((\<sigma>, p), a, (\<sigma>', p'))"
shows "P ((\<sigma> i, p), a, (\<sigma>' i, p'))"
using assms unfolding seqll_def by simp
lemma seqllsimp:
"seqll i P ((\<sigma>, p), a, (\<sigma>', p')) = P ((\<sigma> i, p), a, (\<sigma>' i, p'))"
unfolding seqll_def by simp
lemma seqll_onll_swap:
"seqll i (onll \<Gamma> P) = onll \<Gamma> (seqll i P)"
unfolding seqll_def onll_def by simp
theorem open_seq_step_invariant [intro]:
assumes "A \<TTurnstile>\<^sub>A (I \<rightarrow>) P"
and "initiali i (init OA) (init A)"
and spo: "trans OA = oseqp_sos \<Gamma> i"
and sp: "trans A = seqp_sos \<Gamma>"
shows "OA \<Turnstile>\<^sub>A (act I, other ANY {i} \<rightarrow>) (seqll i P)"
proof -
have "OA \<TTurnstile>\<^sub>A (I \<rightarrow>) (seqll i P)"
proof (rule step_invariant_arbitraryI)
fix \<sigma> p a \<sigma>' p'
assume or: "(\<sigma>, p) \<in> reachable OA I"
and otr: "((\<sigma>, p), a, (\<sigma>', p')) \<in> trans OA"
and "I a"
from or \<open>initiali i (init OA) (init A)\<close> spo sp obtain \<xi> where "\<sigma> i = \<xi>"
and cr: "(\<xi>, p) \<in> reachable A I"
by - (drule(3) reachable_oseq_seqp_sos', auto)
from otr and spo have "((\<sigma>, p), a, (\<sigma>', p')) \<in> oseqp_sos \<Gamma> i" by simp
with \<open>\<sigma> i = \<xi>\<close> obtain \<xi>' where "\<sigma>' i = \<xi>'"
and ctr: "((\<xi>, p), a, (\<xi>', p')) \<in> seqp_sos \<Gamma>"
by (auto dest!: oseq_step_is_seq_step)
with sp have "((\<xi>, p), a, (\<xi>', p')) \<in> trans A" by simp
with \<open>A \<TTurnstile>\<^sub>A (I \<rightarrow>) P\<close> cr have "P ((\<xi>, p), a, (\<xi>', p'))" using \<open>I a\<close> ..
with \<open>\<sigma> i = \<xi>\<close> and \<open>\<sigma>' i = \<xi>'\<close> have "P ((\<sigma> i, p), a, (\<sigma>' i, p'))" by simp
thus "seqll i P ((\<sigma>, p), a, (\<sigma>', p'))" ..
qed
moreover from spo have "local_steps (trans OA) {i}" by simp
moreover have "other_steps (other ANY {i}) {i}" ..
ultimately show ?thesis
proof (rule open_closed_step_invariant)
fix \<sigma> \<zeta> a \<sigma>' \<zeta>' s s'
assume "\<forall>j\<in>{i}. \<sigma> j = \<zeta> j"
and "\<forall>j\<in>{i}. \<sigma>' j = \<zeta>' j"
and "seqll i P ((\<sigma>, s), a, (\<sigma>', s'))"
thus "seqll i P ((\<zeta>, s), a, (\<zeta>', s'))" ..
qed
qed
end