Datasets:
Tasks:
Text Generation
Modalities:
Text
Sub-tasks:
language-modeling
Languages:
English
Size:
100K - 1M
License:
\input{preamble} | |
% OK, start here. | |
% | |
\begin{document} | |
\title{Deformation Theory} | |
\maketitle | |
\phantomsection | |
\label{section-phantom} | |
\tableofcontents | |
\section{Introduction} | |
\label{section-introduction} | |
\noindent | |
The goal of this chapter is to give a (relatively) gentle introduction to | |
deformation theory of modules, morphisms, etc. In this chapter we deal with | |
those results that can be proven using the naive cotangent complex. In | |
the chapter on the cotangent complex we will extend these results a little | |
bit. The advanced reader may wish to consult the treatise by Illusie on this | |
subject, see \cite{cotangent}. | |
\section{Deformations of rings and the naive cotangent complex} | |
\label{section-deformations} | |
\noindent | |
In this section we use the naive cotangent complex to do a little bit | |
of deformation theory. We start with a surjective ring map $A' \to A$ | |
whose kernel is an ideal $I$ of square zero. Moreover we assume | |
given a ring map $A \to B$, a $B$-module $N$, and an $A$-module map | |
$c : I \to N$. In this section we ask ourselves whether we can find | |
the question mark fitting into the following diagram | |
\begin{equation} | |
\label{equation-to-solve} | |
\vcenter{ | |
\xymatrix{ | |
0 \ar[r] & N \ar[r] & {?} \ar[r] & B \ar[r] & 0 \\ | |
0 \ar[r] & I \ar[u]^c \ar[r] & A' \ar[u] \ar[r] & A \ar[u] \ar[r] & 0 | |
} | |
} | |
\end{equation} | |
and moreover how unique the solution is (if it exists). More precisely, | |
we look for a surjection of $A'$-algebras $B' \to B$ whose kernel is | |
an ideal of square zero and is | |
identified with $N$ such that $A' \to B'$ induces the given map $c$. | |
We will say $B'$ is a {\it solution} to (\ref{equation-to-solve}). | |
\begin{lemma} | |
\label{lemma-huge-diagram} | |
Given a commutative diagram | |
$$ | |
\xymatrix{ | |
& 0 \ar[r] & N_2 \ar[r] & B'_2 \ar[r] & B_2 \ar[r] & 0 \\ | |
& 0 \ar[r]|\hole & I_2 \ar[u]_{c_2} \ar[r] & | |
A'_2 \ar[u] \ar[r]|\hole & A_2 \ar[u] \ar[r] & 0 \\ | |
0 \ar[r] & N_1 \ar[ruu] \ar[r] & B'_1 \ar[r] & B_1 \ar[ruu] \ar[r] & 0 \\ | |
0 \ar[r] & I_1 \ar[ruu]|\hole \ar[u]^{c_1} \ar[r] & | |
A'_1 \ar[ruu]|\hole \ar[u] \ar[r] & A_1 \ar[ruu]|\hole \ar[u] \ar[r] & 0 | |
} | |
$$ | |
with front and back solutions to (\ref{equation-to-solve}) we have | |
\begin{enumerate} | |
\item There exist a canonical element in | |
$\Ext^1_{B_1}(\NL_{B_1/A_1}, N_2)$ | |
whose vanishing is a necessary and sufficient condition for the existence | |
of a ring map $B'_1 \to B'_2$ fitting into the diagram. | |
\item If there exists a map $B'_1 \to B'_2$ fitting into the diagram | |
the set of all such maps is a principal homogeneous space under | |
$\Hom_{B_1}(\Omega_{B_1/A_1}, N_2)$. | |
\end{enumerate} | |
\end{lemma} | |
\begin{proof} | |
Let $E = B_1$ viewed as a set. | |
Consider the surjection $A_1[E] \to B_1$ with kernel $J$ used | |
to define the naive cotangent complex by the formula | |
$$ | |
\NL_{B_1/A_1} = (J/J^2 \to \Omega_{A_1[E]/A_1} \otimes_{A_1[E]} B_1) | |
$$ | |
in | |
Algebra, Section \ref{algebra-section-netherlander}. | |
Since $\Omega_{A_1[E]/A_1} \otimes B_1$ is a free | |
$B_1$-module we have | |
$$ | |
\Ext^1_{B_1}(\NL_{B_1/A_1}, N_2) = | |
\frac{\Hom_{B_1}(J/J^2, N_2)} | |
{\Hom_{B_1}(\Omega_{A_1[E]/A_1} \otimes B_1, N_2)} | |
$$ | |
We will construct an obstruction in the module on the right. | |
Let $J' = \Ker(A'_1[E] \to B_1)$. Note that there is a surjection | |
$J' \to J$ whose kernel is $I_1A_1[E]$. | |
For every $e \in E$ denote $x_e \in A_1[E]$ the corresponding variable. | |
Choose a lift $y_e \in B'_1$ of the image of $x_e$ in $B_1$ and | |
a lift $z_e \in B'_2$ of the image of $x_e$ in $B_2$. | |
These choices determine $A'_1$-algebra maps | |
$$ | |
A'_1[E] \to B'_1 \quad\text{and}\quad A'_1[E] \to B'_2 | |
$$ | |
The first of these gives a map $J' \to N_1$, $f' \mapsto f'(y_e)$ | |
and the second gives a map $J' \to N_2$, $f' \mapsto f'(z_e)$. | |
A calculation shows that these maps annihilate $(J')^2$. | |
Because the left square of the diagram (involving $c_1$ and $c_2$) | |
commutes we see that these maps agree on $I_1A_1[E]$ as maps into $N_2$. | |
Observe that $B'_1$ is the pushout of $J' \to A'_1[B_1]$ and $J' \to N_1$. | |
Thus, if the maps $J' \to N_1 \to N_2$ and $J' \to N_2$ agree, then we | |
obtain a map $B'_1 \to B'_2$ fitting into the diagram. | |
Thus we let the obstruction be the class of the map | |
$$ | |
J/J^2 \to N_2,\quad f \mapsto f'(z_e) - \nu(f'(y_e)) | |
$$ | |
where $\nu : N_1 \to N_2$ is the given map and where $f' \in J'$ | |
is a lift of $f$. This is well defined by our remarks above. | |
Note that we have the freedom | |
to modify our choices of $z_e$ into $z_e + \delta_{2, e}$ | |
and $y_e$ into $y_e + \delta_{1, e}$ for some $\delta_{i, e} \in N_i$. | |
This will modify the map above into | |
$$ | |
f \mapsto f'(z_e + \delta_{2, e}) - \nu(f'(y_e + \delta_{1, e})) = | |
f'(z_e) - \nu(f'(z_e)) + | |
\sum (\delta_{2, e} - \nu(\delta_{1, e}))\frac{\partial f}{\partial x_e} | |
$$ | |
This means exactly that we are modifying the map $J/J^2 \to N_2$ | |
by the composition $J/J^2 \to \Omega_{A_1[E]/A_1} \otimes B_1 \to N_2$ | |
where the second map sends $\text{d}x_e$ to | |
$\delta_{2, e} - \nu(\delta_{1, e})$. Thus our obstruction is well defined | |
and is zero if and only if a lift exists. | |
\medskip\noindent | |
Part (2) comes from the observation that given two maps | |
$\varphi, \psi : B'_1 \to B'_2$ fitting into the diagram, then | |
$\varphi - \psi$ factors through a map $D : B_1 \to N_2$ which | |
is an $A_1$-derivation: | |
\begin{align*} | |
D(fg) & = \varphi(f'g') - \psi(f'g') \\ | |
& = | |
\varphi(f')\varphi(g') - \psi(f')\psi(g') \\ | |
& = | |
(\varphi(f') - \psi(f'))\varphi(g') + \psi(f')(\varphi(g') - \psi(g')) \\ | |
& = | |
gD(f) + fD(g) | |
\end{align*} | |
Thus $D$ corresponds to a unique $B_1$-linear map | |
$\Omega_{B_1/A_1} \to N_2$. Conversely, given such a linear map | |
we get a derivation $D$ and given a ring map $\psi : B'_1 \to B'_2$ | |
fitting into the diagram | |
the map $\psi + D$ is another ring map fitting into the diagram. | |
\end{proof} | |
\begin{lemma} | |
\label{lemma-choices} | |
If there exists a solution to (\ref{equation-to-solve}), then the set of | |
isomorphism classes of solutions is principal homogeneous under | |
$\Ext^1_B(\NL_{B/A}, N)$. | |
\end{lemma} | |
\begin{proof} | |
We observe right away that given two solutions $B'_1$ and $B'_2$ | |
to (\ref{equation-to-solve}) we obtain by Lemma \ref{lemma-huge-diagram} an | |
obstruction element $o(B'_1, B'_2) \in \Ext^1_B(\NL_{B/A}, N)$ | |
to the existence of a map $B'_1 \to B'_2$. Clearly, this element | |
is the obstruction to the existence of an isomorphism, hence separates | |
the isomorphism classes. To finish the proof it therefore suffices to | |
show that given a solution $B'$ and an element | |
$\xi \in \Ext^1_B(\NL_{B/A}, N)$ | |
we can find a second solution $B'_\xi$ such that | |
$o(B', B'_\xi) = \xi$. | |
\medskip\noindent | |
Let $E = B$ viewed as a set. Consider the surjection $A[E] \to B$ with kernel | |
$J$ used to define the naive cotangent complex by the formula | |
$$ | |
\NL_{B/A} = (J/J^2 \to \Omega_{A[E]/A} \otimes_{A[E]} B) | |
$$ | |
in Algebra, Section \ref{algebra-section-netherlander}. | |
Since $\Omega_{A[E]/A} \otimes B$ is a free $B$-module we have | |
$$ | |
\Ext^1_B(\NL_{B/A}, N) = | |
\frac{\Hom_B(J/J^2, N)} | |
{\Hom_B(\Omega_{A[E]/A} \otimes B, N)} | |
$$ | |
Thus we may represent $\xi$ as the class of a morphism $\delta : J/J^2 \to N$. | |
\medskip\noindent | |
For every $e \in E$ denote $x_e \in A[E]$ the corresponding variable. | |
Choose a lift $y_e \in B'$ of the image of $x_e$ in $B$. | |
These choices determine an $A'$-algebra map $\varphi : A'[E] \to B'$. | |
Let $J' = \Ker(A'[E] \to B)$. Observe that $\varphi$ induces a map | |
$\varphi|_{J'} : J' \to N$ and that $B'$ is the pushout, as in the following | |
diagram | |
$$ | |
\xymatrix{ | |
0 \ar[r] & N \ar[r] & B' \ar[r] & B \ar[r] & 0 \\ | |
0 \ar[r] & J' \ar[u]^{\varphi|_{J'}} \ar[r] & A'[E] \ar[u] \ar[r] & | |
B \ar[u]_{=} \ar[r] & 0 | |
} | |
$$ | |
Let $\psi : J' \to N$ be the sum of the map $\varphi|_{J'}$ and the | |
composition | |
$$ | |
J' \to J'/(J')^2 \to J/J^2 \xrightarrow{\delta} N. | |
$$ | |
Then the pushout along $\psi$ is an other ring extension $B'_\xi$ | |
fitting into a diagram as above. A calculation shows that | |
$o(B', B'_\xi) = \xi$ as desired. | |
\end{proof} | |
\begin{lemma} | |
\label{lemma-extensions-of-algebras} | |
Let $A$ be a ring. Let $B$ be an $A$-algebra. Let $N$ be a $B$-module. | |
The set of isomorphism classes of extensions of $A$-algebras | |
$$ | |
0 \to N \to B' \to B \to 0 | |
$$ | |
where $N$ is an ideal of square zero is canonically bijective to | |
$\Ext^1_B(\NL_{B/A}, N)$. | |
\end{lemma} | |
\begin{proof} | |
To prove this we apply the previous results to the case where | |
(\ref{equation-to-solve}) is given by the diagram | |
$$ | |
\xymatrix{ | |
0 \ar[r] & N \ar[r] & {?} \ar[r] & B \ar[r] & 0 \\ | |
0 \ar[r] & 0 \ar[u] \ar[r] & A \ar[u] \ar[r]^{\text{id}} & A \ar[u] \ar[r] & 0 | |
} | |
$$ | |
Thus our lemma follows from Lemma \ref{lemma-choices} | |
and the fact that there exists a solution, namely $N \oplus B$. | |
(See remark below for a direct construction of the bijection.) | |
\end{proof} | |
\begin{remark} | |
\label{remark-extensions-of-algebras} | |
Let $A \to B$ and $N$ be as in Lemma \ref{lemma-extensions-of-algebras}. | |
Let $\alpha : P \to B$ be a presentation of $B$ over $A$, see | |
Algebra, Section \ref{algebra-section-netherlander}. | |
With $J = \Ker(\alpha)$ the naive cotangent complex $\NL(\alpha)$ | |
associated to $\alpha$ is the complex $J/J^2 \to \Omega_{P/A} \otimes_P B$. | |
We have | |
$$ | |
\Ext^1_B(\NL(\alpha), N) = | |
\Coker\left(\Hom_B(\Omega_{P/A} \otimes_P B, N) \to \Hom_B(J/J^2, N)\right) | |
$$ | |
because $\Omega_{P/A}$ is a free module. | |
Consider a extension $0 \to N \to B' \to B \to 0$ as in the lemma. | |
Since $P$ is a polynomial algebra over $A$ we can | |
lift $\alpha$ to an $A$-algebra map $\alpha' : P' \to B'$. | |
Then $\alpha'|_J : J \to N$ factors as $J \to J/J^2 \to N$ | |
as $N$ has square zero in $B'$. The lemma sends our extension | |
to the class of this map $J/J^2 \to N$ in the displayed cokernel. | |
\end{remark} | |
\begin{lemma} | |
\label{lemma-extensions-of-algebras-functorial} | |
Given ring maps $A \to B \to C$, a $B$-module $M$, a $C$-module $N$, | |
a $B$-linear map $c : M \to N$, and extensions of | |
$A$-algebras with square zero kernels | |
\begin{enumerate} | |
\item[(a)] $0 \to M \to B' \to B \to 0$ corresponding to | |
$\xi \in \Ext^1_B(\NL_{B/A}, M)$, and | |
\item[(b)] $0 \to N \to C' \to C \to 0$ corresponding to | |
$\zeta \in \Ext^1_C(\NL_{C/A}, N)$. | |
\end{enumerate} | |
See Lemma \ref{lemma-extensions-of-algebras}. | |
Then there is an $A$-algebra map $B' \to C'$ compatible with | |
$B \to C$ and $c$ if and only if $\xi$ and $\zeta$ | |
map to the same element of | |
$\Ext^1_B(\NL_{B/A}, N)$. | |
\end{lemma} | |
\begin{proof} | |
The stament makes sense as we have the maps | |
$$ | |
\Ext^1_B(\NL_{B/A}, M) \to \Ext^1_B(\NL_{B/A}, N) | |
$$ | |
using the map $M \to N$ and | |
$$ | |
\Ext^1_C(\NL_{C/A}, N) \to \Ext^1_B(\NL_{C/A}, N) \to \Ext^1_B(\NL_{B/A}, N) | |
$$ | |
where the first arrows uses the restriction map $D(C) \to D(B)$ | |
and the second arrow uses the canonical map of complexes | |
$\NL_{B/A} \to \NL_{C/A}$. The statement of the lemma can be deduced from | |
Lemma \ref{lemma-huge-diagram} applied to the diagram | |
$$ | |
\xymatrix{ | |
& 0 \ar[r] & N \ar[r] & C' \ar[r] & C \ar[r] & 0 \\ | |
& 0 \ar[r]|\hole & 0 \ar[u] \ar[r] & | |
A \ar[u] \ar[r]|\hole & A \ar[u] \ar[r] & 0 \\ | |
0 \ar[r] & M \ar[ruu] \ar[r] & B' \ar[r] & B \ar[ruu] \ar[r] & 0 \\ | |
0 \ar[r] & 0 \ar[ruu]|\hole \ar[u] \ar[r] & | |
A \ar[ruu]|\hole \ar[u] \ar[r] & A \ar[ruu]|\hole \ar[u] \ar[r] & 0 | |
} | |
$$ | |
and a compatibility between the constructions in the proofs | |
of Lemmas \ref{lemma-extensions-of-algebras} and \ref{lemma-huge-diagram} | |
whose statement and proof we omit. (See remark below for a direct argument.) | |
\end{proof} | |
\begin{remark} | |
\label{remark-extensions-of-algebras-functorial} | |
Let $A \to B \to C$, $M$, $N$, $c : M \to N$, | |
$0 \to M \to B' \to B \to 0$, $\xi \in \Ext^1_B(\NL_{B/A}, M)$, | |
$0 \to N \to C' \to C \to 0$, and $\zeta \in \Ext^1_C(\NL_{C/A}, N)$ be as in | |
Lemma \ref{lemma-extensions-of-algebras-functorial}. | |
Using pushout along $c : M \to N$ we can construct an extension | |
$$ | |
\xymatrix{ | |
0 \ar[r] & N \ar[r] & B'_1 \ar[r] & B \ar[r] & 0 \\ | |
0 \ar[r] & M \ar[u]^c \ar[r] & B' \ar[u] \ar[r] & B \ar[u] \ar[r] & 0 | |
} | |
$$ | |
by setting $B'_1 = (N \times B')/M$ where $M$ is antidiagonally | |
embedded. Using pullback along $B \to C$ we can construct an extension | |
$$ | |
\xymatrix{ | |
0 \ar[r] & N \ar[r] & C' \ar[r] & C \ar[r] & 0 \\ | |
0 \ar[r] & N \ar[u] \ar[r] & B'_2 \ar[u] \ar[r] & B \ar[u] \ar[r] & 0 | |
} | |
$$ | |
by setting $B'_2 = C' \times_C B$ (fibre product of rings). A simple diagram | |
chase tells us that there exists an $A$-algebra map $B' \to C'$ | |
compatible with $B \to C$ and $c$ if and only if $B'_1$ is isomorphic | |
to $B'_2$ as $A$-algebra extensions of $B$ by $N$. Thus to see | |
Lemma \ref{lemma-extensions-of-algebras-functorial} | |
is true, it suffices to show that $B'_1$ corresponds via the bijection of | |
Lemma \ref{lemma-extensions-of-algebras} | |
to the image of $\xi$ by the map | |
$\Ext^1_B(\NL_{B/A}, M) \to \Ext^1_B(\NL_{B/A}, N)$ | |
and that $B'_2$ correspond to the image of $\zeta$ by the map | |
$\Ext^1_C(\NL_{C/A}, N) \to \Ext^1_B(\NL_{B/A}, N)$. | |
The first of these two statements is immediate from the construction | |
of the class in Remark \ref{remark-extensions-of-algebras}. | |
For the second, choose a commutative diagram | |
$$ | |
\xymatrix{ | |
Q \ar[r]_\beta & C \\ | |
P \ar[u]^\varphi \ar[r]^\alpha & B \ar[u] | |
} | |
$$ | |
of $A$-algebras, such that $\alpha$ is a presentation of $B$ over $A$ | |
and $\beta$ is a presentation of $C$ over $A$. See | |
Remark \ref{remark-extensions-of-algebras} and references therein. | |
Set $J = \Ker(\alpha)$ and $K = \Ker(\beta)$. The map $\varphi$ | |
induces a map of complexes $\NL(\alpha) \to \NL(\beta)$ | |
and in particular $\bar\varphi : J/J^2 \to K/K^2$. | |
Choose $A$-algebra homomorphism $\beta' : Q \to C'$ | |
which is a lift of $\beta$. Then | |
$\alpha' = (\beta' \circ \varphi, \alpha) : P \to B'_2 = C' \times_C B$ | |
is a lift of $\alpha$. With these choices the composition of the map | |
$K/K^2 \to N$ induced by $\beta'$ and the map $\bar\varphi : J/J^2 \to K/K^2$ | |
is the restriction of $\alpha'$ to $J/J^2$. | |
Unwinding the constructions of our classes in | |
Remark \ref{remark-extensions-of-algebras} | |
this indeed shows that | |
$B'_2$ correspond to the image of $\zeta$ by the map | |
$\Ext^1_C(\NL_{C/A}, N) \to \Ext^1_B(\NL_{B/A}, N)$. | |
\end{remark} | |
\begin{lemma} | |
\label{lemma-parametrize-solutions} | |
Let $0 \to I \to A' \to A \to 0$, $A \to B$, and $c : I \to N$ be as in | |
(\ref{equation-to-solve}). Denote $\xi \in \Ext^1_A(\NL_{A/A'}, I)$ | |
the element corresponding to the extension $A'$ of $A$ by $I$ via | |
Lemma \ref{lemma-extensions-of-algebras}. The set of isomorphism | |
classes of solutions is canonically bijective to the fibre of | |
$$ | |
\Ext^1_B(\NL_{B/A'}, N) \to \Ext^1_A(\NL_{A'/A}, N) | |
$$ | |
over the image of $\xi$. | |
\end{lemma} | |
\begin{proof} | |
By Lemma \ref{lemma-extensions-of-algebras} applied to $A' \to B$ and | |
the $B$-module $N$ we see that elements $\zeta$ of $\Ext^1_B(\NL_{B/A'}, N)$ | |
parametrize extensions $0 \to N \to B' \to B \to 0$ of $A'$-algebras. | |
By Lemma \ref{lemma-extensions-of-algebras-functorial} applied | |
to $A' \to A \to B$ and $c : I \to N$ we see that there is an $A'$-algebra | |
map $A' \to B'$ compatible with $c$ and $A \to B$ if and only if | |
$\zeta$ maps to $\xi$. Of course this is the same thing as saying $B'$ is a | |
solution of (\ref{equation-to-solve}). | |
\end{proof} | |
\begin{remark} | |
\label{remark-parametrize-solutions} | |
Observe that in the situation of Lemma \ref{lemma-parametrize-solutions} | |
we have | |
$$ | |
\Ext^1_A(\NL_{A'/A}, N) = | |
\Ext^1_B(\NL_{A'/A} \otimes_A^\mathbf{L} B, N) = | |
\Ext^1_B(\NL_{A'/A} \otimes_A B, N) | |
$$ | |
The first equality by | |
More on Algebra, Lemma \ref{more-algebra-lemma-tensor-hom-adjoint} and | |
the second by | |
More on Algebra, Lemma \ref{more-algebra-lemma-tensor-NL}. | |
We have maps of complexes | |
$$ | |
\NL_{A'/A} \otimes_A B \to \NL_{B/A'} \to \NL_{B/A} | |
$$ | |
which is close to being a distinguished triangle, see | |
Algebra, Lemma \ref{algebra-lemma-exact-sequence-NL}. | |
If it were a distinguished triangle we would conclude | |
that the image of $\xi$ in $\Ext^2_B(\NL_{B/A}, N)$ | |
would be the obstruction to the existence of a solution to | |
(\ref{equation-to-solve}). | |
\end{remark} | |
\noindent | |
If our ring map $A \to B$ is a local complete intersection, then there | |
is a solutuion. This is a kind of lifting result; observe that | |
for syntomic ring maps we have proved a rather strong lifting result in | |
Smoothing Ring Maps, Proposition \ref{smoothing-proposition-lift-smooth}. | |
\begin{lemma} | |
\label{lemma-existence-lci} | |
If $A \to B$ is a local complete intersection ring map, then | |
there exists a solution to (\ref{equation-to-solve}). | |
\end{lemma} | |
\begin{proof}[First proof] | |
Write $B = A[x_1, \ldots, x_n]/J$. By More on Algebra, Definition | |
\ref{more-algebra-definition-local-complete-intersection} | |
the ideal $J$ is Koszul-regular. This implies $J$ is $H_1$-regular and | |
quasi-regular, see More on Algebra, Section \ref{more-algebra-section-ideals}. | |
Let $J' \subset A'[x_1, \ldots, x_n]$ | |
be the inverse image of $J$. Denote $I[x_1, \ldots, x_n]$ the | |
kernel of $A'[x_1, \ldots, x_n] \to A[x_1, \ldots, x_n]$. | |
By More on Algebra, Lemma | |
\ref{more-algebra-lemma-conormal-sequence-H1-regular-ideal} we have | |
$I[x_1, \ldots, x_n] \cap (J')^2 = J'I[x_1, \ldots, x_n] = | |
JI[x_1, \ldots, x_n]$. Hence we obtain a short exact sequence | |
$$ | |
0 \to I \otimes_A B \to J'/(J')^2 \to J/J^2 \to 0 | |
$$ | |
Since $J/J^2$ is projective (More on Algebra, Lemma | |
\ref{more-algebra-lemma-quasi-regular-ideal-finite-projective}) | |
we can choose a splitting of this sequence | |
$$ | |
J'/(J')^2 = I \otimes_A B \oplus J/J^2 | |
$$ | |
Let $(J')^2 \subset J'' \subset J'$ be the elements which map to the | |
second summand in the decomposition above. Then | |
$$ | |
0 \to I \otimes_A B \to A'[x_1, \ldots, x_n]/J'' \to B \to 0 | |
$$ | |
is a solution to (\ref{equation-to-solve}) with $N = I \otimes_A B$. | |
The general case is obtained by doing a pushout along the given | |
map $I \otimes_A B \to N$. | |
\end{proof} | |
\begin{proof}[Second proof] | |
Please read Remark \ref{remark-parametrize-solutions} | |
before reading this proof. By | |
More on Algebra, Lemma \ref{more-algebra-lemma-transitive-lci-at-end} | |
the maps $\NL_{A'/A} \otimes_A B \to \NL_{B/A'} \to \NL_{B/A}$ | |
do form a distinguished triangle in $D(B)$. | |
Hence it suffices to show that $\Ext^2_{B/A}(\NL_{B/A}, N)$ vanishes. | |
By More on Algebra, Lemma \ref{more-algebra-lemma-lci-NL} | |
the complex $\NL_{B/A}$ is perfect of tor-amplitude in | |
$[-1, 0]$. This implies our $\Ext^2$ vanishes for example | |
by More on Algebra, Lemma \ref{more-algebra-lemma-splitting-unique} part (1). | |
\end{proof} | |
\section{Thickenings of ringed spaces} | |
\label{section-thickenings-spaces} | |
\noindent | |
In the following few sections we will use the following notions: | |
\begin{enumerate} | |
\item A sheaf of ideals $\mathcal{I} \subset \mathcal{O}_{X'}$ on | |
a ringed space $(X', \mathcal{O}_{X'})$ is {\it locally nilpotent} | |
if any local section of $\mathcal{I}$ is locally nilpotent. | |
Compare with Algebra, Item \ref{algebra-item-ideal-locally-nilpotent}. | |
\item A {\it thickening} of ringed spaces is a morphism | |
$i : (X, \mathcal{O}_X) \to (X', \mathcal{O}_{X'})$ of ringed spaces | |
such that | |
\begin{enumerate} | |
\item $i$ induces a homeomorphism $X \to X'$, | |
\item the map $i^\sharp : \mathcal{O}_{X'} \to i_*\mathcal{O}_X$ | |
is surjective, and | |
\item the kernel of $i^\sharp$ is a locally nilpotent sheaf of ideals. | |
\end{enumerate} | |
\item A {\it first order thickening} of ringed spaces is a thickening | |
$i : (X, \mathcal{O}_X) \to (X', \mathcal{O}_{X'})$ of ringed spaces | |
such that $\Ker(i^\sharp)$ has square zero. | |
\item It is clear how to define {\it morphisms of thickenings}, | |
{\it morphisms of thickenings over a base ringed space}, etc. | |
\end{enumerate} | |
If $i : (X, \mathcal{O}_X) \to (X', \mathcal{O}_{X'})$ is a thickening | |
of ringed spaces then we identify the underlying topological spaces | |
and think of $\mathcal{O}_X$, $\mathcal{O}_{X'}$, and | |
$\mathcal{I} = \Ker(i^\sharp)$ as sheaves on $X = X'$. We obtain | |
a short exact sequence | |
$$ | |
0 \to \mathcal{I} \to \mathcal{O}_{X'} \to \mathcal{O}_X \to 0 | |
$$ | |
of $\mathcal{O}_{X'}$-modules. By | |
Modules, Lemma \ref{modules-lemma-i-star-equivalence} | |
the category of $\mathcal{O}_X$-modules is equivalent to the category | |
of $\mathcal{O}_{X'}$-modules annihilated by $\mathcal{I}$. In particular, | |
if $i$ is a first order thickening, then | |
$\mathcal{I}$ is a $\mathcal{O}_X$-module. | |
\begin{situation} | |
\label{situation-morphism-thickenings} | |
A morphism of thickenings $(f, f')$ is given by a commutative diagram | |
\begin{equation} | |
\label{equation-morphism-thickenings} | |
\vcenter{ | |
\xymatrix{ | |
(X, \mathcal{O}_X) \ar[r]_i \ar[d]_f & (X', \mathcal{O}_{X'}) \ar[d]^{f'} \\ | |
(S, \mathcal{O}_S) \ar[r]^t & (S', \mathcal{O}_{S'}) | |
} | |
} | |
\end{equation} | |
of ringed spaces whose horizontal arrows are thickenings. In this | |
situation we set | |
$\mathcal{I} = \Ker(i^\sharp) \subset \mathcal{O}_{X'}$ and | |
$\mathcal{J} = \Ker(t^\sharp) \subset \mathcal{O}_{S'}$. | |
As $f = f'$ on underlying topological spaces we will identify | |
the (topological) pullback functors $f^{-1}$ and $(f')^{-1}$. | |
Observe that $(f')^\sharp : f^{-1}\mathcal{O}_{S'} \to \mathcal{O}_{X'}$ | |
induces in particular a map $f^{-1}\mathcal{J} \to \mathcal{I}$ | |
and therefore a map of $\mathcal{O}_{X'}$-modules | |
$$ | |
(f')^*\mathcal{J} \longrightarrow \mathcal{I} | |
$$ | |
If $i$ and $t$ are first order thickenings, then | |
$(f')^*\mathcal{J} = f^*\mathcal{J}$ and the map above becomes a | |
map $f^*\mathcal{J} \to \mathcal{I}$. | |
\end{situation} | |
\begin{definition} | |
\label{definition-strict-morphism-thickenings} | |
In Situation \ref{situation-morphism-thickenings} we say that $(f, f')$ is a | |
{\it strict morphism of thickenings} | |
if the map $(f')^*\mathcal{J} \longrightarrow \mathcal{I}$ is surjective. | |
\end{definition} | |
\noindent | |
The following lemma in particular shows that a morphism | |
$(f, f') : (X \subset X') \to (S \subset S')$ of | |
thickenings of schemes is strict if and only if $X = S \times_{S'} X'$. | |
\begin{lemma} | |
\label{lemma-strict-morphism-thickenings} | |
In Situation \ref{situation-morphism-thickenings} the morphism $(f, f')$ | |
is a strict morphism of thickenings if and only if | |
(\ref{equation-morphism-thickenings}) is cartesian in the category | |
of ringed spaces. | |
\end{lemma} | |
\begin{proof} | |
Omitted. | |
\end{proof} | |
\section{Modules on first order thickenings of ringed spaces} | |
\label{section-modules-thickenings} | |
\noindent | |
In this section we discuss some preliminaries to the deformation theory | |
of modules. Let $i : (X, \mathcal{O}_X) \to (X', \mathcal{O}_{X'})$ | |
be a first order thickening of ringed spaces. We will freely use the notation | |
introduced in Section \ref{section-thickenings-spaces}, in particular we will | |
identify the underlying topological spaces. | |
In this section we consider short exact sequences | |
\begin{equation} | |
\label{equation-extension} | |
0 \to \mathcal{K} \to \mathcal{F}' \to \mathcal{F} \to 0 | |
\end{equation} | |
of $\mathcal{O}_{X'}$-modules, where $\mathcal{F}$, $\mathcal{K}$ are | |
$\mathcal{O}_X$-modules and $\mathcal{F}'$ is an $\mathcal{O}_{X'}$-module. | |
In this situation we have a canonical $\mathcal{O}_X$-module map | |
$$ | |
c_{\mathcal{F}'} : | |
\mathcal{I} \otimes_{\mathcal{O}_X} \mathcal{F} | |
\longrightarrow | |
\mathcal{K} | |
$$ | |
where $\mathcal{I} = \Ker(i^\sharp)$. | |
Namely, given local sections $f$ of $\mathcal{I}$ and $s$ | |
of $\mathcal{F}$ we set $c_{\mathcal{F}'}(f \otimes s) = fs'$ | |
where $s'$ is a local section of $\mathcal{F}'$ lifting $s$. | |
\begin{lemma} | |
\label{lemma-inf-map} | |
Let $i : (X, \mathcal{O}_X) \to (X', \mathcal{O}_{X'})$ | |
be a first order thickening of ringed spaces. Assume given | |
extensions | |
$$ | |
0 \to \mathcal{K} \to \mathcal{F}' \to \mathcal{F} \to 0 | |
\quad\text{and}\quad | |
0 \to \mathcal{L} \to \mathcal{G}' \to \mathcal{G} \to 0 | |
$$ | |
as in (\ref{equation-extension}) | |
and maps $\varphi : \mathcal{F} \to \mathcal{G}$ and | |
$\psi : \mathcal{K} \to \mathcal{L}$. | |
\begin{enumerate} | |
\item If there exists an $\mathcal{O}_{X'}$-module | |
map $\varphi' : \mathcal{F}' \to \mathcal{G}'$ compatible with $\varphi$ | |
and $\psi$, then the diagram | |
$$ | |
\xymatrix{ | |
\mathcal{I} \otimes_{\mathcal{O}_X} \mathcal{F} | |
\ar[r]_-{c_{\mathcal{F}'}} \ar[d]_{1 \otimes \varphi} & | |
\mathcal{K} \ar[d]^\psi \\ | |
\mathcal{I} \otimes_{\mathcal{O}_X} \mathcal{G} | |
\ar[r]^-{c_{\mathcal{G}'}} & | |
\mathcal{L} | |
} | |
$$ | |
is commutative. | |
\item The set of $\mathcal{O}_{X'}$-module | |
maps $\varphi' : \mathcal{F}' \to \mathcal{G}'$ compatible with $\varphi$ | |
and $\psi$ is, if nonempty, a principal homogeneous space under | |
$\Hom_{\mathcal{O}_X}(\mathcal{F}, \mathcal{L})$. | |
\end{enumerate} | |
\end{lemma} | |
\begin{proof} | |
Part (1) is immediate from the description of the maps. | |
For (2), if $\varphi'$ and $\varphi''$ are two maps | |
$\mathcal{F}' \to \mathcal{G}'$ compatible with $\varphi$ | |
and $\psi$, then $\varphi' - \varphi''$ factors as | |
$$ | |
\mathcal{F}' \to \mathcal{F} \to \mathcal{L} \to \mathcal{G}' | |
$$ | |
The map in the middle comes from a unique element of | |
$\Hom_{\mathcal{O}_X}(\mathcal{F}, \mathcal{L})$ by | |
Modules, Lemma \ref{modules-lemma-i-star-equivalence}. | |
Conversely, given an element $\alpha$ of this group we can add the | |
composition (as displayed above with $\alpha$ in the middle) | |
to $\varphi'$. Some details omitted. | |
\end{proof} | |
\begin{lemma} | |
\label{lemma-inf-obs-map} | |
Let $i : (X, \mathcal{O}_X) \to (X', \mathcal{O}_{X'})$ | |
be a first order thickening of ringed spaces. Assume given | |
extensions | |
$$ | |
0 \to \mathcal{K} \to \mathcal{F}' \to \mathcal{F} \to 0 | |
\quad\text{and}\quad | |
0 \to \mathcal{L} \to \mathcal{G}' \to \mathcal{G} \to 0 | |
$$ | |
as in (\ref{equation-extension}) | |
and maps $\varphi : \mathcal{F} \to \mathcal{G}$ and | |
$\psi : \mathcal{K} \to \mathcal{L}$. Assume the diagram | |
$$ | |
\xymatrix{ | |
\mathcal{I} \otimes_{\mathcal{O}_X} \mathcal{F} | |
\ar[r]_-{c_{\mathcal{F}'}} \ar[d]_{1 \otimes \varphi} & | |
\mathcal{K} \ar[d]^\psi \\ | |
\mathcal{I} \otimes_{\mathcal{O}_X} \mathcal{G} | |
\ar[r]^-{c_{\mathcal{G}'}} & | |
\mathcal{L} | |
} | |
$$ | |
is commutative. Then there exists an element | |
$$ | |
o(\varphi, \psi) \in | |
\Ext^1_{\mathcal{O}_X}(\mathcal{F}, \mathcal{L}) | |
$$ | |
whose vanishing is a necessary and sufficient condition for the existence | |
of a map $\varphi' : \mathcal{F}' \to \mathcal{G}'$ compatible with | |
$\varphi$ and $\psi$. | |
\end{lemma} | |
\begin{proof} | |
We can construct explicitly an extension | |
$$ | |
0 \to \mathcal{L} \to \mathcal{H} \to \mathcal{F} \to 0 | |
$$ | |
by taking $\mathcal{H}$ to be the cohomology of the complex | |
$$ | |
\mathcal{K} | |
\xrightarrow{1, - \psi} | |
\mathcal{F}' \oplus \mathcal{G}' \xrightarrow{\varphi, 1} | |
\mathcal{G} | |
$$ | |
in the middle (with obvious notation). A calculation with local sections | |
using the assumption that the diagram of the lemma commutes | |
shows that $\mathcal{H}$ is annihilated by $\mathcal{I}$. Hence | |
$\mathcal{H}$ defines a class in | |
$$ | |
\Ext^1_{\mathcal{O}_X}(\mathcal{F}, \mathcal{L}) | |
\subset | |
\Ext^1_{\mathcal{O}_{X'}}(\mathcal{F}, \mathcal{L}) | |
$$ | |
Finally, the class of $\mathcal{H}$ is the difference of the pushout | |
of the extension $\mathcal{F}'$ via $\psi$ and the pullback | |
of the extension $\mathcal{G}'$ via $\varphi$ (calculations omitted). | |
Thus the vanishing of the class of $\mathcal{H}$ is equivalent to the | |
existence of a commutative diagram | |
$$ | |
\xymatrix{ | |
0 \ar[r] & | |
\mathcal{K} \ar[r] \ar[d]_{\psi} & | |
\mathcal{F}' \ar[r] \ar[d]_{\varphi'} & | |
\mathcal{F} \ar[r] \ar[d]_\varphi & 0\\ | |
0 \ar[r] & | |
\mathcal{L} \ar[r] & | |
\mathcal{G}' \ar[r] & | |
\mathcal{G} \ar[r] & 0 | |
} | |
$$ | |
as desired. | |
\end{proof} | |
\begin{lemma} | |
\label{lemma-inf-ext} | |
Let $i : (X, \mathcal{O}_X) \to (X', \mathcal{O}_{X'})$ be a first order | |
thickening of ringed spaces. | |
Assume given $\mathcal{O}_X$-modules $\mathcal{F}$, $\mathcal{K}$ | |
and an $\mathcal{O}_X$-linear map | |
$c : \mathcal{I} \otimes_{\mathcal{O}_X} \mathcal{F} \to \mathcal{K}$. | |
If there exists a sequence (\ref{equation-extension}) with | |
$c_{\mathcal{F}'} = c$ then the set of isomorphism classes of these | |
extensions is principal homogeneous under | |
$\Ext^1_{\mathcal{O}_X}(\mathcal{F}, \mathcal{K})$. | |
\end{lemma} | |
\begin{proof} | |
Assume given extensions | |
$$ | |
0 \to \mathcal{K} \to \mathcal{F}'_1 \to \mathcal{F} \to 0 | |
\quad\text{and}\quad | |
0 \to \mathcal{K} \to \mathcal{F}'_2 \to \mathcal{F} \to 0 | |
$$ | |
with $c_{\mathcal{F}'_1} = c_{\mathcal{F}'_2} = c$. Then the difference | |
(in the extension group, see | |
Homology, Section \ref{homology-section-extensions}) | |
is an extension | |
$$ | |
0 \to \mathcal{K} \to \mathcal{E} \to \mathcal{F} \to 0 | |
$$ | |
where $\mathcal{E}$ is annihilated by $\mathcal{I}$ (local computation | |
omitted). Hence the sequence is an extension of $\mathcal{O}_X$-modules, | |
see Modules, Lemma \ref{modules-lemma-i-star-equivalence}. | |
Conversely, given such an extension $\mathcal{E}$ we can add the extension | |
$\mathcal{E}$ to the $\mathcal{O}_{X'}$-extension $\mathcal{F}'$ without | |
affecting the map $c_{\mathcal{F}'}$. Some details omitted. | |
\end{proof} | |
\begin{lemma} | |
\label{lemma-inf-obs-ext} | |
Let $i : (X, \mathcal{O}_X) \to (X', \mathcal{O}_{X'})$ | |
be a first order thickening of ringed spaces. Assume given | |
$\mathcal{O}_X$-modules $\mathcal{F}$, $\mathcal{K}$ | |
and an $\mathcal{O}_X$-linear map | |
$c : \mathcal{I} \otimes_{\mathcal{O}_X} \mathcal{F} \to \mathcal{K}$. | |
Then there exists an element | |
$$ | |
o(\mathcal{F}, \mathcal{K}, c) \in | |
\Ext^2_{\mathcal{O}_X}(\mathcal{F}, \mathcal{K}) | |
$$ | |
whose vanishing is a necessary and sufficient condition for the existence | |
of a sequence (\ref{equation-extension}) with $c_{\mathcal{F}'} = c$. | |
\end{lemma} | |
\begin{proof} | |
We first show that if $\mathcal{K}$ is an injective $\mathcal{O}_X$-module, | |
then there does exist a sequence (\ref{equation-extension}) with | |
$c_{\mathcal{F}'} = c$. To do this, choose a flat | |
$\mathcal{O}_{X'}$-module $\mathcal{H}'$ and a surjection | |
$\mathcal{H}' \to \mathcal{F}$ | |
(Modules, Lemma \ref{modules-lemma-module-quotient-flat}). | |
Let $\mathcal{J} \subset \mathcal{H}'$ be the kernel. Since $\mathcal{H}'$ | |
is flat we have | |
$$ | |
\mathcal{I} \otimes_{\mathcal{O}_{X'}} \mathcal{H}' = | |
\mathcal{I}\mathcal{H}' | |
\subset \mathcal{J} \subset \mathcal{H}' | |
$$ | |
Observe that the map | |
$$ | |
\mathcal{I}\mathcal{H}' = | |
\mathcal{I} \otimes_{\mathcal{O}_{X'}} \mathcal{H}' | |
\longrightarrow | |
\mathcal{I} \otimes_{\mathcal{O}_{X'}} \mathcal{F} = | |
\mathcal{I} \otimes_{\mathcal{O}_X} \mathcal{F} | |
$$ | |
annihilates $\mathcal{I}\mathcal{J}$. Namely, if $f$ is a local section | |
of $\mathcal{I}$ and $s$ is a local section of $\mathcal{H}$, then | |
$fs$ is mapped to $f \otimes \overline{s}$ where $\overline{s}$ is | |
the image of $s$ in $\mathcal{F}$. Thus we obtain | |
$$ | |
\xymatrix{ | |
\mathcal{I}\mathcal{H}'/\mathcal{I}\mathcal{J} | |
\ar@{^{(}->}[r] \ar[d] & | |
\mathcal{J}/\mathcal{I}\mathcal{J} \ar@{..>}[d]_\gamma \\ | |
\mathcal{I} \otimes_{\mathcal{O}_X} \mathcal{F} \ar[r]^-c & | |
\mathcal{K} | |
} | |
$$ | |
a diagram of $\mathcal{O}_X$-modules. If $\mathcal{K}$ is injective | |
as an $\mathcal{O}_X$-module, then we obtain the dotted arrow. | |
Denote $\gamma' : \mathcal{J} \to \mathcal{K}$ the composition | |
of $\gamma$ with $\mathcal{J} \to \mathcal{J}/\mathcal{I}\mathcal{J}$. | |
A local calculation shows the pushout | |
$$ | |
\xymatrix{ | |
0 \ar[r] & | |
\mathcal{J} \ar[r] \ar[d]_{\gamma'} & | |
\mathcal{H}' \ar[r] \ar[d] & | |
\mathcal{F} \ar[r] \ar@{=}[d] & | |
0 \\ | |
0 \ar[r] & | |
\mathcal{K} \ar[r] & | |
\mathcal{F}' \ar[r] & | |
\mathcal{F} \ar[r] & | |
0 | |
} | |
$$ | |
is a solution to the problem posed by the lemma. | |
\medskip\noindent | |
General case. Choose an embedding $\mathcal{K} \subset \mathcal{K}'$ | |
with $\mathcal{K}'$ an injective $\mathcal{O}_X$-module. Let $\mathcal{Q}$ | |
be the quotient, so that we have an exact sequence | |
$$ | |
0 \to \mathcal{K} \to \mathcal{K}' \to \mathcal{Q} \to 0 | |
$$ | |
Denote | |
$c' : \mathcal{I} \otimes_{\mathcal{O}_X} \mathcal{F} \to \mathcal{K}'$ | |
be the composition. By the paragraph above there exists a sequence | |
$$ | |
0 \to \mathcal{K}' \to \mathcal{E}' \to \mathcal{F} \to 0 | |
$$ | |
as in (\ref{equation-extension}) with $c_{\mathcal{E}'} = c'$. | |
Note that $c'$ composed with the map $\mathcal{K}' \to \mathcal{Q}$ | |
is zero, hence the pushout of $\mathcal{E}'$ by | |
$\mathcal{K}' \to \mathcal{Q}$ is an extension | |
$$ | |
0 \to \mathcal{Q} \to \mathcal{D}' \to \mathcal{F} \to 0 | |
$$ | |
as in (\ref{equation-extension}) with $c_{\mathcal{D}'} = 0$. | |
This means exactly that $\mathcal{D}'$ is annihilated by | |
$\mathcal{I}$, in other words, the $\mathcal{D}'$ is an extension | |
of $\mathcal{O}_X$-modules, i.e., defines an element | |
$$ | |
o(\mathcal{F}, \mathcal{K}, c) \in | |
\Ext^1_{\mathcal{O}_X}(\mathcal{F}, \mathcal{Q}) = | |
\Ext^2_{\mathcal{O}_X}(\mathcal{F}, \mathcal{K}) | |
$$ | |
(the equality holds by the long exact cohomology sequence associated | |
to the exact sequence above and the vanishing of higher ext groups | |
into the injective module $\mathcal{K}'$). If | |
$o(\mathcal{F}, \mathcal{K}, c) = 0$, then we can choose a splitting | |
$s : \mathcal{F} \to \mathcal{D}'$ and we can set | |
$$ | |
\mathcal{F}' = \Ker(\mathcal{E}' \to \mathcal{D}'/s(\mathcal{F})) | |
$$ | |
so that we obtain the following diagram | |
$$ | |
\xymatrix{ | |
0 \ar[r] & | |
\mathcal{K} \ar[r] \ar[d] & | |
\mathcal{F}' \ar[r] \ar[d] & | |
\mathcal{F} \ar[r] \ar@{=}[d] & | |
0 \\ | |
0 \ar[r] & | |
\mathcal{K}' \ar[r] & | |
\mathcal{E}' \ar[r] & | |
\mathcal{F} \ar[r] & 0 | |
} | |
$$ | |
with exact rows which shows that $c_{\mathcal{F}'} = c$. Conversely, if | |
$\mathcal{F}'$ exists, then the pushout of $\mathcal{F}'$ by the map | |
$\mathcal{K} \to \mathcal{K}'$ is isomorphic to $\mathcal{E}'$ by | |
Lemma \ref{lemma-inf-ext} and the vanishing of higher ext groups | |
into the injective module $\mathcal{K}'$. This gives a diagram | |
as above, which implies that $\mathcal{D}'$ is split as an extension, i.e., | |
the class $o(\mathcal{F}, \mathcal{K}, c)$ is zero. | |
\end{proof} | |
\begin{remark} | |
\label{remark-trivial-thickening} | |
Let $(X, \mathcal{O}_X)$ be a ringed space. A first order thickening | |
$i : (X, \mathcal{O}_X) \to (X', \mathcal{O}_{X'})$ is said | |
to be {\it trivial} if there exists a morphism of ringed spaces | |
$\pi : (X', \mathcal{O}_{X'}) \to (X, \mathcal{O}_X)$ which is a | |
left inverse to $i$. The choice of such a morphism | |
$\pi$ is called a {\it trivialization} of the first order thickening. | |
Given $\pi$ we obtain a splitting | |
\begin{equation} | |
\label{equation-splitting} | |
\mathcal{O}_{X'} = \mathcal{O}_X \oplus \mathcal{I} | |
\end{equation} | |
as sheaves of algebras on $X$ by using $\pi^\sharp$ to split the surjection | |
$\mathcal{O}_{X'} \to \mathcal{O}_X$. Conversely, such a splitting determines | |
a morphism $\pi$. The category of trivialized first order thickenings of | |
$(X, \mathcal{O}_X)$ is equivalent to the category of | |
$\mathcal{O}_X$-modules. | |
\end{remark} | |
\begin{remark} | |
\label{remark-trivial-extension} | |
Let $i : (X, \mathcal{O}_X) \to (X', \mathcal{O}_{X'})$ | |
be a trivial first order thickening of ringed spaces | |
and let $\pi : (X', \mathcal{O}_{X'}) \to (X, \mathcal{O}_X)$ | |
be a trivialization. Then given any triple | |
$(\mathcal{F}, \mathcal{K}, c)$ consisting of a pair of | |
$\mathcal{O}_X$-modules and a map | |
$c : \mathcal{I} \otimes_{\mathcal{O}_X} \mathcal{F} \to \mathcal{K}$ | |
we may set | |
$$ | |
\mathcal{F}'_{c, triv} = \mathcal{F} \oplus \mathcal{K} | |
$$ | |
and use the splitting (\ref{equation-splitting}) associated to $\pi$ | |
and the map $c$ to define the $\mathcal{O}_{X'}$-module structure | |
and obtain an extension (\ref{equation-extension}). We will call | |
$\mathcal{F}'_{c, triv}$ the {\it trivial extension} of $\mathcal{F}$ | |
by $\mathcal{K}$ corresponding | |
to $c$ and the trivialization $\pi$. Given any extension | |
$\mathcal{F}'$ as in (\ref{equation-extension}) we can use | |
$\pi^\sharp : \mathcal{O}_X \to \mathcal{O}_{X'}$ to think of $\mathcal{F}'$ | |
as an $\mathcal{O}_X$-module extension, hence a class $\xi_{\mathcal{F}'}$ | |
in $\Ext^1_{\mathcal{O}_X}(\mathcal{F}, \mathcal{K})$. | |
Lemma \ref{lemma-inf-ext} assures that | |
$\mathcal{F}' \mapsto \xi_{\mathcal{F}'}$ | |
induces a bijection | |
$$ | |
\left\{ | |
\begin{matrix} | |
\text{isomorphism classes of extensions}\\ | |
\mathcal{F}'\text{ as in (\ref{equation-extension}) with }c = c_{\mathcal{F}'} | |
\end{matrix} | |
\right\} | |
\longrightarrow | |
\Ext^1_{\mathcal{O}_X}(\mathcal{F}, \mathcal{K}) | |
$$ | |
Moreover, the trivial extension $\mathcal{F}'_{c, triv}$ maps to the zero class. | |
\end{remark} | |
\begin{remark} | |
\label{remark-extension-functorial} | |
Let $(X, \mathcal{O}_X)$ be a ringed space. Let | |
$(X, \mathcal{O}_X) \to (X'_i, \mathcal{O}_{X'_i})$, $i = 1, 2$ | |
be first order thickenings with ideal sheaves $\mathcal{I}_i$. | |
Let $h : (X'_1, \mathcal{O}_{X'_1}) \to (X'_2, \mathcal{O}_{X'_2})$ | |
be a morphism of first order thickenings of $(X, \mathcal{O}_X)$. | |
Picture | |
$$ | |
\xymatrix{ | |
& (X, \mathcal{O}_X) \ar[ld] \ar[rd] & \\ | |
(X'_1, \mathcal{O}_{X'_1}) \ar[rr]^h & & | |
(X'_2, \mathcal{O}_{X'_2}) | |
} | |
$$ | |
Observe that $h^\sharp : \mathcal{O}_{X'_2} \to \mathcal{O}_{X'_1}$ | |
in particular induces an $\mathcal{O}_X$-module map | |
$\mathcal{I}_2 \to \mathcal{I}_1$. | |
Let $\mathcal{F}$ be an | |
$\mathcal{O}_X$-module. Let $(\mathcal{K}_i, c_i)$, $i = 1, 2$ be a pair | |
consisting of an $\mathcal{O}_X$-module $\mathcal{K}_i$ and a map | |
$c_i : \mathcal{I}_i \otimes_{\mathcal{O}_X} \mathcal{F} \to | |
\mathcal{K}_i$. Assume furthermore given a map | |
of $\mathcal{O}_X$-modules $\mathcal{K}_2 \to \mathcal{K}_1$ | |
such that | |
$$ | |
\xymatrix{ | |
\mathcal{I}_2 \otimes_{\mathcal{O}_X} \mathcal{F} | |
\ar[r]_-{c_2} \ar[d] & | |
\mathcal{K}_2 \ar[d] \\ | |
\mathcal{I}_1 \otimes_{\mathcal{O}_X} \mathcal{F} | |
\ar[r]^-{c_1} & | |
\mathcal{K}_1 | |
} | |
$$ | |
is commutative. Then there is a canonical functoriality | |
$$ | |
\left\{ | |
\begin{matrix} | |
\mathcal{F}'_2\text{ as in (\ref{equation-extension}) with }\\ | |
c_2 = c_{\mathcal{F}'_2}\text{ and }\mathcal{K} = \mathcal{K}_2 | |
\end{matrix} | |
\right\} | |
\longrightarrow | |
\left\{ | |
\begin{matrix} | |
\mathcal{F}'_1\text{ as in (\ref{equation-extension}) with }\\ | |
c_1 = c_{\mathcal{F}'_1}\text{ and }\mathcal{K} = \mathcal{K}_1 | |
\end{matrix} | |
\right\} | |
$$ | |
Namely, thinking of all sheaves $\mathcal{O}_X$, $\mathcal{O}_{X'_i}$, | |
$\mathcal{F}$, $\mathcal{K}_i$, etc as sheaves on $X$, we set | |
given $\mathcal{F}'_2$ the sheaf $\mathcal{F}'_1$ equal to the | |
pushout, i.e., fitting into the following diagram of extensions | |
$$ | |
\xymatrix{ | |
0 \ar[r] & | |
\mathcal{K}_2 \ar[r] \ar[d] & | |
\mathcal{F}'_2 \ar[r] \ar[d] & | |
\mathcal{F} \ar@{=}[d] \ar[r] & 0 \\ | |
0 \ar[r] & | |
\mathcal{K}_1 \ar[r] & | |
\mathcal{F}'_1 \ar[r] & | |
\mathcal{F} \ar[r] & 0 | |
} | |
$$ | |
We omit the construction of the $\mathcal{O}_{X'_1}$-module structure | |
on the pushout (this uses the commutativity of the diagram | |
involving $c_1$ and $c_2$). | |
\end{remark} | |
\begin{remark} | |
\label{remark-trivial-extension-functorial} | |
Let $(X, \mathcal{O}_X)$, $(X, \mathcal{O}_X) \to (X'_i, \mathcal{O}_{X'_i})$, | |
$\mathcal{I}_i$, and | |
$h : (X'_1, \mathcal{O}_{X'_1}) \to (X'_2, \mathcal{O}_{X'_2})$ | |
be as in Remark \ref{remark-extension-functorial}. Assume that we are | |
given trivializations $\pi_i : X'_i \to X$ such that | |
$\pi_1 = h \circ \pi_2$. In other words, assume $h$ is a morphism | |
of trivialized first order thickening of $(X, \mathcal{O}_X)$. Let | |
$(\mathcal{K}_i, c_i)$, $i = 1, 2$ be a pair consisting of an | |
$\mathcal{O}_X$-module $\mathcal{K}_i$ and a map | |
$c_i : \mathcal{I}_i \otimes_{\mathcal{O}_X} \mathcal{F} \to | |
\mathcal{K}_i$. Assume furthermore given a map | |
of $\mathcal{O}_X$-modules $\mathcal{K}_2 \to \mathcal{K}_1$ | |
such that | |
$$ | |
\xymatrix{ | |
\mathcal{I}_2 \otimes_{\mathcal{O}_X} \mathcal{F} | |
\ar[r]_-{c_2} \ar[d] & | |
\mathcal{K}_2 \ar[d] \\ | |
\mathcal{I}_1 \otimes_{\mathcal{O}_X} \mathcal{F} | |
\ar[r]^-{c_1} & | |
\mathcal{K}_1 | |
} | |
$$ | |
is commutative. In this situation the construction of | |
Remark \ref{remark-trivial-extension} induces | |
a commutative diagram | |
$$ | |
\xymatrix{ | |
\{\mathcal{F}'_2\text{ as in (\ref{equation-extension}) with } | |
c_2 = c_{\mathcal{F}'_2}\text{ and }\mathcal{K} = \mathcal{K}_2\} | |
\ar[d] \ar[rr] & & | |
\Ext^1_{\mathcal{O}_X}(\mathcal{F}, \mathcal{K}_2) \ar[d] \\ | |
\{\mathcal{F}'_1\text{ as in (\ref{equation-extension}) with } | |
c_1 = c_{\mathcal{F}'_1}\text{ and }\mathcal{K} = \mathcal{K}_1\} | |
\ar[rr] & & | |
\Ext^1_{\mathcal{O}_X}(\mathcal{F}, \mathcal{K}_1) | |
} | |
$$ | |
where the vertical map on the right is given by functoriality of $\Ext$ | |
and the map $\mathcal{K}_2 \to \mathcal{K}_1$ and the vertical map on the left | |
is the one from Remark \ref{remark-extension-functorial}. | |
\end{remark} | |
\begin{remark} | |
\label{remark-short-exact-sequence-thickenings} | |
Let $(X, \mathcal{O}_X)$ be a ringed space. We define a sequence of morphisms | |
of first order thickenings | |
$$ | |
(X'_1, \mathcal{O}_{X'_1}) \to | |
(X'_2, \mathcal{O}_{X'_2}) \to | |
(X'_3, \mathcal{O}_{X'_3}) | |
$$ | |
of $(X, \mathcal{O}_X)$ to be a {\it complex} | |
if the corresponding maps between | |
the ideal sheaves $\mathcal{I}_i$ | |
give a complex of $\mathcal{O}_X$-modules | |
$\mathcal{I}_3 \to \mathcal{I}_2 \to \mathcal{I}_1$ | |
(i.e., the composition is zero). In this case the composition | |
$(X'_1, \mathcal{O}_{X'_1}) \to (X_3', \mathcal{O}_{X'_3})$ factors through | |
$(X, \mathcal{O}_X) \to (X'_3, \mathcal{O}_{X'_3})$, i.e., | |
the first order thickening $(X'_1, \mathcal{O}_{X'_1})$ of | |
$(X, \mathcal{O}_X)$ is trivial and comes with | |
a canonical trivialization | |
$\pi : (X'_1, \mathcal{O}_{X'_1}) \to (X, \mathcal{O}_X)$. | |
\medskip\noindent | |
We say a sequence of morphisms of first order thickenings | |
$$ | |
(X'_1, \mathcal{O}_{X'_1}) \to | |
(X'_2, \mathcal{O}_{X'_2}) \to | |
(X'_3, \mathcal{O}_{X'_3}) | |
$$ | |
of $(X, \mathcal{O}_X)$ is {\it a short exact sequence} if the | |
corresponding maps between ideal sheaves is a short exact sequence | |
$$ | |
0 \to \mathcal{I}_3 \to \mathcal{I}_2 \to \mathcal{I}_1 \to 0 | |
$$ | |
of $\mathcal{O}_X$-modules. | |
\end{remark} | |
\begin{remark} | |
\label{remark-complex-thickenings-and-ses-modules} | |
Let $(X, \mathcal{O}_X)$ be a ringed space. Let $\mathcal{F}$ be an | |
$\mathcal{O}_X$-module. Let | |
$$ | |
(X'_1, \mathcal{O}_{X'_1}) \to | |
(X'_2, \mathcal{O}_{X'_2}) \to | |
(X'_3, \mathcal{O}_{X'_3}) | |
$$ | |
be a complex first order thickenings of $(X, \mathcal{O}_X)$, see | |
Remark \ref{remark-short-exact-sequence-thickenings}. | |
Let $(\mathcal{K}_i, c_i)$, $i = 1, 2, 3$ be pairs consisting of | |
an $\mathcal{O}_X$-module $\mathcal{K}_i$ and a map | |
$c_i : \mathcal{I}_i \otimes_{\mathcal{O}_X} \mathcal{F} \to | |
\mathcal{K}_i$. Assume given a short exact sequence | |
of $\mathcal{O}_X$-modules | |
$$ | |
0 \to \mathcal{K}_3 \to \mathcal{K}_2 \to \mathcal{K}_1 \to 0 | |
$$ | |
such that | |
$$ | |
\vcenter{ | |
\xymatrix{ | |
\mathcal{I}_2 \otimes_{\mathcal{O}_X} \mathcal{F} | |
\ar[r]_-{c_2} \ar[d] & | |
\mathcal{K}_2 \ar[d] \\ | |
\mathcal{I}_1 \otimes_{\mathcal{O}_X} \mathcal{F} | |
\ar[r]^-{c_1} & | |
\mathcal{K}_1 | |
} | |
} | |
\quad\text{and}\quad | |
\vcenter{ | |
\xymatrix{ | |
\mathcal{I}_3 \otimes_{\mathcal{O}_X} \mathcal{F} | |
\ar[r]_-{c_3} \ar[d] & | |
\mathcal{K}_3 \ar[d] \\ | |
\mathcal{I}_2 \otimes_{\mathcal{O}_X} \mathcal{F} | |
\ar[r]^-{c_2} & | |
\mathcal{K}_2 | |
} | |
} | |
$$ | |
are commutative. Finally, assume given an extension | |
$$ | |
0 \to \mathcal{K}_2 \to \mathcal{F}'_2 \to \mathcal{F} \to 0 | |
$$ | |
as in (\ref{equation-extension}) with $\mathcal{K} = \mathcal{K}_2$ | |
of $\mathcal{O}_{X'_2}$-modules with $c_{\mathcal{F}'_2} = c_2$. | |
In this situation we can apply the functoriality of | |
Remark \ref{remark-extension-functorial} to obtain an extension | |
$\mathcal{F}'_1$ on $X'_1$ (we'll describe $\mathcal{F}'_1$ | |
in this special case below). By | |
Remark \ref{remark-trivial-extension} | |
using the canonical splitting | |
$\pi : (X'_1, \mathcal{O}_{X'_1}) \to (X, \mathcal{O}_X)$ of | |
Remark \ref{remark-short-exact-sequence-thickenings} | |
we obtain | |
$\xi_{\mathcal{F}'_1} \in | |
\Ext^1_{\mathcal{O}_X}(\mathcal{F}, \mathcal{K}_1)$. | |
Finally, we have the obstruction | |
$$ | |
o(\mathcal{F}, \mathcal{K}_3, c_3) \in | |
\Ext^2_{\mathcal{O}_X}(\mathcal{F}, \mathcal{K}_3) | |
$$ | |
see Lemma \ref{lemma-inf-obs-ext}. | |
In this situation we {\bf claim} that the canonical map | |
$$ | |
\partial : | |
\Ext^1_{\mathcal{O}_X}(\mathcal{F}, \mathcal{K}_1) | |
\longrightarrow | |
\Ext^2_{\mathcal{O}_X}(\mathcal{F}, \mathcal{K}_3) | |
$$ | |
coming from the short exact sequence | |
$0 \to \mathcal{K}_3 \to \mathcal{K}_2 \to \mathcal{K}_1 \to 0$ | |
sends $\xi_{\mathcal{F}'_1}$ | |
to the obstruction class $o(\mathcal{F}, \mathcal{K}_3, c_3)$. | |
\medskip\noindent | |
To prove this claim choose an embedding $j : \mathcal{K}_3 \to \mathcal{K}$ | |
where $\mathcal{K}$ is an injective $\mathcal{O}_X$-module. | |
We can lift $j$ to a map $j' : \mathcal{K}_2 \to \mathcal{K}$. | |
Set $\mathcal{E}'_2 = j'_*\mathcal{F}'_2$ equal to the pushout | |
of $\mathcal{F}'_2$ by $j'$ so that $c_{\mathcal{E}'_2} = j' \circ c_2$. | |
Picture: | |
$$ | |
\xymatrix{ | |
0 \ar[r] & | |
\mathcal{K}_2 \ar[r] \ar[d]_{j'} & | |
\mathcal{F}'_2 \ar[r] \ar[d] & | |
\mathcal{F} \ar[r] \ar[d] & 0 \\ | |
0 \ar[r] & | |
\mathcal{K} \ar[r] & | |
\mathcal{E}'_2 \ar[r] & | |
\mathcal{F} \ar[r] & 0 | |
} | |
$$ | |
Set $\mathcal{E}'_3 = \mathcal{E}'_2$ but viewed as an | |
$\mathcal{O}_{X'_3}$-module via $\mathcal{O}_{X'_3} \to \mathcal{O}_{X'_2}$. | |
Then $c_{\mathcal{E}'_3} = j \circ c_3$. | |
The proof of Lemma \ref{lemma-inf-obs-ext} constructs | |
$o(\mathcal{F}, \mathcal{K}_3, c_3)$ | |
as the boundary of the class of the extension of $\mathcal{O}_X$-modules | |
$$ | |
0 \to | |
\mathcal{K}/\mathcal{K}_3 \to | |
\mathcal{E}'_3/\mathcal{K}_3 \to | |
\mathcal{F} \to 0 | |
$$ | |
On the other hand, note that $\mathcal{F}'_1 = \mathcal{F}'_2/\mathcal{K}_3$ | |
hence the class $\xi_{\mathcal{F}'_1}$ is the class | |
of the extension | |
$$ | |
0 \to \mathcal{K}_2/\mathcal{K}_3 \to \mathcal{F}'_2/\mathcal{K}_3 | |
\to \mathcal{F} \to 0 | |
$$ | |
seen as a sequence of $\mathcal{O}_X$-modules using $\pi^\sharp$ | |
where $\pi : (X'_1, \mathcal{O}_{X'_1}) \to (X, \mathcal{O}_X)$ | |
is the canonical splitting. | |
Thus finally, the claim follows from the fact that we have | |
a commutative diagram | |
$$ | |
\xymatrix{ | |
0 \ar[r] & | |
\mathcal{K}_2/\mathcal{K}_3 \ar[r] \ar[d] & | |
\mathcal{F}'_2/\mathcal{K}_3 \ar[r] \ar[d] & | |
\mathcal{F} \ar[r] \ar[d] & 0 \\ | |
0 \ar[r] & | |
\mathcal{K}/\mathcal{K}_3 \ar[r] & | |
\mathcal{E}'_3/\mathcal{K}_3 \ar[r] & | |
\mathcal{F} \ar[r] & 0 | |
} | |
$$ | |
which is $\mathcal{O}_X$-linear (with the $\mathcal{O}_X$-module | |
structures given above). | |
\end{remark} | |
\section{Infinitesimal deformations of modules on ringed spaces} | |
\label{section-deformation-modules} | |
\noindent | |
Let $i : (X, \mathcal{O}_X) \to (X', \mathcal{O}_{X'})$ be a first | |
order thickening of ringed spaces. We freely use the notation introduced in | |
Section \ref{section-thickenings-spaces}. | |
Let $\mathcal{F}'$ be an $\mathcal{O}_{X'}$-module | |
and set $\mathcal{F} = i^*\mathcal{F}'$. | |
In this situation we have a short exact sequence | |
$$ | |
0 \to \mathcal{I}\mathcal{F}' \to \mathcal{F}' \to \mathcal{F} \to 0 | |
$$ | |
of $\mathcal{O}_{X'}$-modules. Since $\mathcal{I}^2 = 0$ the | |
$\mathcal{O}_{X'}$-module structure on $\mathcal{I}\mathcal{F}'$ | |
comes from a unique $\mathcal{O}_X$-module structure. | |
Thus the sequence above is an extension as in (\ref{equation-extension}). | |
As a special case, if $\mathcal{F}' = \mathcal{O}_{X'}$ we have | |
$i^*\mathcal{O}_{X'} = \mathcal{O}_X$ and | |
$\mathcal{I}\mathcal{O}_{X'} = \mathcal{I}$ and we recover the | |
sequence of structure sheaves | |
$$ | |
0 \to \mathcal{I} \to \mathcal{O}_{X'} \to \mathcal{O}_X \to 0 | |
$$ | |
\begin{lemma} | |
\label{lemma-inf-map-special} | |
Let $i : (X, \mathcal{O}_X) \to (X', \mathcal{O}_{X'})$ | |
be a first order thickening of ringed spaces. | |
Let $\mathcal{F}'$, $\mathcal{G}'$ be $\mathcal{O}_{X'}$-modules. | |
Set $\mathcal{F} = i^*\mathcal{F}'$ and $\mathcal{G} = i^*\mathcal{G}'$. | |
Let $\varphi : \mathcal{F} \to \mathcal{G}$ be an $\mathcal{O}_X$-linear map. | |
The set of lifts of $\varphi$ to an $\mathcal{O}_{X'}$-linear map | |
$\varphi' : \mathcal{F}' \to \mathcal{G}'$ is, if nonempty, a principal | |
homogeneous space under | |
$\Hom_{\mathcal{O}_X}(\mathcal{F}, \mathcal{I}\mathcal{G}')$. | |
\end{lemma} | |
\begin{proof} | |
This is a special case of Lemma \ref{lemma-inf-map} but we also | |
give a direct proof. We have short exact sequences of modules | |
$$ | |
0 \to \mathcal{I} \to \mathcal{O}_{X'} \to \mathcal{O}_X \to 0 | |
\quad\text{and}\quad | |
0 \to \mathcal{I}\mathcal{G}' \to \mathcal{G}' \to \mathcal{G} \to 0 | |
$$ | |
and similarly for $\mathcal{F}'$. | |
Since $\mathcal{I}$ has square zero the $\mathcal{O}_{X'}$-module | |
structure on $\mathcal{I}$ and $\mathcal{I}\mathcal{G}'$ comes from | |
a unique $\mathcal{O}_X$-module structure. It follows that | |
$$ | |
\Hom_{\mathcal{O}_{X'}}(\mathcal{F}', \mathcal{I}\mathcal{G}') = | |
\Hom_{\mathcal{O}_X}(\mathcal{F}, \mathcal{I}\mathcal{G}') | |
\quad\text{and}\quad | |
\Hom_{\mathcal{O}_{X'}}(\mathcal{F}', \mathcal{G}) = | |
\Hom_{\mathcal{O}_X}(\mathcal{F}, \mathcal{G}) | |
$$ | |
The lemma now follows from the exact sequence | |
$$ | |
0 \to \Hom_{\mathcal{O}_{X'}}(\mathcal{F}', \mathcal{I}\mathcal{G}') \to | |
\Hom_{\mathcal{O}_{X'}}(\mathcal{F}', \mathcal{G}') \to | |
\Hom_{\mathcal{O}_{X'}}(\mathcal{F}', \mathcal{G}) | |
$$ | |
see Homology, Lemma \ref{homology-lemma-check-exactness}. | |
\end{proof} | |
\begin{lemma} | |
\label{lemma-deform-module} | |
Let $(f, f')$ be a morphism of first order thickenings of ringed spaces | |
as in Situation \ref{situation-morphism-thickenings}. | |
Let $\mathcal{F}'$ be an $\mathcal{O}_{X'}$-module | |
and set $\mathcal{F} = i^*\mathcal{F}'$. | |
Assume that $\mathcal{F}$ is flat over $S$ | |
and that $(f, f')$ is a strict morphism of thickenings | |
(Definition \ref{definition-strict-morphism-thickenings}). | |
Then the following are equivalent | |
\begin{enumerate} | |
\item $\mathcal{F}'$ is flat over $S'$, and | |
\item the canonical map | |
$f^*\mathcal{J} \otimes_{\mathcal{O}_X} \mathcal{F} \to | |
\mathcal{I}\mathcal{F}'$ | |
is an isomorphism. | |
\end{enumerate} | |
Moreover, in this case the maps | |
$$ | |
f^*\mathcal{J} \otimes_{\mathcal{O}_X} \mathcal{F} \to | |
\mathcal{I} \otimes_{\mathcal{O}_X} \mathcal{F} \to | |
\mathcal{I}\mathcal{F}' | |
$$ | |
are isomorphisms. | |
\end{lemma} | |
\begin{proof} | |
The map $f^*\mathcal{J} \to \mathcal{I}$ is surjective | |
as $(f, f')$ is a strict morphism of thickenings. | |
Hence the final statement is a consequence of (2). | |
\medskip\noindent | |
Proof of the equivalence of (1) and (2). We may check these conditions | |
at stalks. Let $x \in X \subset X'$ | |
be a point with image $s = f(x) \in S \subset S'$. | |
Set $A' = \mathcal{O}_{S', s}$, $B' = \mathcal{O}_{X', x}$, | |
$A = \mathcal{O}_{S, s}$, and $B = \mathcal{O}_{X, x}$. | |
Then $A = A'/J$ and $B = B'/I$ for some square zero ideals. | |
Since $(f, f')$ is a strict morphism of thickenings we have $I = JB'$. | |
Let $M' = \mathcal{F}'_x$ and $M = \mathcal{F}_x$. | |
Then $M'$ is a $B'$-module and $M$ is a $B$-module. | |
Since $\mathcal{F} = i^*\mathcal{F}'$ we see that the kernel of the | |
surjection $M' \to M$ is $IM' = JM'$. Thus we have a short exact | |
sequence | |
$$ | |
0 \to JM' \to M' \to M \to 0 | |
$$ | |
Using | |
Sheaves, Lemma \ref{sheaves-lemma-stalk-pullback-modules} | |
and | |
Modules, Lemma \ref{modules-lemma-stalk-tensor-product} | |
to identify stalks of pullbacks and tensor products we see | |
that the stalk at $x$ of the canonical map of the lemma is the map | |
$$ | |
(J \otimes_A B) \otimes_B M = J \otimes_A M = J \otimes_{A'} M' | |
\longrightarrow JM' | |
$$ | |
The assumption that $\mathcal{F}$ is flat over $S$ signifies that | |
$M$ is a flat $A$-module. | |
\medskip\noindent | |
Assume (1). Flatness implies $\text{Tor}_1^{A'}(M', A) = 0$ by | |
Algebra, Lemma \ref{algebra-lemma-characterize-flat}. | |
This means $J \otimes_{A'} M' \to M'$ is injective by | |
Algebra, Remark \ref{algebra-remark-Tor-ring-mod-ideal}. | |
Hence $J \otimes_A M \to JM'$ is an isomorphism. | |
\medskip\noindent | |
Assume (2). Then $J \otimes_{A'} M' \to M'$ is injective. Hence | |
$\text{Tor}_1^{A'}(M', A) = 0$ by | |
Algebra, Remark \ref{algebra-remark-Tor-ring-mod-ideal}. | |
Hence $M'$ is flat over $A'$ by | |
Algebra, Lemma \ref{algebra-lemma-what-does-it-mean}. | |
\end{proof} | |
\begin{lemma} | |
\label{lemma-inf-map-rel} | |
Let $(f, f')$ be a morphism of first order thickenings as in | |
Situation \ref{situation-morphism-thickenings}. | |
Let $\mathcal{F}'$, $\mathcal{G}'$ be $\mathcal{O}_{X'}$-modules and set | |
$\mathcal{F} = i^*\mathcal{F}'$ and $\mathcal{G} = i^*\mathcal{G}'$. | |
Let $\varphi : \mathcal{F} \to \mathcal{G}$ be an $\mathcal{O}_X$-linear map. | |
Assume that $\mathcal{G}'$ is flat over $S'$ and that | |
$(f, f')$ is a strict morphism of thickenings. | |
The set of lifts of $\varphi$ to an $\mathcal{O}_{X'}$-linear map | |
$\varphi' : \mathcal{F}' \to \mathcal{G}'$ is, if nonempty, a principal | |
homogeneous space under | |
$$ | |
\Hom_{\mathcal{O}_X}(\mathcal{F}, | |
\mathcal{G} \otimes_{\mathcal{O}_X} f^*\mathcal{J}) | |
$$ | |
\end{lemma} | |
\begin{proof} | |
Combine Lemmas \ref{lemma-inf-map-special} and \ref{lemma-deform-module}. | |
\end{proof} | |
\begin{lemma} | |
\label{lemma-inf-obs-map-special} | |
Let $i : (X, \mathcal{O}_X) \to (X', \mathcal{O}_{X'})$ | |
be a first order thickening of ringed spaces. | |
Let $\mathcal{F}'$, $\mathcal{G}'$ be $\mathcal{O}_{X'}$-modules and set | |
$\mathcal{F} = i^*\mathcal{F}'$ and $\mathcal{G} = i^*\mathcal{G}'$. | |
Let $\varphi : \mathcal{F} \to \mathcal{G}$ be an $\mathcal{O}_X$-linear map. | |
There exists an element | |
$$ | |
o(\varphi) \in | |
\Ext^1_{\mathcal{O}_X}(Li^*\mathcal{F}', | |
\mathcal{I}\mathcal{G}') | |
$$ | |
whose vanishing is a necessary and sufficient condition for the | |
existence of a lift of $\varphi$ to an $\mathcal{O}_{X'}$-linear map | |
$\varphi' : \mathcal{F}' \to \mathcal{G}'$. | |
\end{lemma} | |
\begin{proof} | |
It is clear from the proof of Lemma \ref{lemma-inf-map-special} that the | |
vanishing of the boundary of $\varphi$ via the map | |
$$ | |
\Hom_{\mathcal{O}_X}(\mathcal{F}, \mathcal{G}) = | |
\Hom_{\mathcal{O}_{X'}}(\mathcal{F}', \mathcal{G}) \longrightarrow | |
\Ext^1_{\mathcal{O}_{X'}}(\mathcal{F}', \mathcal{I}\mathcal{G}') | |
$$ | |
is a necessary and sufficient condition for the existence of a lift. We | |
conclude as | |
$$ | |
\Ext^1_{\mathcal{O}_{X'}}(\mathcal{F}', \mathcal{I}\mathcal{G}') = | |
\Ext^1_{\mathcal{O}_X}(Li^*\mathcal{F}', \mathcal{I}\mathcal{G}') | |
$$ | |
the adjointness of $i_* = Ri_*$ and $Li^*$ on the derived category | |
(Cohomology, Lemma \ref{cohomology-lemma-adjoint}). | |
\end{proof} | |
\begin{lemma} | |
\label{lemma-inf-obs-map-rel} | |
Let $(f, f')$ be a morphism of first | |
order thickenings as in Situation \ref{situation-morphism-thickenings}. | |
Let $\mathcal{F}'$, $\mathcal{G}'$ be $\mathcal{O}_{X'}$-modules and set | |
$\mathcal{F} = i^*\mathcal{F}'$ and $\mathcal{G} = i^*\mathcal{G}'$. | |
Let $\varphi : \mathcal{F} \to \mathcal{G}$ be an $\mathcal{O}_X$-linear map. | |
Assume that $\mathcal{F}'$ and $\mathcal{G}'$ are flat over $S'$ and | |
that $(f, f')$ is a strict morphism of thickenings. There exists an element | |
$$ | |
o(\varphi) \in \Ext^1_{\mathcal{O}_X}(\mathcal{F}, | |
\mathcal{G} \otimes_{\mathcal{O}_X} f^*\mathcal{J}) | |
$$ | |
whose vanishing is a necessary and sufficient condition for the | |
existence of a lift of $\varphi$ to an $\mathcal{O}_{X'}$-linear map | |
$\varphi' : \mathcal{F}' \to \mathcal{G}'$. | |
\end{lemma} | |
\begin{proof}[First proof] | |
This follows from Lemma \ref{lemma-inf-obs-map-special} | |
as we claim that under the assumptions of the lemma we have | |
$$ | |
\Ext^1_{\mathcal{O}_X}(Li^*\mathcal{F}', | |
\mathcal{I}\mathcal{G}') = | |
\Ext^1_{\mathcal{O}_X}(\mathcal{F}, | |
\mathcal{G} \otimes_{\mathcal{O}_X} f^*\mathcal{J}) | |
$$ | |
Namely, we have | |
$\mathcal{I}\mathcal{G}' = | |
\mathcal{G} \otimes_{\mathcal{O}_X} f^*\mathcal{J}$ | |
by Lemma \ref{lemma-deform-module}. | |
On the other hand, observe that | |
$$ | |
H^{-1}(Li^*\mathcal{F}') = | |
\text{Tor}_1^{\mathcal{O}_{X'}}(\mathcal{F}', \mathcal{O}_X) | |
$$ | |
(local computation omitted). Using the short exact sequence | |
$$ | |
0 \to \mathcal{I} \to \mathcal{O}_{X'} \to \mathcal{O}_X \to 0 | |
$$ | |
we see that this $\text{Tor}_1$ is computed by the kernel of the map | |
$\mathcal{I} \otimes_{\mathcal{O}_X} \mathcal{F} \to \mathcal{I}\mathcal{F}'$ | |
which is zero by the final assertion of Lemma \ref{lemma-deform-module}. | |
Thus $\tau_{\geq -1}Li^*\mathcal{F}' = \mathcal{F}$. | |
On the other hand, we have | |
$$ | |
\Ext^1_{\mathcal{O}_X}(Li^*\mathcal{F}', | |
\mathcal{I}\mathcal{G}') = | |
\Ext^1_{\mathcal{O}_X}(\tau_{\geq -1}Li^*\mathcal{F}', | |
\mathcal{I}\mathcal{G}') | |
$$ | |
by the dual of | |
Derived Categories, Lemma \ref{derived-lemma-negative-vanishing}. | |
\end{proof} | |
\begin{proof}[Second proof] | |
We can apply Lemma \ref{lemma-inf-obs-map} as follows. Note that | |
$\mathcal{K} = \mathcal{I} \otimes_{\mathcal{O}_X} \mathcal{F}$ and | |
$\mathcal{L} = \mathcal{I} \otimes_{\mathcal{O}_X} \mathcal{G}$ | |
by Lemma \ref{lemma-deform-module}, that | |
$c_{\mathcal{F}'} = 1 \otimes 1$ and $c_{\mathcal{G}'} = 1 \otimes 1$ | |
and taking $\psi = 1 \otimes \varphi$ the diagram of the lemma | |
commutes. Thus $o(\varphi) = o(\varphi, 1 \otimes \varphi)$ | |
works. | |
\end{proof} | |
\begin{lemma} | |
\label{lemma-inf-ext-rel} | |
Let $(f, f')$ be a morphism of first order thickenings as in | |
Situation \ref{situation-morphism-thickenings}. | |
Let $\mathcal{F}$ be an $\mathcal{O}_X$-module. | |
Assume $(f, f')$ is a strict morphism of thickenings and | |
$\mathcal{F}$ flat over $S$. If there exists a pair | |
$(\mathcal{F}', \alpha)$ consisting of an | |
$\mathcal{O}_{X'}$-module $\mathcal{F}'$ flat over $S'$ and an isomorphism | |
$\alpha : i^*\mathcal{F}' \to \mathcal{F}$, then the set of | |
isomorphism classes of such pairs is principal homogeneous | |
under | |
$\Ext^1_{\mathcal{O}_X}( | |
\mathcal{F}, \mathcal{I} \otimes_{\mathcal{O}_X} \mathcal{F})$. | |
\end{lemma} | |
\begin{proof} | |
If we assume there exists one such module, then the canonical map | |
$$ | |
f^*\mathcal{J} \otimes_{\mathcal{O}_X} \mathcal{F} \to | |
\mathcal{I} \otimes_{\mathcal{O}_X} \mathcal{F} | |
$$ | |
is an isomorphism by Lemma \ref{lemma-deform-module}. Apply | |
Lemma \ref{lemma-inf-ext} with $\mathcal{K} = | |
\mathcal{I} \otimes_{\mathcal{O}_X} \mathcal{F}$ | |
and $c = 1$. By Lemma \ref{lemma-deform-module} the corresponding extensions | |
$\mathcal{F}'$ are all flat over $S'$. | |
\end{proof} | |
\begin{lemma} | |
\label{lemma-inf-obs-ext-rel} | |
Let $(f, f')$ be a morphism of first order thickenings as in | |
Situation \ref{situation-morphism-thickenings}. | |
Let $\mathcal{F}$ be an $\mathcal{O}_X$-module. Assume | |
$(f, f')$ is a strict morphism of thickenings | |
and $\mathcal{F}$ flat over $S$. There exists an | |
$\mathcal{O}_{X'}$-module $\mathcal{F}'$ flat over $S'$ with | |
$i^*\mathcal{F}' \cong \mathcal{F}$, if and only if | |
\begin{enumerate} | |
\item the canonical map $ | |
f^*\mathcal{J} \otimes_{\mathcal{O}_X} \mathcal{F} \to | |
\mathcal{I} \otimes_{\mathcal{O}_X} \mathcal{F}$ | |
is an isomorphism, and | |
\item the class | |
$o(\mathcal{F}, \mathcal{I} \otimes_{\mathcal{O}_X} \mathcal{F}, 1) | |
\in \Ext^2_{\mathcal{O}_X}( | |
\mathcal{F}, \mathcal{I} \otimes_{\mathcal{O}_X} \mathcal{F})$ | |
of Lemma \ref{lemma-inf-obs-ext} is zero. | |
\end{enumerate} | |
\end{lemma} | |
\begin{proof} | |
This follows immediately from the characterization of | |
$\mathcal{O}_{X'}$-modules flat over $S'$ of | |
Lemma \ref{lemma-deform-module} and | |
Lemma \ref{lemma-inf-obs-ext}. | |
\end{proof} | |
\section{Application to flat modules on flat thickenings of ringed spaces} | |
\label{section-flat} | |
\noindent | |
Consider a commutative diagram | |
$$ | |
\xymatrix{ | |
(X, \mathcal{O}_X) \ar[r]_i \ar[d]_f & (X', \mathcal{O}_{X'}) \ar[d]^{f'} \\ | |
(S, \mathcal{O}_S) \ar[r]^t & (S', \mathcal{O}_{S'}) | |
} | |
$$ | |
of ringed spaces whose horizontal arrows are first order thickenings as in | |
Situation \ref{situation-morphism-thickenings}. Set | |
$\mathcal{I} = \Ker(i^\sharp) \subset \mathcal{O}_{X'}$ and | |
$\mathcal{J} = \Ker(t^\sharp) \subset \mathcal{O}_{S'}$. | |
Let $\mathcal{F}$ be an $\mathcal{O}_X$-module. Assume that | |
\begin{enumerate} | |
\item $(f, f')$ is a strict morphism of thickenings, | |
\item $f'$ is flat, and | |
\item $\mathcal{F}$ is flat over $S$. | |
\end{enumerate} | |
Note that (1) $+$ (2) imply that $\mathcal{I} = f^*\mathcal{J}$ | |
(apply Lemma \ref{lemma-deform-module} to $\mathcal{O}_{X'}$). | |
The theory of the preceding section is especially nice | |
under these assumptions. We summarize the results already obtained | |
in the following lemma. | |
\begin{lemma} | |
\label{lemma-flat} | |
In the situation above. | |
\begin{enumerate} | |
\item There exists an $\mathcal{O}_{X'}$-module $\mathcal{F}'$ flat over | |
$S'$ with $i^*\mathcal{F}' \cong \mathcal{F}$, if and only if | |
the class | |
$o(\mathcal{F}, f^*\mathcal{J} \otimes_{\mathcal{O}_X} \mathcal{F}, 1) | |
\in \Ext^2_{\mathcal{O}_X}( | |
\mathcal{F}, f^*\mathcal{J} \otimes_{\mathcal{O}_X} \mathcal{F})$ | |
of Lemma \ref{lemma-inf-obs-ext} is zero. | |
\item If such a module exists, then the set of isomorphism classes | |
of lifts is principal homogeneous under | |
$\Ext^1_{\mathcal{O}_X}( | |
\mathcal{F}, f^*\mathcal{J} \otimes_{\mathcal{O}_X} \mathcal{F})$. | |
\item Given a lift $\mathcal{F}'$, the set of automorphisms of | |
$\mathcal{F}'$ which pull back to $\text{id}_\mathcal{F}$ is canonically | |
isomorphic to $\Ext^0_{\mathcal{O}_X}( | |
\mathcal{F}, f^*\mathcal{J} \otimes_{\mathcal{O}_X} \mathcal{F})$. | |
\end{enumerate} | |
\end{lemma} | |
\begin{proof} | |
Part (1) follows from Lemma \ref{lemma-inf-obs-ext-rel} | |
as we have seen above that $\mathcal{I} = f^*\mathcal{J}$. | |
Part (2) follows from Lemma \ref{lemma-inf-ext-rel}. | |
Part (3) follows from Lemma \ref{lemma-inf-map-rel}. | |
\end{proof} | |
\begin{situation} | |
\label{situation-ses-flat-thickenings} | |
Let $f : (X, \mathcal{O}_X) \to (S, \mathcal{O}_S)$ be a morphism of | |
ringed spaces. Consider a commutative diagram | |
$$ | |
\xymatrix{ | |
(X'_1, \mathcal{O}'_1) \ar[r]_h \ar[d]_{f'_1} & | |
(X'_2, \mathcal{O}'_2) \ar[r] \ar[d]_{f'_2} & | |
(X'_3, \mathcal{O}'_3) \ar[d]_{f'_3} \\ | |
(S'_1, \mathcal{O}_{S'_1}) \ar[r] & | |
(S'_2, \mathcal{O}_{S'_2}) \ar[r] & | |
(S'_3, \mathcal{O}_{S'_3}) | |
} | |
$$ | |
where (a) the top row is a short exact sequence of first order thickenings | |
of $X$, (b) the lower row is a short exact sequence of first order | |
thickenings of $S$, (c) each $f'_i$ restricts to $f$, (d) each pair | |
$(f, f_i')$ is a strict morphism of thickenings, and (e) each $f'_i$ is flat. | |
Finally, let $\mathcal{F}'_2$ be an $\mathcal{O}'_2$-module flat over | |
$S'_2$ and set $\mathcal{F} = \mathcal{F}'_2|_X$. Let $\pi : X'_1 \to X$ | |
be the canonical splitting | |
(Remark \ref{remark-short-exact-sequence-thickenings}). | |
\end{situation} | |
\begin{lemma} | |
\label{lemma-verify-iv} | |
In Situation \ref{situation-ses-flat-thickenings} the modules | |
$\pi^*\mathcal{F}$ and $h^*\mathcal{F}'_2$ are $\mathcal{O}'_1$-modules | |
flat over $S'_1$ restricting to $\mathcal{F}$ on $X$. | |
Their difference (Lemma \ref{lemma-flat}) is an element | |
$\theta$ of $\Ext^1_{\mathcal{O}_X}( | |
\mathcal{F}, f^*\mathcal{J}_1 \otimes_{\mathcal{O}_X} \mathcal{F})$ | |
whose boundary in | |
$\Ext^2_{\mathcal{O}_X}( | |
\mathcal{F}, f^*\mathcal{J}_3 \otimes_{\mathcal{O}_X} \mathcal{F})$ | |
equals the obstruction (Lemma \ref{lemma-flat}) | |
to lifting $\mathcal{F}$ to an $\mathcal{O}'_3$-module flat over $S'_3$. | |
\end{lemma} | |
\begin{proof} | |
Note that both $\pi^*\mathcal{F}$ and $h^*\mathcal{F}'_2$ | |
restrict to $\mathcal{F}$ on $X$ and that the kernels of | |
$\pi^*\mathcal{F} \to \mathcal{F}$ and $h^*\mathcal{F}'_2 \to \mathcal{F}$ | |
are given by $f^*\mathcal{J}_1 \otimes_{\mathcal{O}_X} \mathcal{F}$. | |
Hence flatness by Lemma \ref{lemma-deform-module}. | |
Taking the boundary makes sense as the sequence of modules | |
$$ | |
0 \to f^*\mathcal{J}_3 \otimes_{\mathcal{O}_X} \mathcal{F} \to | |
f^*\mathcal{J}_2 \otimes_{\mathcal{O}_X} \mathcal{F} \to | |
f^*\mathcal{J}_1 \otimes_{\mathcal{O}_X} \mathcal{F} \to 0 | |
$$ | |
is short exact due to the assumptions in | |
Situation \ref{situation-ses-flat-thickenings} | |
and the fact that $\mathcal{F}$ is flat over $S$. | |
The statement on the obstruction class is a direct translation | |
of the result of | |
Remark \ref{remark-complex-thickenings-and-ses-modules} | |
to this particular situation. | |
\end{proof} | |
\section{Deformations of ringed spaces and the naive cotangent complex} | |
\label{section-deformations-ringed-spaces} | |
\noindent | |
In this section we use the naive cotangent complex to do a little bit | |
of deformation theory. We start with a first order thickening | |
$t : (S, \mathcal{O}_S) \to (S', \mathcal{O}_{S'})$ of ringed spaces. | |
We denote $\mathcal{J} = \Ker(t^\sharp)$ and we | |
identify the underlying topological spaces of $S$ and $S'$. | |
Moreover we assume given a morphism of ringed spaces | |
$f : (X, \mathcal{O}_X) \to (S, \mathcal{O}_S)$, an $\mathcal{O}_X$-module | |
$\mathcal{G}$, and an $f$-map $c : \mathcal{J} \to \mathcal{G}$ | |
of sheaves of modules (Sheaves, Definition \ref{sheaves-definition-f-map} | |
and Section \ref{sheaves-section-ringed-spaces-functoriality-modules}). | |
In this section we ask ourselves whether we can find | |
the question mark fitting into the following diagram | |
\begin{equation} | |
\label{equation-to-solve-ringed-spaces} | |
\vcenter{ | |
\xymatrix{ | |
0 \ar[r] & \mathcal{G} \ar[r] & {?} \ar[r] & \mathcal{O}_X \ar[r] & 0 \\ | |
0 \ar[r] & \mathcal{J} \ar[u]^c \ar[r] & \mathcal{O}_{S'} \ar[u] \ar[r] & | |
\mathcal{O}_S \ar[u] \ar[r] & 0 | |
} | |
} | |
\end{equation} | |
(where the vertical arrows are $f$-maps) | |
and moreover how unique the solution is (if it exists). More precisely, | |
we look for a first order thickening | |
$i : (X, \mathcal{O}_X) \to (X', \mathcal{O}_{X'})$ | |
and a morphism of thickenings $(f, f')$ as in | |
(\ref{equation-morphism-thickenings}) | |
where $\Ker(i^\sharp)$ is identified with $\mathcal{G}$ | |
such that $(f')^\sharp$ induces the given map $c$. | |
We will say $X'$ is a {\it solution} to | |
(\ref{equation-to-solve-ringed-spaces}). | |
\begin{lemma} | |
\label{lemma-huge-diagram-ringed-spaces} | |
Assume given a commutative diagram of morphisms of ringed spaces | |
\begin{equation} | |
\label{equation-huge-1} | |
\vcenter{ | |
\xymatrix{ | |
& (X_2, \mathcal{O}_{X_2}) \ar[r]_{i_2} \ar[d]_{f_2} \ar[ddl]_g & | |
(X'_2, \mathcal{O}_{X'_2}) \ar[d]^{f'_2} \\ | |
& (S_2, \mathcal{O}_{S_2}) \ar[r]^{t_2} \ar[ddl]|\hole & | |
(S'_2, \mathcal{O}_{S'_2}) \ar[ddl] \\ | |
(X_1, \mathcal{O}_{X_1}) \ar[r]_{i_1} \ar[d]_{f_1} & | |
(X'_1, \mathcal{O}_{X'_1}) \ar[d]^{f'_1} \\ | |
(S_1, \mathcal{O}_{S_1}) \ar[r]^{t_1} & | |
(S'_1, \mathcal{O}_{S'_1}) | |
} | |
} | |
\end{equation} | |
whose horizontal arrows are first order thickenings. Set | |
$\mathcal{G}_j = \Ker(i_j^\sharp)$ and assume given | |
a $g$-map $\nu : \mathcal{G}_1 \to \mathcal{G}_2$ of modules | |
giving rise to the commutative diagram | |
\begin{equation} | |
\label{equation-huge-2} | |
\vcenter{ | |
\xymatrix{ | |
& 0 \ar[r] & \mathcal{G}_2 \ar[r] & | |
\mathcal{O}_{X'_2} \ar[r] & | |
\mathcal{O}_{X_2} \ar[r] & 0 \\ | |
& 0 \ar[r]|\hole & | |
\mathcal{J}_2 \ar[u]_{c_2} \ar[r] & | |
\mathcal{O}_{S'_2} \ar[u] \ar[r]|\hole & | |
\mathcal{O}_{S_2} \ar[u] \ar[r] & 0 \\ | |
0 \ar[r] & \mathcal{G}_1 \ar[ruu] \ar[r] & | |
\mathcal{O}_{X'_1} \ar[r] & | |
\mathcal{O}_{X_1} \ar[ruu] \ar[r] & 0 \\ | |
0 \ar[r] & \mathcal{J}_1 \ar[ruu]|\hole \ar[u]^{c_1} \ar[r] & | |
\mathcal{O}_{S'_1} \ar[ruu]|\hole \ar[u] \ar[r] & | |
\mathcal{O}_{S_1} \ar[ruu]|\hole \ar[u] \ar[r] & 0 | |
} | |
} | |
\end{equation} | |
with front and back solutions to (\ref{equation-to-solve-ringed-spaces}). | |
\begin{enumerate} | |
\item There exist a canonical element in | |
$\Ext^1_{\mathcal{O}_{X_2}}(Lg^*\NL_{X_1/S_1}, \mathcal{G}_2)$ | |
whose vanishing is a necessary and sufficient condition for the existence | |
of a morphism of ringed spaces $X'_2 \to X'_1$ fitting into | |
(\ref{equation-huge-1}) compatibly with $\nu$. | |
\item If there exists a morphism $X'_2 \to X'_1$ fitting into | |
(\ref{equation-huge-1}) compatibly with $\nu$ the set of all such morphisms | |
is a principal homogeneous space under | |
$$ | |
\Hom_{\mathcal{O}_{X_1}}(\Omega_{X_1/S_1}, g_*\mathcal{G}_2) = | |
\Hom_{\mathcal{O}_{X_2}}(g^*\Omega_{X_1/S_1}, \mathcal{G}_2) = | |
\Ext^0_{\mathcal{O}_{X_2}}(Lg^*\NL_{X_1/S_1}, \mathcal{G}_2). | |
$$ | |
\end{enumerate} | |
\end{lemma} | |
\begin{proof} | |
The naive cotangent complex $\NL_{X_1/S_1}$ is defined in Modules, Definition | |
\ref{modules-definition-cotangent-complex-morphism-ringed-topoi}. | |
The equalities in the last statement of the lemma follow from | |
the fact that $g^*$ is adjoint to $g_*$, the fact that | |
$H^0(\NL_{X_1/S_1}) = \Omega_{X_1/S_1}$ (by construction of the | |
naive cotangent complex) and the fact that $Lg^*$ is the left | |
derived functor of $g^*$. Thus we will work with the groups | |
$\Ext^k_{\mathcal{O}_{X_2}}(Lg^*\NL_{X_1/S_1}, \mathcal{G}_2)$, | |
$k = 0, 1$ in the rest of the proof. We first argue that we can reduce | |
to the case where the underlying topological spaces of all ringed | |
spaces in the lemma is the same. | |
\medskip\noindent | |
To do this, observe that $g^{-1}\NL_{X_1/S_1}$ is equal to the naive | |
cotangent complex of the homomorphism of sheaves of rings | |
$g^{-1}f_1^{-1}\mathcal{O}_{S_1} \to g^{-1}\mathcal{O}_{X_1}$, see | |
Modules, Lemma \ref{modules-lemma-pullback-NL}. | |
Moreover, the degree $0$ term of $\NL_{X_1/S_1}$ is a flat | |
$\mathcal{O}_{X_1}$-module, hence the canonical map | |
$$ | |
Lg^*\NL_{X_1/S_1} | |
\longrightarrow | |
g^{-1}\NL_{X_1/S_1} \otimes_{g^{-1}\mathcal{O}_{X_1}} \mathcal{O}_{X_2} | |
$$ | |
induces an isomorphism on cohomology sheaves in degrees $0$ and $-1$. | |
Thus we may replace the Ext groups of the lemma with | |
$$ | |
\Ext^k_{g^{-1}\mathcal{O}_{X_1}}(g^{-1}\NL_{X_1/S_1}, \mathcal{G}_2) = | |
\Ext^k_{g^{-1}\mathcal{O}_{X_1}}( | |
\NL_{g^{-1}\mathcal{O}_{X_1}/g^{-1}f_1^{-1}\mathcal{O}_{S_1}}, \mathcal{G}_2) | |
$$ | |
The set of morphism of ringed spaces $X'_2 \to X'_1$ fitting into | |
(\ref{equation-huge-1}) compatibly with $\nu$ | |
is in one-to-one bijection with | |
the set of homomorphisms of $g^{-1}f_1^{-1}\mathcal{O}_{S'_1}$-algebras | |
$g^{-1}\mathcal{O}_{X'_1} \to \mathcal{O}_{X'_2}$ which are compatible with | |
$f^\sharp$ and $\nu$. In this way we see that we may assume we have a | |
diagram (\ref{equation-huge-2}) of sheaves on $X$ and we are looking to | |
find a homomorphism of sheaves of rings | |
$\mathcal{O}_{X'_1} \to \mathcal{O}_{X'_2}$ fitting into it. | |
\medskip\noindent | |
In the rest of the proof of the lemma we assume | |
all underlying topological spaces are the | |
same, i.e., we have a diagram (\ref{equation-huge-2}) of sheaves on | |
a space $X$ and we are looking for homomorphisms of sheaves of rings | |
$\mathcal{O}_{X'_1} \to \mathcal{O}_{X'_2}$ fitting into it. | |
As ext groups we will use | |
$\Ext^k_{\mathcal{O}_{X_1}}( | |
\NL_{\mathcal{O}_{X_1}/\mathcal{O}_{S_1}}, \mathcal{G}_2)$, $k = 0, 1$. | |
\medskip\noindent | |
Step 1. Construction of the obstruction class. Consider the sheaf | |
of sets | |
$$ | |
\mathcal{E} = \mathcal{O}_{X'_1} \times_{\mathcal{O}_{X_2}} \mathcal{O}_{X'_2} | |
$$ | |
This comes with a surjective map $\alpha : \mathcal{E} \to \mathcal{O}_{X_1}$ | |
and hence we can use $\NL(\alpha)$ instead of | |
$\NL_{\mathcal{O}_{X_1}/\mathcal{O}_{S_1}}$, see | |
Modules, Lemma \ref{modules-lemma-NL-up-to-qis}. | |
Set | |
$$ | |
\mathcal{I}' = | |
\Ker(\mathcal{O}_{S'_1}[\mathcal{E}] \to \mathcal{O}_{X_1}) | |
\quad\text{and}\quad | |
\mathcal{I} = | |
\Ker(\mathcal{O}_{S_1}[\mathcal{E}] \to \mathcal{O}_{X_1}) | |
$$ | |
There is a surjection $\mathcal{I}' \to \mathcal{I}$ whose kernel | |
is $\mathcal{J}_1\mathcal{O}_{S'_1}[\mathcal{E}]$. | |
We obtain two homomorphisms of $\mathcal{O}_{S'_2}$-algebras | |
$$ | |
a : \mathcal{O}_{S'_1}[\mathcal{E}] \to \mathcal{O}_{X'_1} | |
\quad\text{and}\quad | |
b : \mathcal{O}_{S'_1}[\mathcal{E}] \to \mathcal{O}_{X'_2} | |
$$ | |
which induce maps $a|_{\mathcal{I}'} : \mathcal{I}' \to \mathcal{G}_1$ and | |
$b|_{\mathcal{I}'} : \mathcal{I}' \to \mathcal{G}_2$. Both $a$ and $b$ | |
annihilate $(\mathcal{I}')^2$. Moreover $a$ and $b$ agree on | |
$\mathcal{J}_1\mathcal{O}_{S'_1}[\mathcal{E}]$ as maps into $\mathcal{G}_2$ | |
because the left hand square of (\ref{equation-huge-2}) is commutative. | |
Thus the difference | |
$b|_{\mathcal{I}'} - \nu \circ a|_{\mathcal{I}'}$ | |
induces a well defined $\mathcal{O}_{X_1}$-linear map | |
$$ | |
\xi : \mathcal{I}/\mathcal{I}^2 \longrightarrow \mathcal{G}_2 | |
$$ | |
which sends the class of a local section $f$ of $\mathcal{I}$ to | |
$a(f') - \nu(b(f'))$ where $f'$ is a lift of $f$ to a local | |
section of $\mathcal{I}'$. We let | |
$[\xi] \in \Ext^1_{\mathcal{O}_{X_1}}(\NL(\alpha), \mathcal{G}_2)$ | |
be the image (see below). | |
\medskip\noindent | |
Step 2. Vanishing of $[\xi]$ is necessary. Let us write | |
$\Omega = \Omega_{\mathcal{O}_{S_1}[\mathcal{E}]/\mathcal{O}_{S_1}} | |
\otimes_{\mathcal{O}_{S_1}[\mathcal{E}]} \mathcal{O}_{X_1}$. | |
Observe that $\NL(\alpha) = (\mathcal{I}/\mathcal{I}^2 \to \Omega)$ | |
fits into a distinguished triangle | |
$$ | |
\Omega[0] \to | |
\NL(\alpha) \to | |
\mathcal{I}/\mathcal{I}^2[1] \to | |
\Omega[1] | |
$$ | |
Thus we see that $[\xi]$ is zero if and only if $\xi$ | |
is a composition $\mathcal{I}/\mathcal{I}^2 \to \Omega \to \mathcal{G}_2$ | |
for some map $\Omega \to \mathcal{G}_2$. Suppose there exists a | |
homomorphisms of sheaves of rings | |
$\varphi : \mathcal{O}_{X'_1} \to \mathcal{O}_{X'_2}$ fitting into | |
(\ref{equation-huge-2}). In this case consider the map | |
$\mathcal{O}_{S'_1}[\mathcal{E}] \to \mathcal{G}_2$, | |
$f' \mapsto b(f') - \varphi(a(f'))$. A calculation | |
shows this annihilates $\mathcal{J}_1\mathcal{O}_{S'_1}[\mathcal{E}]$ | |
and induces a derivation $\mathcal{O}_{S_1}[\mathcal{E}] \to \mathcal{G}_2$. | |
The resulting linear map $\Omega \to \mathcal{G}_2$ witnesses the | |
fact that $[\xi] = 0$ in this case. | |
\medskip\noindent | |
Step 3. Vanishing of $[\xi]$ is sufficient. Let | |
$\theta : \Omega \to \mathcal{G}_2$ be a $\mathcal{O}_{X_1}$-linear map | |
such that $\xi$ is equal to | |
$\theta \circ (\mathcal{I}/\mathcal{I}^2 \to \Omega)$. | |
Then a calculation shows that | |
$$ | |
b + \theta \circ d : \mathcal{O}_{S'_1}[\mathcal{E}] \to \mathcal{O}_{X'_2} | |
$$ | |
annihilates $\mathcal{I}'$ and hence defines a map | |
$\mathcal{O}_{X'_1} \to \mathcal{O}_{X'_2}$ fitting into | |
(\ref{equation-huge-2}). | |
\medskip\noindent | |
Proof of (2) in the special case above. Omitted. Hint: | |
This is exactly the same as the proof of (2) of Lemma \ref{lemma-huge-diagram}. | |
\end{proof} | |
\begin{lemma} | |
\label{lemma-NL-represent-ext-class} | |
Let $X$ be a topological space. Let $\mathcal{A} \to \mathcal{B}$ be a | |
homomorphism of sheaves of rings. Let $\mathcal{G}$ be a $\mathcal{B}$-module. | |
Let | |
$\xi \in \Ext^1_\mathcal{B}(\NL_{\mathcal{B}/\mathcal{A}}, \mathcal{G})$. | |
There exists a map of sheaves of sets $\alpha : \mathcal{E} \to \mathcal{B}$ | |
such that $\xi \in \Ext^1_\mathcal{B}(\NL(\alpha), \mathcal{G})$ | |
is the class of a map $\mathcal{I}/\mathcal{I}^2 \to \mathcal{G}$ | |
(see proof for notation). | |
\end{lemma} | |
\begin{proof} | |
Recall that given $\alpha : \mathcal{E} \to \mathcal{B}$ | |
such that $\mathcal{A}[\mathcal{E}] \to \mathcal{B}$ is surjective | |
with kernel $\mathcal{I}$ the complex | |
$\NL(\alpha) = (\mathcal{I}/\mathcal{I}^2 \to | |
\Omega_{\mathcal{A}[\mathcal{E}]/\mathcal{A}} | |
\otimes_{\mathcal{A}[\mathcal{E}]} \mathcal{B})$ is canonically | |
isomorphic to $\NL_{\mathcal{B}/\mathcal{A}}$, see | |
Modules, Lemma \ref{modules-lemma-NL-up-to-qis}. | |
Observe moreover, that | |
$\Omega = \Omega_{\mathcal{A}[\mathcal{E}]/\mathcal{A}} | |
\otimes_{\mathcal{A}[\mathcal{E}]} \mathcal{B}$ is the sheaf | |
associated to the presheaf | |
$U \mapsto \bigoplus_{e \in \mathcal{E}(U)} \mathcal{B}(U)$. | |
In other words, $\Omega$ is the free $\mathcal{B}$-module on the | |
sheaf of sets $\mathcal{E}$ and in particular there is a canonical | |
map $\mathcal{E} \to \Omega$. | |
\medskip\noindent | |
Having said this, pick some $\mathcal{E}$ (for example | |
$\mathcal{E} = \mathcal{B}$ as in the definition of the naive cotangent | |
complex). The obstruction to writing $\xi$ as the class of a map | |
$\mathcal{I}/\mathcal{I}^2 \to \mathcal{G}$ is an element in | |
$\Ext^1_\mathcal{B}(\Omega, \mathcal{G})$. Say this is represented | |
by the extension $0 \to \mathcal{G} \to \mathcal{H} \to \Omega \to 0$ | |
of $\mathcal{B}$-modules. Consider the sheaf of sets | |
$\mathcal{E}' = \mathcal{E} \times_\Omega \mathcal{H}$ | |
which comes with an induced map $\alpha' : \mathcal{E}' \to \mathcal{B}$. | |
Let $\mathcal{I}' = \Ker(\mathcal{A}[\mathcal{E}'] \to \mathcal{B})$ | |
and $\Omega' = \Omega_{\mathcal{A}[\mathcal{E}']/\mathcal{A}} | |
\otimes_{\mathcal{A}[\mathcal{E}']} \mathcal{B}$. | |
The pullback of $\xi$ under the quasi-isomorphism | |
$\NL(\alpha') \to \NL(\alpha)$ maps to zero in | |
$\Ext^1_\mathcal{B}(\Omega', \mathcal{G})$ | |
because the pullback of the extension $\mathcal{H}$ | |
by the map $\Omega' \to \Omega$ is split as $\Omega'$ is the free | |
$\mathcal{B}$-module on the sheaf of sets $\mathcal{E}'$ and since | |
by construction there is a commutative diagram | |
$$ | |
\xymatrix{ | |
\mathcal{E}' \ar[r] \ar[d] & \mathcal{E} \ar[d] \\ | |
\mathcal{H} \ar[r] & \Omega | |
} | |
$$ | |
This finishes the proof. | |
\end{proof} | |
\begin{lemma} | |
\label{lemma-choices-ringed-spaces} | |
If there exists a solution to (\ref{equation-to-solve-ringed-spaces}), | |
then the set of isomorphism classes of solutions is principal homogeneous | |
under $\Ext^1_{\mathcal{O}_X}(\NL_{X/S}, \mathcal{G})$. | |
\end{lemma} | |
\begin{proof} | |
We observe right away that given two solutions $X'_1$ and $X'_2$ | |
to (\ref{equation-to-solve-ringed-spaces}) we obtain by | |
Lemma \ref{lemma-huge-diagram-ringed-spaces} an obstruction element | |
$o(X'_1, X'_2) \in \Ext^1_{\mathcal{O}_X}(\NL_{X/S}, \mathcal{G})$ | |
to the existence of a map $X'_1 \to X'_2$. Clearly, this element | |
is the obstruction to the existence of an isomorphism, hence separates | |
the isomorphism classes. To finish the proof it therefore suffices to | |
show that given a solution $X'$ and an element | |
$\xi \in \Ext^1_{\mathcal{O}_X}(\NL_{X/S}, \mathcal{G})$ | |
we can find a second solution $X'_\xi$ such that | |
$o(X', X'_\xi) = \xi$. | |
\medskip\noindent | |
Pick $\alpha : \mathcal{E} \to \mathcal{O}_X$ as in | |
Lemma \ref{lemma-NL-represent-ext-class} | |
for the class $\xi$. Consider the surjection | |
$f^{-1}\mathcal{O}_S[\mathcal{E}] \to \mathcal{O}_X$ | |
with kernel $\mathcal{I}$ and corresponding naive cotangent complex | |
$\NL(\alpha) = (\mathcal{I}/\mathcal{I}^2 \to | |
\Omega_{f^{-1}\mathcal{O}_S[\mathcal{E}]/f^{-1}\mathcal{O}_S} | |
\otimes_{f^{-1}\mathcal{O}_S[\mathcal{E}]} \mathcal{O}_X)$. | |
By the lemma $\xi$ is the class of a morphism | |
$\delta : \mathcal{I}/\mathcal{I}^2 \to \mathcal{G}$. | |
After replacing $\mathcal{E}$ by | |
$\mathcal{E} \times_{\mathcal{O}_X} \mathcal{O}_{X'}$ we may also assume | |
that $\alpha$ factors through a map | |
$\alpha' : \mathcal{E} \to \mathcal{O}_{X'}$. | |
\medskip\noindent | |
These choices determine an $f^{-1}\mathcal{O}_{S'}$-algebra map | |
$\varphi : \mathcal{O}_{S'}[\mathcal{E}] \to \mathcal{O}_{X'}$. | |
Let $\mathcal{I}' = \Ker(\varphi)$. | |
Observe that $\varphi$ induces a map | |
$\varphi|_{\mathcal{I}'} : \mathcal{I}' \to \mathcal{G}$ | |
and that $\mathcal{O}_{X'}$ is the pushout, as in the following | |
diagram | |
$$ | |
\xymatrix{ | |
0 \ar[r] & \mathcal{G} \ar[r] & \mathcal{O}_{X'} \ar[r] & | |
\mathcal{O}_X \ar[r] & 0 \\ | |
0 \ar[r] & \mathcal{I}' \ar[u]^{\varphi|_{\mathcal{I}'}} \ar[r] & | |
f^{-1}\mathcal{O}_{S'}[\mathcal{E}] \ar[u] \ar[r] & | |
\mathcal{O}_X \ar[u]_{=} \ar[r] & 0 | |
} | |
$$ | |
Let $\psi : \mathcal{I}' \to \mathcal{G}$ be the sum of the map | |
$\varphi|_{\mathcal{I}'}$ and the composition | |
$$ | |
\mathcal{I}' \to \mathcal{I}'/(\mathcal{I}')^2 \to | |
\mathcal{I}/\mathcal{I}^2 \xrightarrow{\delta} \mathcal{G}. | |
$$ | |
Then the pushout along $\psi$ is an other ring extension | |
$\mathcal{O}_{X'_\xi}$ fitting into a diagram as above. | |
A calculation (omitted) shows that $o(X', X'_\xi) = \xi$ as desired. | |
\end{proof} | |
\begin{lemma} | |
\label{lemma-extensions-of-relative-ringed-spaces} | |
Let $f : (X, \mathcal{O}_X) \to (S, \mathcal{O}_S)$ be a morphism of | |
ringed spaces. Let $\mathcal{G}$ be a $\mathcal{O}_X$-module. | |
The set of isomorphism classes of extensions of | |
$f^{-1}\mathcal{O}_S$-algebras | |
$$ | |
0 \to \mathcal{G} \to \mathcal{O}_{X'} \to \mathcal{O}_X \to 0 | |
$$ | |
where $\mathcal{G}$ is an ideal of square zero\footnote{In other words, | |
the set of isomorphism classes of first order thickenings | |
$i : X \to X'$ over $S$ endowed with an isomorphism | |
$\mathcal{G} \to \Ker(i^\sharp)$ of $\mathcal{O}_X$-modules.} | |
is canonically bijective to | |
$\Ext^1_{\mathcal{O}_X}(\NL_{X/S}, \mathcal{G})$. | |
\end{lemma} | |
\begin{proof} | |
To prove this we apply the previous results to the case where | |
(\ref{equation-to-solve-ringed-spaces}) is given by the diagram | |
$$ | |
\xymatrix{ | |
0 \ar[r] & | |
\mathcal{G} \ar[r] & | |
{?} \ar[r] & | |
\mathcal{O}_X \ar[r] & 0 \\ | |
0 \ar[r] & | |
0 \ar[u] \ar[r] & | |
\mathcal{O}_S \ar[u] \ar[r]^{\text{id}} & | |
\mathcal{O}_S \ar[u] \ar[r] & 0 | |
} | |
$$ | |
Thus our lemma follows from Lemma \ref{lemma-choices-ringed-spaces} | |
and the fact that there exists a solution, namely | |
$\mathcal{G} \oplus \mathcal{O}_X$. | |
(See remark below for a direct construction of the bijection.) | |
\end{proof} | |
\begin{remark} | |
\label{remark-extensions-of-relative-ringed-spaces} | |
Let $f : (X, \mathcal{O}_X) \to (S, \mathcal{O}_S)$ and $\mathcal{G}$ | |
be as in Lemma \ref{lemma-extensions-of-relative-ringed-spaces}. | |
Consider an extension | |
$0 \to \mathcal{G} \to \mathcal{O}_{X'} \to \mathcal{O}_X \to 0$ | |
as in the lemma. We can choose a sheaf of sets $\mathcal{E}$ | |
and a commutative diagram | |
$$ | |
\xymatrix{ | |
\mathcal{E} \ar[d]_{\alpha'} \ar[rd]^\alpha \\ | |
\mathcal{O}_{X'} \ar[r] & \mathcal{O}_X | |
} | |
$$ | |
such that $f^{-1}\mathcal{O}_S[\mathcal{E}] \to \mathcal{O}_X$ | |
is surjective with kernel $\mathcal{J}$. | |
(For example you can take any sheaf of sets surjecting | |
onto $\mathcal{O}_{X'}$.) Then | |
$$ | |
\NL_{X/S} \cong \NL(\alpha) = | |
\left( | |
\mathcal{J}/\mathcal{J}^2 | |
\longrightarrow | |
\Omega_{f^{-1}\mathcal{O}_S[\mathcal{E}]/f^{-1}\mathcal{O}_S} | |
\otimes_{f^{-1}\mathcal{O}_S[\mathcal{E}]} \mathcal{O}_X\right) | |
$$ | |
See Modules, Section \ref{modules-section-netherlander} and in particular | |
Lemma \ref{modules-lemma-NL-up-to-qis}. Of course $\alpha'$ determines a map | |
$f^{-1}\mathcal{O}_S[\mathcal{E}] \to \mathcal{O}_{X'}$ | |
which in turn determines a map | |
$$ | |
\mathcal{J}/\mathcal{J}^2 \longrightarrow \mathcal{G} | |
$$ | |
which in turn determines the element of | |
$\Ext^1_{\mathcal{O}_X}(\NL(\alpha), \mathcal{G}) = | |
\Ext^1_{\mathcal{O}_X}(\NL_{X/S}, \mathcal{G})$ | |
corresponding to $\mathcal{O}_{X'}$ by the bijection of the lemma. | |
\end{remark} | |
\begin{lemma} | |
\label{lemma-extensions-of-relative-ringed-spaces-functorial} | |
Let $f : (X, \mathcal{O}_X) \to (S, \mathcal{O}_S)$ and | |
$g : (Y, \mathcal{O}_Y) \to (X, \mathcal{O}_X)$ be morphisms | |
of ringed spaces. Let $\mathcal{F}$ be a $\mathcal{O}_X$-module. | |
Let $\mathcal{G}$ be a $\mathcal{O}_Y$-module. Let | |
$c : \mathcal{F} \to \mathcal{G}$ be a $g$-map. Finally, consider | |
\begin{enumerate} | |
\item[(a)] $0 \to \mathcal{F} \to \mathcal{O}_{X'} \to \mathcal{O}_X \to 0$ | |
an extension of $f^{-1}\mathcal{O}_S$-algebras | |
corresponding to $\xi \in \Ext^1_{\mathcal{O}_X}(\NL_{X/S}, \mathcal{F})$, and | |
\item[(b)] $0 \to \mathcal{G} \to \mathcal{O}_{Y'} \to \mathcal{O}_Y \to 0$ | |
an extension of $g^{-1}f^{-1}\mathcal{O}_S$-algebras | |
corresponding to $\zeta \in \Ext^1_{\mathcal{O}_Y}(\NL_{Y/S}, \mathcal{G})$. | |
\end{enumerate} | |
See Lemma \ref{lemma-extensions-of-relative-ringed-spaces}. | |
Then there is an $S$-morphism $g' : Y' \to X'$ | |
compatible with $g$ and $c$ if and only if $\xi$ and $\zeta$ | |
map to the same element of | |
$\Ext^1_{\mathcal{O}_Y}(Lg^*\NL_{X/S}, \mathcal{G})$. | |
\end{lemma} | |
\begin{proof} | |
The stament makes sense as we have the maps | |
$$ | |
\Ext^1_{\mathcal{O}_X}(\NL_{X/S}, \mathcal{F}) \to | |
\Ext^1_{\mathcal{O}_Y}(Lg^*\NL_{X/S}, Lg^*\mathcal{F}) \to | |
\Ext^1_{\mathcal{O}_Y}(Lg^*\NL_{X/S}, \mathcal{G}) | |
$$ | |
using the map $Lg^*\mathcal{F} \to g^*\mathcal{F} \xrightarrow{c} \mathcal{G}$ | |
and | |
$$ | |
\Ext^1_{\mathcal{O}_Y}(\NL_{Y/S}, \mathcal{G}) \to | |
\Ext^1_{\mathcal{O}_Y}(Lg^*\NL_{X/S}, \mathcal{G}) | |
$$ | |
using the map $Lg^*\NL_{X/S} \to \NL_{Y/S}$. | |
The statement of the lemma can be deduced from | |
Lemma \ref{lemma-huge-diagram-ringed-spaces} applied to the diagram | |
$$ | |
\xymatrix{ | |
& 0 \ar[r] & | |
\mathcal{G} \ar[r] & | |
\mathcal{O}_{Y'} \ar[r] & | |
\mathcal{O}_Y \ar[r] & 0 \\ | |
& 0 \ar[r]|\hole & 0 \ar[u] \ar[r] & | |
\mathcal{O}_S \ar[u] \ar[r]|\hole & | |
\mathcal{O}_S \ar[u] \ar[r] & 0 \\ | |
0 \ar[r] & | |
\mathcal{F} \ar[ruu] \ar[r] & | |
\mathcal{O}_{X'} \ar[r] & | |
\mathcal{O}_X \ar[ruu] \ar[r] & 0 \\ | |
0 \ar[r] & 0 \ar[ruu]|\hole \ar[u] \ar[r] & | |
\mathcal{O}_S \ar[ruu]|\hole \ar[u] \ar[r] & | |
\mathcal{O}_S \ar[ruu]|\hole \ar[u] \ar[r] & 0 | |
} | |
$$ | |
and a compatibility between the constructions in the proofs | |
of Lemmas \ref{lemma-extensions-of-relative-ringed-spaces} and | |
\ref{lemma-huge-diagram-ringed-spaces} | |
whose statement and proof we omit. (See remark below for a direct argument.) | |
\end{proof} | |
\begin{remark} | |
\label{remark-extensions-of-relative-ringed-spaces-functorial} | |
Let $f : (X, \mathcal{O}_X) \to (S, \mathcal{O}_S)$, | |
$g : (Y, \mathcal{O}_Y) \to (X, \mathcal{O}_X)$, | |
$\mathcal{F}$, | |
$\mathcal{G}$, | |
$c : \mathcal{F} \to \mathcal{G}$, | |
$0 \to \mathcal{F} \to \mathcal{O}_{X'} \to \mathcal{O}_X \to 0$, | |
$\xi \in \Ext^1_{\mathcal{O}_X}(\NL_{X/S}, \mathcal{F})$, | |
$0 \to \mathcal{G} \to \mathcal{O}_{Y'} \to \mathcal{O}_Y \to 0$, | |
and $\zeta \in \Ext^1_{\mathcal{O}_Y}(\NL_{Y/S}, \mathcal{G})$ | |
be as in Lemma \ref{lemma-extensions-of-relative-ringed-spaces-functorial}. | |
Using pushout along $c : g^{-1}\mathcal{F} \to \mathcal{G}$ | |
we can construct an extension | |
$$ | |
\xymatrix{ | |
0 \ar[r] & | |
\mathcal{G} \ar[r] & | |
\mathcal{O}'_1 \ar[r] & | |
g^{-1}\mathcal{O}_X \ar[r] & 0 \\ | |
0 \ar[r] & | |
g^{-1}\mathcal{F} \ar[u]^c \ar[r] & | |
g^{-1}\mathcal{O}_{X'} \ar[u] \ar[r] & | |
g^{-1}\mathcal{O}_X \ar@{=}[u] \ar[r] & 0 | |
} | |
$$ | |
Using pullback along | |
$g^\sharp : g^{-1}\mathcal{O}_X \to \mathcal{O}_Y$ | |
we can construct an extension | |
$$ | |
\xymatrix{ | |
0 \ar[r] & | |
\mathcal{G} \ar[r] & | |
\mathcal{O}_{Y'} \ar[r] & | |
\mathcal{O}_Y \ar[r] & 0 \\ | |
0 \ar[r] & | |
\mathcal{G} \ar@{=}[u] \ar[r] & | |
\mathcal{O}'_2 \ar[u] \ar[r] & | |
g^{-1}\mathcal{O}_X \ar[u] \ar[r] & 0 | |
} | |
$$ | |
A diagram chase tells us that there exists an $S$-morphism $Y' \to X'$ | |
compatible with $g$ and $c$ if and only if $\mathcal{O}'_1$ is isomorphic | |
to $\mathcal{O}'_2$ as $g^{-1}f^{-1}\mathcal{O}_S$-algebra extensions | |
of $g^{-1}\mathcal{O}_X$ by $\mathcal{G}$. By | |
Lemma \ref{lemma-extensions-of-relative-ringed-spaces} | |
these extensions are classified by the LHS of | |
$$ | |
\Ext^1_{g^{-1}\mathcal{O}_X}( | |
\NL_{g^{-1}\mathcal{O}_X/g^{-1}f^{-1}\mathcal{O}_S}, \mathcal{G}) = | |
\Ext^1_{\mathcal{O}_Y}(Lg^*\NL_{X/S}, \mathcal{G}) | |
$$ | |
Here the equality comes from tensor-hom adjunction and | |
the equalities | |
$$ | |
\NL_{g^{-1}\mathcal{O}_X/g^{-1}f^{-1}\mathcal{O}_S} = g^{-1}\NL_{X/S} | |
\quad\text{and}\quad | |
Lg^*\NL_{X/S} = | |
g^{-1}\NL_{X/S} \otimes_{g^{-1}\mathcal{O}_X}^\mathbf{L} \mathcal{O}_Y | |
$$ | |
For the first of these see | |
Modules, Lemma \ref{modules-lemma-pullback-NL}; the second | |
follows from the definition of derived pullback. | |
Thus, in order to see that | |
Lemma \ref{lemma-extensions-of-relative-ringed-spaces-functorial} | |
is true, it suffices to show that $\mathcal{O}'_1$ corresponds | |
to the image of $\xi$ and that $\mathcal{O}'_2$ correspond to | |
the image of $\zeta$. | |
The correspondence between $\xi$ and $\mathcal{O}'_1$ | |
is immediate from the construction of the class $\xi$ in | |
Remark \ref{remark-extensions-of-relative-ringed-spaces}. | |
For the correspondence between $\zeta$ and $\mathcal{O}'_2$, | |
we first choose a commutative diagram | |
$$ | |
\xymatrix{ | |
\mathcal{E} \ar[d]_{\beta'} \ar[rd]^\beta \\ | |
\mathcal{O}_{Y'} \ar[r] & \mathcal{O}_Y | |
} | |
$$ | |
such that $g^{-1}f^{-1}\mathcal{O}_S[\mathcal{E}] \to \mathcal{O}_Y$ | |
is surjective with kernel $\mathcal{K}$. Next choose a | |
commutative diagram | |
$$ | |
\xymatrix{ | |
\mathcal{E} \ar[d]_{\beta'} & | |
\mathcal{E}' \ar[l]^\varphi \ar[d]_{\alpha'} \ar[rd]^\alpha \\ | |
\mathcal{O}_{Y'} & | |
\mathcal{O}'_2 \ar[l] \ar[r] & | |
g^{-1}\mathcal{O}_X | |
} | |
$$ | |
such that $g^{-1}f^{-1}\mathcal{O}_S[\mathcal{E}'] \to g^{-1}\mathcal{O}_X$ | |
is surjective with kernel $\mathcal{J}$. (For example just take | |
$\mathcal{E}' = \mathcal{E} \amalg \mathcal{O}'_2$ as a sheaf of sets.) | |
The map $\varphi$ induces a map of complexes $\NL(\alpha) \to \NL(\beta)$ | |
(notation as in Modules, Section \ref{modules-section-netherlander}) | |
and in particular | |
$\bar\varphi : \mathcal{J}/\mathcal{J}^2 \to \mathcal{K}/\mathcal{K}^2$. | |
Then $\NL(\alpha) \cong \NL_{Y/S}$ and | |
$\NL(\beta) \cong \NL_{g^{-1}\mathcal{O}_X/g^{-1}f^{-1}\mathcal{O}_S}$ | |
and the map of complexes $\NL(\alpha) \to \NL(\beta)$ | |
represents the map $Lg^*\NL_{X/S} \to \NL_{Y/S}$ used in the | |
statement of Lemma \ref{lemma-extensions-of-relative-ringed-spaces-functorial} | |
(see first part of its proof). Now $\zeta$ corresponds to the | |
class of the map $\mathcal{K}/\mathcal{K}^2 \to \mathcal{G}$ | |
induced by $\beta'$, see | |
Remark \ref{remark-extensions-of-relative-ringed-spaces}. | |
Similarly, the extension $\mathcal{O}'_2$ corresponds to the map | |
$\mathcal{J}/\mathcal{J}^2 \to \mathcal{G}$ induced by $\alpha'$. | |
The commutative diagram above shows that this map is | |
the composition of the map $\mathcal{K}/\mathcal{K}^2 \to \mathcal{G}$ | |
induced by $\beta'$ with the map | |
$\bar\varphi : \mathcal{J}/\mathcal{J}^2 \to \mathcal{K}/\mathcal{K}^2$. | |
This proves the compatibility we were looking for. | |
\end{remark} | |
\begin{lemma} | |
\label{lemma-parametrize-solutions-ringed-spaces} | |
Let $t : (S, \mathcal{O}_S) \to (S', \mathcal{O}_{S'})$, | |
$\mathcal{J} = \Ker(t^\sharp)$, | |
$f : (X, \mathcal{O}_X) \to (S, \mathcal{O}_S)$, $\mathcal{G}$, and | |
$c : \mathcal{J} \to \mathcal{G}$ be as in | |
(\ref{equation-to-solve-ringed-spaces}). | |
Denote $\xi \in \Ext^1_{\mathcal{O}_S}(\NL_{S/S'}, \mathcal{J})$ | |
the element corresponding to the extension $\mathcal{O}_{S'}$ | |
of $\mathcal{O}_S$ by $\mathcal{J}$ via | |
Lemma \ref{lemma-extensions-of-relative-ringed-spaces}. | |
The set of isomorphism classes of solutions is canonically bijective | |
to the fibre of | |
$$ | |
\Ext^1_{\mathcal{O}_X}(\NL_{X/S'}, \mathcal{G}) \to | |
\Ext^1_{\mathcal{O}_X}(Lf^*\NL_{S/S'}, \mathcal{G}) | |
$$ | |
over the image of $\xi$. | |
\end{lemma} | |
\begin{proof} | |
By Lemma \ref{lemma-extensions-of-relative-ringed-spaces} | |
applied to $X \to S'$ and the $\mathcal{O}_X$-module $\mathcal{G}$ | |
we see that elements $\zeta$ of | |
$\Ext^1_{\mathcal{O}_X}(\NL_{X/S'}, \mathcal{G})$ | |
parametrize extensions | |
$0 \to \mathcal{G} \to \mathcal{O}_{X'} \to \mathcal{O}_X \to 0$ | |
of $f^{-1}\mathcal{O}_{S'}$-algebras. By | |
Lemma \ref{lemma-extensions-of-relative-ringed-spaces-functorial} applied | |
to $X \to S \to S'$ and $c : \mathcal{J} \to \mathcal{G}$ | |
we see that there is an $S'$-morphism | |
$X' \to S'$ compatible with $c$ and $f : X \to S$ if and only if | |
$\zeta$ maps to $\xi$. Of course this is the same thing as saying | |
$\mathcal{O}_{X'}$ is a | |
solution of (\ref{equation-to-solve-ringed-spaces}). | |
\end{proof} | |
\begin{remark} | |
\label{remark-parametrize-solutions-ringed-spaces} | |
In the situation of | |
Lemma \ref{lemma-parametrize-solutions-ringed-spaces} | |
we have maps of complexes | |
$$ | |
Lf^*\NL_{S'/S} \to \NL_{X/S'} \to \NL_{X/S} | |
$$ | |
These maps are closed to forming a distinguished triangle, see | |
Modules, Lemma \ref{modules-lemma-exact-sequence-NL-ringed-topoi}. | |
If it were a distinguished triangle we would conclude | |
that the image of $\xi$ in $\Ext^2_{\mathcal{O}_X}(\NL_{X/S}, \mathcal{G})$ | |
would be the obstruction to the existence of a solution to | |
(\ref{equation-to-solve-ringed-spaces}). | |
\end{remark} | |
\section{Deformations of schemes} | |
\label{section-deformations-schemes} | |
\noindent | |
In this section we spell out what the results in | |
Section \ref{section-deformations-ringed-spaces} | |
mean for deformations of schemes. | |
\begin{lemma} | |
\label{lemma-deform} | |
Let $S \subset S'$ be a first order thickening of schemes. | |
Let $f : X \to S$ be a flat morphism of schemes. | |
If there exists a flat morphism $f' : X' \to S'$ of schemes | |
and an isomorphism $a : X \to X' \times_{S'} S$ over $S$, then | |
\begin{enumerate} | |
\item the set of isomorphism classes of pairs $(f' : X' \to S', a)$ is | |
principal homogeneous under | |
$\Ext^1_{\mathcal{O}_X}(\NL_{X/S}, f^*\mathcal{C}_{S/S'})$, and | |
\item the set of automorphisms of $\varphi : X' \to X'$ | |
over $S'$ which reduce to the identity on $X' \times_{S'} S$ | |
is $\Ext^0_{\mathcal{O}_X}(\NL_{X/S}, f^*\mathcal{C}_{S/S'})$. | |
\end{enumerate} | |
\end{lemma} | |
\begin{proof} | |
First we observe that thickenings of schemes as defined in | |
More on Morphisms, Section \ref{more-morphisms-section-thickenings} | |
are the same things as morphisms of schemes which | |
are thickenings in the sense of | |
Section \ref{section-thickenings-spaces}. | |
We may think of $X$ as a closed subscheme of $X'$ | |
so that $(f, f') : (X \subset X') \to (S \subset S')$ | |
is a morphism of first order thickenings. Then we see | |
from More on Morphisms, Lemma \ref{more-morphisms-lemma-deform} | |
(or from the more general Lemma \ref{lemma-deform-module}) | |
that the ideal sheaf of $X$ in $X'$ is equal to $f^*\mathcal{C}_{S/S'}$. | |
Hence we have a commutative diagram | |
$$ | |
\xymatrix{ | |
0 \ar[r] & f^*\mathcal{C}_{S/S'} \ar[r] & | |
\mathcal{O}_{X'} \ar[r] & | |
\mathcal{O}_X \ar[r] & 0 \\ | |
0 \ar[r] & \mathcal{C}_{S/S'} \ar[u] \ar[r] & | |
\mathcal{O}_{S'} \ar[u] \ar[r] & | |
\mathcal{O}_S \ar[u] \ar[r] & 0 | |
} | |
$$ | |
where the vertical arrows are $f$-maps; please compare with | |
(\ref{equation-to-solve-ringed-spaces}). | |
Thus part (1) follows from | |
Lemma \ref{lemma-choices-ringed-spaces} | |
and part (2) from part (2) of | |
Lemma \ref{lemma-huge-diagram-ringed-spaces}. | |
(Note that $\NL_{X/S}$ as defined for a morphism of schemes in | |
More on Morphisms, Section \ref{more-morphisms-section-netherlander} | |
agrees with $\NL_{X/S}$ as used in | |
Section \ref{section-deformations-ringed-spaces}.) | |
\end{proof} | |
\section{Thickenings of ringed topoi} | |
\label{section-thickenings-ringed-topoi} | |
\noindent | |
This section is the analogue of Section \ref{section-thickenings-spaces} | |
for ringed topoi. | |
In the following few sections we will use the following notions: | |
\begin{enumerate} | |
\item A sheaf of ideals $\mathcal{I} \subset \mathcal{O}'$ on | |
a ringed topos $(\Sh(\mathcal{D}), \mathcal{O}')$ is {\it locally nilpotent} | |
if any local section of $\mathcal{I}$ is locally nilpotent. | |
\item A {\it thickening} of ringed topoi is a morphism | |
$i : (\Sh(\mathcal{C}), \mathcal{O}) \to (\Sh(\mathcal{D}), \mathcal{O}')$ | |
of ringed topoi such that | |
\begin{enumerate} | |
\item $i_*$ is an equivalence $\Sh(\mathcal{C}) \to \Sh(\mathcal{D})$, | |
\item the map $i^\sharp : \mathcal{O}' \to i_*\mathcal{O}$ | |
is surjective, and | |
\item the kernel of $i^\sharp$ is a locally nilpotent sheaf of ideals. | |
\end{enumerate} | |
\item A {\it first order thickening} of ringed topoi is a thickening | |
$i : (\Sh(\mathcal{C}), \mathcal{O}) \to (\Sh(\mathcal{D}), \mathcal{O}')$ | |
of ringed topoi such that $\Ker(i^\sharp)$ has square zero. | |
\item It is clear how to define | |
{\it morphisms of thickenings of ringed topoi}, | |
{\it morphisms of thickenings of ringed topoi over a base ringed topos}, etc. | |
\end{enumerate} | |
If | |
$i : (\Sh(\mathcal{C}), \mathcal{O}) \to (\Sh(\mathcal{D}), \mathcal{O}')$ | |
is a thickening of ringed topoi then we identify the underlying topoi | |
and think of $\mathcal{O}$, $\mathcal{O}'$, and | |
$\mathcal{I} = \Ker(i^\sharp)$ as sheaves on $\mathcal{C}$. | |
We obtain a short exact sequence | |
$$ | |
0 \to \mathcal{I} \to \mathcal{O}' \to \mathcal{O} \to 0 | |
$$ | |
of $\mathcal{O}'$-modules. By | |
Modules on Sites, Lemma \ref{sites-modules-lemma-i-star-equivalence} | |
the category of $\mathcal{O}$-modules is equivalent to the category | |
of $\mathcal{O}'$-modules annihilated by $\mathcal{I}$. In particular, | |
if $i$ is a first order thickening, then | |
$\mathcal{I}$ is a $\mathcal{O}$-module. | |
\begin{situation} | |
\label{situation-morphism-thickenings-ringed-topoi} | |
A morphism of thickenings of ringed topoi $(f, f')$ | |
is given by a commutative diagram | |
\begin{equation} | |
\label{equation-morphism-thickenings-ringed-topoi} | |
\vcenter{ | |
\xymatrix{ | |
(\Sh(\mathcal{C}), \mathcal{O}) \ar[r]_i \ar[d]_f & | |
(\Sh(\mathcal{D}), \mathcal{O}') \ar[d]^{f'} \\ | |
(\Sh(\mathcal{B}), \mathcal{O}_\mathcal{B}) \ar[r]^t & | |
(\Sh(\mathcal{B}'), \mathcal{O}_{\mathcal{B}'}) | |
} | |
} | |
\end{equation} | |
of ringed topoi whose horizontal arrows are thickenings. In this | |
situation we set | |
$\mathcal{I} = \Ker(i^\sharp) \subset \mathcal{O}'$ and | |
$\mathcal{J} = \Ker(t^\sharp) \subset \mathcal{O}_{\mathcal{B}'}$. | |
As $f = f'$ on underlying topoi we will identify | |
the pullback functors $f^{-1}$ and $(f')^{-1}$. | |
Observe that | |
$(f')^\sharp : f^{-1}\mathcal{O}_{\mathcal{B}'} \to \mathcal{O}'$ | |
induces in particular a map $f^{-1}\mathcal{J} \to \mathcal{I}$ | |
and therefore a map of $\mathcal{O}'$-modules | |
$$ | |
(f')^*\mathcal{J} \longrightarrow \mathcal{I} | |
$$ | |
If $i$ and $t$ are first order thickenings, then | |
$(f')^*\mathcal{J} = f^*\mathcal{J}$ and the map above becomes a | |
map $f^*\mathcal{J} \to \mathcal{I}$. | |
\end{situation} | |
\begin{definition} | |
\label{definition-strict-morphism-thickenings-ringed-topoi} | |
In Situation \ref{situation-morphism-thickenings-ringed-topoi} | |
we say that $(f, f')$ is a {\it strict morphism of thickenings} | |
if the map $(f')^*\mathcal{J} \longrightarrow \mathcal{I}$ is surjective. | |
\end{definition} | |
\section{Modules on first order thickenings of ringed topoi} | |
\label{section-modules-thickenings-ringed-topoi} | |
\noindent | |
In this section we discuss some preliminaries to the deformation theory | |
of modules. Let | |
$i : (\Sh(\mathcal{C}, \mathcal{O}) \to (\Sh(\mathcal{D}), \mathcal{O}')$ | |
be a first order thickening of ringed topoi. We will freely use the notation | |
introduced in Section \ref{section-thickenings-ringed-topoi}, | |
in particular we will identify the underlying topological topoi. | |
In this section we consider short exact sequences | |
\begin{equation} | |
\label{equation-extension-ringed-topoi} | |
0 \to \mathcal{K} \to \mathcal{F}' \to \mathcal{F} \to 0 | |
\end{equation} | |
of $\mathcal{O}'$-modules, where $\mathcal{F}$, $\mathcal{K}$ are | |
$\mathcal{O}$-modules and $\mathcal{F}'$ is an $\mathcal{O}'$-module. | |
In this situation we have a canonical $\mathcal{O}$-module map | |
$$ | |
c_{\mathcal{F}'} : | |
\mathcal{I} \otimes_\mathcal{O} \mathcal{F} | |
\longrightarrow | |
\mathcal{K} | |
$$ | |
where $\mathcal{I} = \Ker(i^\sharp)$. | |
Namely, given local sections $f$ of $\mathcal{I}$ and $s$ | |
of $\mathcal{F}$ we set $c_{\mathcal{F}'}(f \otimes s) = fs'$ | |
where $s'$ is a local section of $\mathcal{F}'$ lifting $s$. | |
\begin{lemma} | |
\label{lemma-inf-map-ringed-topoi} | |
Let $i : (\Sh(\mathcal{C}), \mathcal{O}) \to (\Sh(\mathcal{D}), \mathcal{O}')$ | |
be a first order thickening of ringed topoi. Assume given | |
extensions | |
$$ | |
0 \to \mathcal{K} \to \mathcal{F}' \to \mathcal{F} \to 0 | |
\quad\text{and}\quad | |
0 \to \mathcal{L} \to \mathcal{G}' \to \mathcal{G} \to 0 | |
$$ | |
as in (\ref{equation-extension-ringed-topoi}) | |
and maps $\varphi : \mathcal{F} \to \mathcal{G}$ and | |
$\psi : \mathcal{K} \to \mathcal{L}$. | |
\begin{enumerate} | |
\item If there exists an $\mathcal{O}'$-module | |
map $\varphi' : \mathcal{F}' \to \mathcal{G}'$ compatible with $\varphi$ | |
and $\psi$, then the diagram | |
$$ | |
\xymatrix{ | |
\mathcal{I} \otimes_\mathcal{O} \mathcal{F} | |
\ar[r]_-{c_{\mathcal{F}'}} \ar[d]_{1 \otimes \varphi} & | |
\mathcal{K} \ar[d]^\psi \\ | |
\mathcal{I} \otimes_\mathcal{O} \mathcal{G} | |
\ar[r]^-{c_{\mathcal{G}'}} & | |
\mathcal{L} | |
} | |
$$ | |
is commutative. | |
\item The set of $\mathcal{O}'$-module | |
maps $\varphi' : \mathcal{F}' \to \mathcal{G}'$ compatible with $\varphi$ | |
and $\psi$ is, if nonempty, a principal homogeneous space under | |
$\Hom_\mathcal{O}(\mathcal{F}, \mathcal{L})$. | |
\end{enumerate} | |
\end{lemma} | |
\begin{proof} | |
Part (1) is immediate from the description of the maps. | |
For (2), if $\varphi'$ and $\varphi''$ are two maps | |
$\mathcal{F}' \to \mathcal{G}'$ compatible with $\varphi$ | |
and $\psi$, then $\varphi' - \varphi''$ factors as | |
$$ | |
\mathcal{F}' \to \mathcal{F} \to \mathcal{L} \to \mathcal{G}' | |
$$ | |
The map in the middle comes from a unique element of | |
$\Hom_\mathcal{O}(\mathcal{F}, \mathcal{L})$ by | |
Modules on Sites, Lemma \ref{sites-modules-lemma-i-star-equivalence}. | |
Conversely, given an element $\alpha$ of this group we can add the | |
composition (as displayed above with $\alpha$ in the middle) | |
to $\varphi'$. Some details omitted. | |
\end{proof} | |
\begin{lemma} | |
\label{lemma-inf-obs-map-ringed-topoi} | |
Let $i : (\Sh(\mathcal{C}), \mathcal{O}) \to (\Sh(\mathcal{D}), \mathcal{O}')$ | |
be a first order thickening of ringed topoi. Assume given extensions | |
$$ | |
0 \to \mathcal{K} \to \mathcal{F}' \to \mathcal{F} \to 0 | |
\quad\text{and}\quad | |
0 \to \mathcal{L} \to \mathcal{G}' \to \mathcal{G} \to 0 | |
$$ | |
as in (\ref{equation-extension-ringed-topoi}) | |
and maps $\varphi : \mathcal{F} \to \mathcal{G}$ and | |
$\psi : \mathcal{K} \to \mathcal{L}$. Assume the diagram | |
$$ | |
\xymatrix{ | |
\mathcal{I} \otimes_\mathcal{O} \mathcal{F} | |
\ar[r]_-{c_{\mathcal{F}'}} \ar[d]_{1 \otimes \varphi} & | |
\mathcal{K} \ar[d]^\psi \\ | |
\mathcal{I} \otimes_\mathcal{O} \mathcal{G} | |
\ar[r]^-{c_{\mathcal{G}'}} & | |
\mathcal{L} | |
} | |
$$ | |
is commutative. Then there exists an element | |
$$ | |
o(\varphi, \psi) \in | |
\Ext^1_\mathcal{O}(\mathcal{F}, \mathcal{L}) | |
$$ | |
whose vanishing is a necessary and sufficient condition for the existence | |
of a map $\varphi' : \mathcal{F}' \to \mathcal{G}'$ compatible with | |
$\varphi$ and $\psi$. | |
\end{lemma} | |
\begin{proof} | |
We can construct explicitly an extension | |
$$ | |
0 \to \mathcal{L} \to \mathcal{H} \to \mathcal{F} \to 0 | |
$$ | |
by taking $\mathcal{H}$ to be the cohomology of the complex | |
$$ | |
\mathcal{K} | |
\xrightarrow{1, - \psi} | |
\mathcal{F}' \oplus \mathcal{G}' \xrightarrow{\varphi, 1} | |
\mathcal{G} | |
$$ | |
in the middle (with obvious notation). A calculation with local sections | |
using the assumption that the diagram of the lemma commutes | |
shows that $\mathcal{H}$ is annihilated by $\mathcal{I}$. Hence | |
$\mathcal{H}$ defines a class in | |
$$ | |
\Ext^1_\mathcal{O}(\mathcal{F}, \mathcal{L}) | |
\subset | |
\Ext^1_{\mathcal{O}'}(\mathcal{F}, \mathcal{L}) | |
$$ | |
Finally, the class of $\mathcal{H}$ is the difference of the pushout | |
of the extension $\mathcal{F}'$ via $\psi$ and the pullback | |
of the extension $\mathcal{G}'$ via $\varphi$ (calculations omitted). | |
Thus the vanishing of the class of $\mathcal{H}$ is equivalent to the | |
existence of a commutative diagram | |
$$ | |
\xymatrix{ | |
0 \ar[r] & | |
\mathcal{K} \ar[r] \ar[d]_{\psi} & | |
\mathcal{F}' \ar[r] \ar[d]_{\varphi'} & | |
\mathcal{F} \ar[r] \ar[d]_\varphi & 0\\ | |
0 \ar[r] & | |
\mathcal{L} \ar[r] & | |
\mathcal{G}' \ar[r] & | |
\mathcal{G} \ar[r] & 0 | |
} | |
$$ | |
as desired. | |
\end{proof} | |
\begin{lemma} | |
\label{lemma-inf-ext-ringed-topoi} | |
Let $i : (\Sh(\mathcal{C}), \mathcal{O}) \to (\Sh(\mathcal{D}), \mathcal{O}')$ | |
be a first order thickening of ringed topoi. Assume given | |
$\mathcal{O}$-modules $\mathcal{F}$, $\mathcal{K}$ | |
and an $\mathcal{O}$-linear map | |
$c : \mathcal{I} \otimes_\mathcal{O} \mathcal{F} \to \mathcal{K}$. | |
If there exists a sequence (\ref{equation-extension-ringed-topoi}) with | |
$c_{\mathcal{F}'} = c$ then the set of isomorphism classes of these | |
extensions is principal homogeneous under | |
$\Ext^1_\mathcal{O}(\mathcal{F}, \mathcal{K})$. | |
\end{lemma} | |
\begin{proof} | |
Assume given extensions | |
$$ | |
0 \to \mathcal{K} \to \mathcal{F}'_1 \to \mathcal{F} \to 0 | |
\quad\text{and}\quad | |
0 \to \mathcal{K} \to \mathcal{F}'_2 \to \mathcal{F} \to 0 | |
$$ | |
with $c_{\mathcal{F}'_1} = c_{\mathcal{F}'_2} = c$. Then the difference | |
(in the extension group, see | |
Homology, Section \ref{homology-section-extensions}) | |
is an extension | |
$$ | |
0 \to \mathcal{K} \to \mathcal{E} \to \mathcal{F} \to 0 | |
$$ | |
where $\mathcal{E}$ is annihilated by $\mathcal{I}$ (local computation | |
omitted). Hence the sequence is an extension of $\mathcal{O}$-modules, | |
see Modules on Sites, Lemma \ref{sites-modules-lemma-i-star-equivalence}. | |
Conversely, given such an extension $\mathcal{E}$ we can add the extension | |
$\mathcal{E}$ to the $\mathcal{O}'$-extension $\mathcal{F}'$ without | |
affecting the map $c_{\mathcal{F}'}$. Some details omitted. | |
\end{proof} | |
\begin{lemma} | |
\label{lemma-inf-obs-ext-ringed-topoi} | |
Let $i : (\Sh(\mathcal{C}), \mathcal{O}) \to (\Sh(\mathcal{D}), \mathcal{O}')$ | |
be a first order thickening of ringed topoi. Assume given | |
$\mathcal{O}$-modules $\mathcal{F}$, $\mathcal{K}$ | |
and an $\mathcal{O}$-linear map | |
$c : \mathcal{I} \otimes_\mathcal{O} \mathcal{F} \to \mathcal{K}$. | |
Then there exists an element | |
$$ | |
o(\mathcal{F}, \mathcal{K}, c) \in | |
\Ext^2_\mathcal{O}(\mathcal{F}, \mathcal{K}) | |
$$ | |
whose vanishing is a necessary and sufficient condition for the existence | |
of a sequence (\ref{equation-extension-ringed-topoi}) | |
with $c_{\mathcal{F}'} = c$. | |
\end{lemma} | |
\begin{proof} | |
We first show that if $\mathcal{K}$ is an injective $\mathcal{O}$-module, | |
then there does exist a sequence (\ref{equation-extension-ringed-topoi}) with | |
$c_{\mathcal{F}'} = c$. To do this, choose a flat | |
$\mathcal{O}'$-module $\mathcal{H}'$ and a surjection | |
$\mathcal{H}' \to \mathcal{F}$ | |
(Modules on Sites, Lemma \ref{sites-modules-lemma-module-quotient-flat}). | |
Let $\mathcal{J} \subset \mathcal{H}'$ be the kernel. Since $\mathcal{H}'$ | |
is flat we have | |
$$ | |
\mathcal{I} \otimes_{\mathcal{O}'} \mathcal{H}' = | |
\mathcal{I}\mathcal{H}' | |
\subset \mathcal{J} \subset \mathcal{H}' | |
$$ | |
Observe that the map | |
$$ | |
\mathcal{I}\mathcal{H}' = | |
\mathcal{I} \otimes_{\mathcal{O}'} \mathcal{H}' | |
\longrightarrow | |
\mathcal{I} \otimes_{\mathcal{O}'} \mathcal{F} = | |
\mathcal{I} \otimes_\mathcal{O} \mathcal{F} | |
$$ | |
annihilates $\mathcal{I}\mathcal{J}$. Namely, if $f$ is a local section | |
of $\mathcal{I}$ and $s$ is a local section of $\mathcal{H}$, then | |
$fs$ is mapped to $f \otimes \overline{s}$ where $\overline{s}$ is | |
the image of $s$ in $\mathcal{F}$. Thus we obtain | |
$$ | |
\xymatrix{ | |
\mathcal{I}\mathcal{H}'/\mathcal{I}\mathcal{J} | |
\ar@{^{(}->}[r] \ar[d] & | |
\mathcal{J}/\mathcal{I}\mathcal{J} \ar@{..>}[d]_\gamma \\ | |
\mathcal{I} \otimes_\mathcal{O} \mathcal{F} \ar[r]^-c & | |
\mathcal{K} | |
} | |
$$ | |
a diagram of $\mathcal{O}$-modules. If $\mathcal{K}$ is injective | |
as an $\mathcal{O}$-module, then we obtain the dotted arrow. | |
Denote $\gamma' : \mathcal{J} \to \mathcal{K}$ the composition | |
of $\gamma$ with $\mathcal{J} \to \mathcal{J}/\mathcal{I}\mathcal{J}$. | |
A local calculation shows the pushout | |
$$ | |
\xymatrix{ | |
0 \ar[r] & | |
\mathcal{J} \ar[r] \ar[d]_{\gamma'} & | |
\mathcal{H}' \ar[r] \ar[d] & | |
\mathcal{F} \ar[r] \ar@{=}[d] & | |
0 \\ | |
0 \ar[r] & | |
\mathcal{K} \ar[r] & | |
\mathcal{F}' \ar[r] & | |
\mathcal{F} \ar[r] & | |
0 | |
} | |
$$ | |
is a solution to the problem posed by the lemma. | |
\medskip\noindent | |
General case. Choose an embedding $\mathcal{K} \subset \mathcal{K}'$ | |
with $\mathcal{K}'$ an injective $\mathcal{O}$-module. Let $\mathcal{Q}$ | |
be the quotient, so that we have an exact sequence | |
$$ | |
0 \to \mathcal{K} \to \mathcal{K}' \to \mathcal{Q} \to 0 | |
$$ | |
Denote | |
$c' : \mathcal{I} \otimes_\mathcal{O} \mathcal{F} \to \mathcal{K}'$ | |
be the composition. By the paragraph above there exists a sequence | |
$$ | |
0 \to \mathcal{K}' \to \mathcal{E}' \to \mathcal{F} \to 0 | |
$$ | |
as in (\ref{equation-extension-ringed-topoi}) with $c_{\mathcal{E}'} = c'$. | |
Note that $c'$ composed with the map $\mathcal{K}' \to \mathcal{Q}$ | |
is zero, hence the pushout of $\mathcal{E}'$ by | |
$\mathcal{K}' \to \mathcal{Q}$ is an extension | |
$$ | |
0 \to \mathcal{Q} \to \mathcal{D}' \to \mathcal{F} \to 0 | |
$$ | |
as in (\ref{equation-extension-ringed-topoi}) with $c_{\mathcal{D}'} = 0$. | |
This means exactly that $\mathcal{D}'$ is annihilated by | |
$\mathcal{I}$, in other words, the $\mathcal{D}'$ is an extension | |
of $\mathcal{O}$-modules, i.e., defines an element | |
$$ | |
o(\mathcal{F}, \mathcal{K}, c) \in | |
\Ext^1_\mathcal{O}(\mathcal{F}, \mathcal{Q}) = | |
\Ext^2_\mathcal{O}(\mathcal{F}, \mathcal{K}) | |
$$ | |
(the equality holds by the long exact cohomology sequence associated | |
to the exact sequence above and the vanishing of higher ext groups | |
into the injective module $\mathcal{K}'$). If | |
$o(\mathcal{F}, \mathcal{K}, c) = 0$, then we can choose a splitting | |
$s : \mathcal{F} \to \mathcal{D}'$ and we can set | |
$$ | |
\mathcal{F}' = \Ker(\mathcal{E}' \to \mathcal{D}'/s(\mathcal{F})) | |
$$ | |
so that we obtain the following diagram | |
$$ | |
\xymatrix{ | |
0 \ar[r] & | |
\mathcal{K} \ar[r] \ar[d] & | |
\mathcal{F}' \ar[r] \ar[d] & | |
\mathcal{F} \ar[r] \ar@{=}[d] & | |
0 \\ | |
0 \ar[r] & | |
\mathcal{K}' \ar[r] & | |
\mathcal{E}' \ar[r] & | |
\mathcal{F} \ar[r] & 0 | |
} | |
$$ | |
with exact rows which shows that $c_{\mathcal{F}'} = c$. Conversely, if | |
$\mathcal{F}'$ exists, then the pushout of $\mathcal{F}'$ by the map | |
$\mathcal{K} \to \mathcal{K}'$ is isomorphic to $\mathcal{E}'$ by | |
Lemma \ref{lemma-inf-ext-ringed-topoi} and the vanishing of higher ext groups | |
into the injective module $\mathcal{K}'$. This gives a diagram | |
as above, which implies that $\mathcal{D}'$ is split as an extension, i.e., | |
the class $o(\mathcal{F}, \mathcal{K}, c)$ is zero. | |
\end{proof} | |
\begin{remark} | |
\label{remark-trivial-thickening-ringed-topoi} | |
Let $(\Sh(\mathcal{C}), \mathcal{O})$ be a ringed topos. A first order | |
thickening $i : (\Sh(\mathcal{C}), \mathcal{O}) \to | |
(\Sh(\mathcal{D}), \mathcal{O}')$ is said | |
to be {\it trivial} if there exists a morphism of ringed topoi | |
$\pi : (\Sh(\mathcal{D}), \mathcal{O}') \to (\Sh(\mathcal{C}), \mathcal{O})$ | |
which is a left inverse to $i$. The choice of such a morphism | |
$\pi$ is called a {\it trivialization} of the first order thickening. | |
Given $\pi$ we obtain a splitting | |
\begin{equation} | |
\label{equation-splitting-ringed-topoi} | |
\mathcal{O}' = \mathcal{O} \oplus \mathcal{I} | |
\end{equation} | |
as sheaves of algebras on $\mathcal{C}$ by using $\pi^\sharp$ | |
to split the surjection $\mathcal{O}' \to \mathcal{O}$. | |
Conversely, such a splitting determines | |
a morphism $\pi$. The category of trivialized first order thickenings of | |
$(\Sh(\mathcal{C}), \mathcal{O})$ is equivalent to the category of | |
$\mathcal{O}$-modules. | |
\end{remark} | |
\begin{remark} | |
\label{remark-trivial-extension-ringed-topoi} | |
Let $i : (\Sh(\mathcal{C}), \mathcal{O}) \to (\Sh(\mathcal{D}), \mathcal{O}')$ | |
be a trivial first order thickening of ringed topoi | |
and let $\pi : (\Sh(\mathcal{D}), \mathcal{O}') \to | |
(\Sh(\mathcal{C}), \mathcal{O})$ be a trivialization. Then given any triple | |
$(\mathcal{F}, \mathcal{K}, c)$ consisting of a pair of | |
$\mathcal{O}$-modules and a map | |
$c : \mathcal{I} \otimes_\mathcal{O} \mathcal{F} \to \mathcal{K}$ | |
we may set | |
$$ | |
\mathcal{F}'_{c, triv} = \mathcal{F} \oplus \mathcal{K} | |
$$ | |
and use the splitting (\ref{equation-splitting-ringed-topoi}) | |
associated to $\pi$ and the map $c$ to define the $\mathcal{O}'$-module | |
structure and obtain an extension (\ref{equation-extension-ringed-topoi}). | |
We will call $\mathcal{F}'_{c, triv}$ the {\it trivial extension} of | |
$\mathcal{F}$ by $\mathcal{K}$ corresponding | |
to $c$ and the trivialization $\pi$. Given any extension | |
$\mathcal{F}'$ as in (\ref{equation-extension-ringed-topoi}) we can use | |
$\pi^\sharp : \mathcal{O} \to \mathcal{O}'$ to think of $\mathcal{F}'$ | |
as an $\mathcal{O}$-module extension, hence a class $\xi_{\mathcal{F}'}$ | |
in $\Ext^1_\mathcal{O}(\mathcal{F}, \mathcal{K})$. | |
Lemma \ref{lemma-inf-ext-ringed-topoi} assures that | |
$\mathcal{F}' \mapsto \xi_{\mathcal{F}'}$ | |
induces a bijection | |
$$ | |
\left\{ | |
\begin{matrix} | |
\text{isomorphism classes of extensions}\\ | |
\mathcal{F}'\text{ as in (\ref{equation-extension-ringed-topoi}) with } | |
c = c_{\mathcal{F}'} | |
\end{matrix} | |
\right\} | |
\longrightarrow | |
\Ext^1_\mathcal{O}(\mathcal{F}, \mathcal{K}) | |
$$ | |
Moreover, the trivial extension $\mathcal{F}'_{c, triv}$ maps to the zero class. | |
\end{remark} | |
\begin{remark} | |
\label{remark-extension-functorial-ringed-topoi} | |
Let $(\Sh(\mathcal{C}), \mathcal{O})$ be a ringed topos. Let | |
$(\Sh(\mathcal{C}), \mathcal{O}) \to (\Sh(\mathcal{D}_i), \mathcal{O}'_i)$, | |
$i = 1, 2$ be first order thickenings with ideal sheaves $\mathcal{I}_i$. | |
Let $h : (\Sh(\mathcal{D}_1), \mathcal{O}'_1) \to | |
(\Sh(\mathcal{D}_2), \mathcal{O}'_2)$ | |
be a morphism of first order thickenings of $(\Sh(\mathcal{C}), \mathcal{O})$. | |
Picture | |
$$ | |
\xymatrix{ | |
& (\Sh(\mathcal{C}), \mathcal{O}) \ar[ld] \ar[rd] & \\ | |
(\Sh(\mathcal{D}_1), \mathcal{O}'_1) \ar[rr]^h & & | |
(\Sh(\mathcal{D}_2), \mathcal{O}'_2) | |
} | |
$$ | |
Observe that $h^\sharp : \mathcal{O}'_2 \to \mathcal{O}'_1$ | |
in particular induces an $\mathcal{O}$-module map | |
$\mathcal{I}_2 \to \mathcal{I}_1$. | |
Let $\mathcal{F}$ be an $\mathcal{O}$-module. | |
Let $(\mathcal{K}_i, c_i)$, $i = 1, 2$ be a pair | |
consisting of an $\mathcal{O}$-module $\mathcal{K}_i$ and a map | |
$c_i : \mathcal{I}_i \otimes_\mathcal{O} \mathcal{F} \to | |
\mathcal{K}_i$. Assume furthermore given a map | |
of $\mathcal{O}$-modules $\mathcal{K}_2 \to \mathcal{K}_1$ | |
such that | |
$$ | |
\xymatrix{ | |
\mathcal{I}_2 \otimes_\mathcal{O} \mathcal{F} | |
\ar[r]_-{c_2} \ar[d] & | |
\mathcal{K}_2 \ar[d] \\ | |
\mathcal{I}_1 \otimes_\mathcal{O} \mathcal{F} | |
\ar[r]^-{c_1} & | |
\mathcal{K}_1 | |
} | |
$$ | |
is commutative. Then there is a canonical functoriality | |
$$ | |
\left\{ | |
\begin{matrix} | |
\mathcal{F}'_2\text{ as in (\ref{equation-extension-ringed-topoi}) with }\\ | |
c_2 = c_{\mathcal{F}'_2}\text{ and }\mathcal{K} = \mathcal{K}_2 | |
\end{matrix} | |
\right\} | |
\longrightarrow | |
\left\{ | |
\begin{matrix} | |
\mathcal{F}'_1\text{ as in (\ref{equation-extension-ringed-topoi}) with }\\ | |
c_1 = c_{\mathcal{F}'_1}\text{ and }\mathcal{K} = \mathcal{K}_1 | |
\end{matrix} | |
\right\} | |
$$ | |
Namely, thinking of all sheaves $\mathcal{O}$, $\mathcal{O}'_i$, | |
$\mathcal{F}$, $\mathcal{K}_i$, etc as sheaves on $\mathcal{C}$, we set | |
given $\mathcal{F}'_2$ the sheaf $\mathcal{F}'_1$ equal to the | |
pushout, i.e., fitting into the following diagram of extensions | |
$$ | |
\xymatrix{ | |
0 \ar[r] & | |
\mathcal{K}_2 \ar[r] \ar[d] & | |
\mathcal{F}'_2 \ar[r] \ar[d] & | |
\mathcal{F} \ar@{=}[d] \ar[r] & 0 \\ | |
0 \ar[r] & | |
\mathcal{K}_1 \ar[r] & | |
\mathcal{F}'_1 \ar[r] & | |
\mathcal{F} \ar[r] & 0 | |
} | |
$$ | |
We omit the construction of the $\mathcal{O}'_1$-module structure | |
on the pushout (this uses the commutativity of the diagram | |
involving $c_1$ and $c_2$). | |
\end{remark} | |
\begin{remark} | |
\label{remark-trivial-extension-functorial-ringed-topoi} | |
Let $(\Sh(\mathcal{C}), \mathcal{O})$, | |
$(\Sh(\mathcal{C}), \mathcal{O}) \to (\Sh(\mathcal{D}_i), \mathcal{O}'_i)$, | |
$\mathcal{I}_i$, and $h : (\Sh(\mathcal{D}_1), \mathcal{O}'_1) \to | |
(\Sh(\mathcal{D}_2), \mathcal{O}'_2)$ be as in | |
Remark \ref{remark-extension-functorial-ringed-topoi}. | |
Assume that we are given trivializations | |
$\pi_i : (\Sh(\mathcal{D}_i), \mathcal{O}'_i) \to | |
(\Sh(\mathcal{C}), \mathcal{O})$ such that | |
$\pi_1 = h \circ \pi_2$. In other words, assume $h$ is a morphism | |
of trivialized first order thickenings of $(\Sh(\mathcal{C}), \mathcal{O})$. | |
Let $(\mathcal{K}_i, c_i)$, $i = 1, 2$ be a pair consisting of an | |
$\mathcal{O}$-module $\mathcal{K}_i$ and a map | |
$c_i : \mathcal{I}_i \otimes_\mathcal{O} \mathcal{F} \to | |
\mathcal{K}_i$. Assume furthermore given a map | |
of $\mathcal{O}$-modules $\mathcal{K}_2 \to \mathcal{K}_1$ | |
such that | |
$$ | |
\xymatrix{ | |
\mathcal{I}_2 \otimes_\mathcal{O} \mathcal{F} | |
\ar[r]_-{c_2} \ar[d] & | |
\mathcal{K}_2 \ar[d] \\ | |
\mathcal{I}_1 \otimes_\mathcal{O} \mathcal{F} | |
\ar[r]^-{c_1} & | |
\mathcal{K}_1 | |
} | |
$$ | |
is commutative. In this situation the construction of | |
Remark \ref{remark-trivial-extension-ringed-topoi} induces | |
a commutative diagram | |
$$ | |
\xymatrix{ | |
\{\mathcal{F}'_2\text{ as in (\ref{equation-extension-ringed-topoi}) with } | |
c_2 = c_{\mathcal{F}'_2}\text{ and }\mathcal{K} = \mathcal{K}_2\} | |
\ar[d] \ar[rr] & & | |
\Ext^1_\mathcal{O}(\mathcal{F}, \mathcal{K}_2) \ar[d] \\ | |
\{\mathcal{F}'_1\text{ as in (\ref{equation-extension-ringed-topoi}) with } | |
c_1 = c_{\mathcal{F}'_1}\text{ and }\mathcal{K} = \mathcal{K}_1\} | |
\ar[rr] & & | |
\Ext^1_\mathcal{O}(\mathcal{F}, \mathcal{K}_1) | |
} | |
$$ | |
where the vertical map on the right is given by functoriality of $\Ext$ | |
and the map $\mathcal{K}_2 \to \mathcal{K}_1$ and the vertical map on the left | |
is the one from Remark \ref{remark-extension-functorial-ringed-topoi}. | |
\end{remark} | |
\begin{remark} | |
\label{remark-obstruction-extension-functorial-ringed-topoi} | |
Let $(\Sh(\mathcal{C}), \mathcal{O})$, | |
$(\Sh(\mathcal{C}), \mathcal{O}) \to (\Sh(\mathcal{D}_i), \mathcal{O}'_i)$, | |
$\mathcal{I}_i$, and $h : (\Sh(\mathcal{D}_1), \mathcal{O}'_1) \to | |
(\Sh(\mathcal{D}_2), \mathcal{O}'_2)$ be as in | |
Remark \ref{remark-extension-functorial-ringed-topoi}. | |
Observe that $h^\sharp : \mathcal{O}'_2 \to \mathcal{O}'_1$ | |
in particular induces an $\mathcal{O}$-module map | |
$\mathcal{I}_2 \to \mathcal{I}_1$. | |
Let $\mathcal{F}$ be an $\mathcal{O}$-module. | |
Let $(\mathcal{K}_i, c_i)$, $i = 1, 2$ be a pair | |
consisting of an $\mathcal{O}$-module $\mathcal{K}_i$ and a map | |
$c_i : \mathcal{I}_i \otimes_\mathcal{O} \mathcal{F} \to | |
\mathcal{K}_i$. Assume furthermore given a map | |
of $\mathcal{O}$-modules $\mathcal{K}_2 \to \mathcal{K}_1$ | |
such that | |
$$ | |
\xymatrix{ | |
\mathcal{I}_2 \otimes_\mathcal{O} \mathcal{F} | |
\ar[r]_-{c_2} \ar[d] & | |
\mathcal{K}_2 \ar[d] \\ | |
\mathcal{I}_1 \otimes_\mathcal{O} \mathcal{F} | |
\ar[r]^-{c_1} & | |
\mathcal{K}_1 | |
} | |
$$ | |
is commutative. Then we {\bf claim} the map | |
$$ | |
\Ext^2_\mathcal{O}(\mathcal{F}, \mathcal{K}_2) | |
\longrightarrow | |
\Ext^2_\mathcal{O}(\mathcal{F}, \mathcal{K}_1) | |
$$ | |
sends $o(\mathcal{F}, \mathcal{K}_2, c_2)$ to | |
$o(\mathcal{F}, \mathcal{K}_1, c_1)$. | |
\medskip\noindent | |
To prove this claim choose an embedding | |
$j_2 : \mathcal{K}_2 \to \mathcal{K}_2'$ | |
where $\mathcal{K}_2'$ is an injective $\mathcal{O}$-module. | |
As in the proof of Lemma \ref{lemma-inf-obs-ext-ringed-topoi} | |
we can choose an extension of $\mathcal{O}_2$-modules | |
$$ | |
0 \to \mathcal{K}_2' \to \mathcal{E}_2 \to \mathcal{F} \to 0 | |
$$ | |
such that $c_{\mathcal{E}_2} = j_2 \circ c_2$. | |
The proof of Lemma \ref{lemma-inf-obs-ext-ringed-topoi} constructs | |
$o(\mathcal{F}, \mathcal{K}_2, c_2)$ | |
as the Yoneda extension class (in the sense of | |
Derived Categories, Section \ref{derived-section-ext}) | |
of the exact sequence of $\mathcal{O}$-modules | |
$$ | |
0 \to | |
\mathcal{K}_2 \to \mathcal{K}_2' \to | |
\mathcal{E}_2/\mathcal{K}_2 \to | |
\mathcal{F} \to 0 | |
$$ | |
Let $\mathcal{K}_1'$ be the cokernel of | |
$\mathcal{K}_2 \to \mathcal{K}_1 \oplus \mathcal{K}_2'$. | |
There is an injection $j_1 : \mathcal{K}_1 \to \mathcal{K}_1'$ | |
and a map $\mathcal{K}_2' \to \mathcal{K}_1'$ forming | |
a commutative square. We form the pushout: | |
$$ | |
\xymatrix{ | |
0 \ar[r] & | |
\mathcal{K}_2' \ar[r] \ar[d] & | |
\mathcal{E}_2 \ar[r] \ar[d] & | |
\mathcal{F} \ar[r] \ar[d] & 0 \\ | |
0 \ar[r] & | |
\mathcal{K}_1' \ar[r] & | |
\mathcal{E}_1 \ar[r] & | |
\mathcal{F} \ar[r] & 0 | |
} | |
$$ | |
There is a canonical $\mathcal{O}_1$-module structure on | |
$\mathcal{E}_1$ and for this structure we have | |
$c_{\mathcal{E}_1} = j_1 \circ c_1$ (this uses the commutativity | |
of the diagram involving $c_1$ and $c_2$ above). | |
The procedure of Lemma \ref{lemma-inf-obs-ext-ringed-topoi} | |
tells us that $o(\mathcal{F}, \mathcal{K}_1, c_1)$ | |
is the Yoneda extension class of the exact sequence | |
of $\mathcal{O}$-modules | |
$$ | |
0 \to | |
\mathcal{K}_1 \to | |
\mathcal{K}_1' \to | |
\mathcal{E}_1/\mathcal{K}_1 \to | |
\mathcal{F} \to 0 | |
$$ | |
Since we have maps of exact sequences | |
$$ | |
\xymatrix{ | |
0 \ar[r] & | |
\mathcal{K}_2 \ar[d] \ar[r] & | |
\mathcal{K}_2' \ar[d] \ar[r] & | |
\mathcal{E}_2/\mathcal{K}_2 \ar[r] \ar[d] & | |
\mathcal{F} \ar[r] \ar@{=}[d] & | |
0 \\ | |
0 \ar[r] & | |
\mathcal{K}_2 \ar[r] & | |
\mathcal{K}_2' \ar[r] & | |
\mathcal{E}_2/\mathcal{K}_2 \ar[r] & | |
\mathcal{F} \ar[r] & | |
0 | |
} | |
$$ | |
we conclude that the claim is true. | |
\end{remark} | |
\begin{remark} | |
\label{remark-short-exact-sequence-thickenings-ringed-topoi} | |
Let $(\Sh(\mathcal{C}), \mathcal{O})$ be a ringed topos. | |
We define a sequence of morphisms of first order thickenings | |
$$ | |
(\Sh(\mathcal{D}_1), \mathcal{O}'_1) \to | |
(\Sh(\mathcal{D}_2), \mathcal{O}'_2) \to | |
(\Sh(\mathcal{D}_3), \mathcal{O}'_3) | |
$$ | |
of $(\Sh(\mathcal{C}), \mathcal{O})$ to be a {\it complex} | |
if the corresponding maps between | |
the ideal sheaves $\mathcal{I}_i$ | |
give a complex of $\mathcal{O}$-modules | |
$\mathcal{I}_3 \to \mathcal{I}_2 \to \mathcal{I}_1$ | |
(i.e., the composition is zero). In this case the composition | |
$(\Sh(\mathcal{D}_1), \mathcal{O}'_1) \to | |
(\Sh(\mathcal{D}_3), \mathcal{O}'_3)$ factors through | |
$(\Sh(\mathcal{C}), \mathcal{O}) \to | |
(\Sh(\mathcal{D}_3), \mathcal{O}'_3)$, i.e., | |
the first order thickening | |
$(\Sh(\mathcal{D}_1), \mathcal{O}'_1)$ of | |
$(\Sh(\mathcal{C}), \mathcal{O})$ is trivial and comes with | |
a canonical trivialization | |
$\pi : (\Sh(\mathcal{D}_1), \mathcal{O}'_1) \to | |
(\Sh(\mathcal{C}), \mathcal{O})$. | |
\medskip\noindent | |
We say a sequence of morphisms of first order thickenings | |
$$ | |
(\Sh(\mathcal{D}_1), \mathcal{O}'_1) \to | |
(\Sh(\mathcal{D}_2), \mathcal{O}'_2) \to | |
(\Sh(\mathcal{D}_3), \mathcal{O}'_3) | |
$$ | |
of $(\Sh(\mathcal{C}), \mathcal{O})$ is {\it a short exact sequence} if the | |
corresponding maps between ideal sheaves is a short exact sequence | |
$$ | |
0 \to \mathcal{I}_3 \to \mathcal{I}_2 \to \mathcal{I}_1 \to 0 | |
$$ | |
of $\mathcal{O}$-modules. | |
\end{remark} | |
\begin{remark} | |
\label{remark-complex-thickenings-and-ses-modules-ringed-topoi} | |
Let $(\Sh(\mathcal{C}), \mathcal{O})$ be a ringed topos. | |
Let $\mathcal{F}$ be an $\mathcal{O}$-module. Let | |
$$ | |
(\Sh(\mathcal{D}_1), \mathcal{O}'_1) \to | |
(\Sh(\mathcal{D}_2), \mathcal{O}'_2) \to | |
(\Sh(\mathcal{D}_3), \mathcal{O}'_3) | |
$$ | |
be a complex first order thickenings of $(\Sh(\mathcal{C}), \mathcal{O})$, see | |
Remark \ref{remark-short-exact-sequence-thickenings-ringed-topoi}. | |
Let $(\mathcal{K}_i, c_i)$, $i = 1, 2, 3$ be pairs consisting of | |
an $\mathcal{O}$-module $\mathcal{K}_i$ and a map | |
$c_i : \mathcal{I}_i \otimes_\mathcal{O} \mathcal{F} \to | |
\mathcal{K}_i$. Assume given a short exact sequence | |
of $\mathcal{O}$-modules | |
$$ | |
0 \to \mathcal{K}_3 \to \mathcal{K}_2 \to \mathcal{K}_1 \to 0 | |
$$ | |
such that | |
$$ | |
\vcenter{ | |
\xymatrix{ | |
\mathcal{I}_2 \otimes_\mathcal{O} \mathcal{F} | |
\ar[r]_-{c_2} \ar[d] & | |
\mathcal{K}_2 \ar[d] \\ | |
\mathcal{I}_1 \otimes_\mathcal{O} \mathcal{F} | |
\ar[r]^-{c_1} & | |
\mathcal{K}_1 | |
} | |
} | |
\quad\text{and}\quad | |
\vcenter{ | |
\xymatrix{ | |
\mathcal{I}_3 \otimes_\mathcal{O} \mathcal{F} | |
\ar[r]_-{c_3} \ar[d] & | |
\mathcal{K}_3 \ar[d] \\ | |
\mathcal{I}_2 \otimes_\mathcal{O} \mathcal{F} | |
\ar[r]^-{c_2} & | |
\mathcal{K}_2 | |
} | |
} | |
$$ | |
are commutative. Finally, assume given an extension | |
$$ | |
0 \to \mathcal{K}_2 \to \mathcal{F}'_2 \to \mathcal{F} \to 0 | |
$$ | |
as in (\ref{equation-extension-ringed-topoi}) | |
with $\mathcal{K} = \mathcal{K}_2$ | |
of $\mathcal{O}'_2$-modules with $c_{\mathcal{F}'_2} = c_2$. | |
In this situation we can apply the functoriality of | |
Remark \ref{remark-extension-functorial-ringed-topoi} | |
to obtain an extension $\mathcal{F}'_1$ of $\mathcal{O}'_1$-modules | |
(we'll describe $\mathcal{F}'_1$ in this special case below). By | |
Remark \ref{remark-trivial-extension-ringed-topoi} | |
using the canonical splitting | |
$\pi : (\Sh(\mathcal{D}_1), \mathcal{O}'_1) \to | |
(\Sh(\mathcal{C}), \mathcal{O})$ of | |
Remark \ref{remark-short-exact-sequence-thickenings-ringed-topoi} | |
we obtain | |
$\xi_{\mathcal{F}'_1} \in | |
\Ext^1_\mathcal{O}(\mathcal{F}, \mathcal{K}_1)$. | |
Finally, we have the obstruction | |
$$ | |
o(\mathcal{F}, \mathcal{K}_3, c_3) \in | |
\Ext^2_\mathcal{O}(\mathcal{F}, \mathcal{K}_3) | |
$$ | |
see Lemma \ref{lemma-inf-obs-ext-ringed-topoi}. | |
In this situation we {\bf claim} that the canonical map | |
$$ | |
\partial : | |
\Ext^1_\mathcal{O}(\mathcal{F}, \mathcal{K}_1) | |
\longrightarrow | |
\Ext^2_\mathcal{O}(\mathcal{F}, \mathcal{K}_3) | |
$$ | |
coming from the short exact sequence | |
$0 \to \mathcal{K}_3 \to \mathcal{K}_2 \to \mathcal{K}_1 \to 0$ | |
sends $\xi_{\mathcal{F}'_1}$ | |
to the obstruction class $o(\mathcal{F}, \mathcal{K}_3, c_3)$. | |
\medskip\noindent | |
To prove this claim choose an embedding $j : \mathcal{K}_3 \to \mathcal{K}$ | |
where $\mathcal{K}$ is an injective $\mathcal{O}$-module. | |
We can lift $j$ to a map $j' : \mathcal{K}_2 \to \mathcal{K}$. | |
Set $\mathcal{E}'_2 = j'_*\mathcal{F}'_2$ equal to the pushout | |
of $\mathcal{F}'_2$ by $j'$ so that $c_{\mathcal{E}'_2} = j' \circ c_2$. | |
Picture: | |
$$ | |
\xymatrix{ | |
0 \ar[r] & | |
\mathcal{K}_2 \ar[r] \ar[d]_{j'} & | |
\mathcal{F}'_2 \ar[r] \ar[d] & | |
\mathcal{F} \ar[r] \ar[d] & 0 \\ | |
0 \ar[r] & | |
\mathcal{K} \ar[r] & | |
\mathcal{E}'_2 \ar[r] & | |
\mathcal{F} \ar[r] & 0 | |
} | |
$$ | |
Set $\mathcal{E}'_3 = \mathcal{E}'_2$ but viewed as an | |
$\mathcal{O}'_3$-module via $\mathcal{O}'_3 \to \mathcal{O}'_2$. | |
Then $c_{\mathcal{E}'_3} = j \circ c_3$. | |
The proof of Lemma \ref{lemma-inf-obs-ext-ringed-topoi} constructs | |
$o(\mathcal{F}, \mathcal{K}_3, c_3)$ | |
as the boundary of the class of the extension of $\mathcal{O}$-modules | |
$$ | |
0 \to | |
\mathcal{K}/\mathcal{K}_3 \to | |
\mathcal{E}'_3/\mathcal{K}_3 \to | |
\mathcal{F} \to 0 | |
$$ | |
On the other hand, note that $\mathcal{F}'_1 = \mathcal{F}'_2/\mathcal{K}_3$ | |
hence the class $\xi_{\mathcal{F}'_1}$ is the class | |
of the extension | |
$$ | |
0 \to \mathcal{K}_2/\mathcal{K}_3 \to \mathcal{F}'_2/\mathcal{K}_3 | |
\to \mathcal{F} \to 0 | |
$$ | |
seen as a sequence of $\mathcal{O}$-modules using $\pi^\sharp$ | |
where $\pi : (\Sh(\mathcal{D}_1), \mathcal{O}'_1) \to | |
(\Sh(\mathcal{C}), \mathcal{O})$ is the canonical splitting. | |
Thus finally, the claim follows from the fact that we have | |
a commutative diagram | |
$$ | |
\xymatrix{ | |
0 \ar[r] & | |
\mathcal{K}_2/\mathcal{K}_3 \ar[r] \ar[d] & | |
\mathcal{F}'_2/\mathcal{K}_3 \ar[r] \ar[d] & | |
\mathcal{F} \ar[r] \ar[d] & 0 \\ | |
0 \ar[r] & | |
\mathcal{K}/\mathcal{K}_3 \ar[r] & | |
\mathcal{E}'_3/\mathcal{K}_3 \ar[r] & | |
\mathcal{F} \ar[r] & 0 | |
} | |
$$ | |
which is $\mathcal{O}$-linear (with the $\mathcal{O}$-module | |
structures given above). | |
\end{remark} | |
\section{Infinitesimal deformations of modules on ringed topoi} | |
\label{section-deformation-modules-ringed-topoi} | |
\noindent | |
Let $i : (\Sh(\mathcal{C}), \mathcal{O}) \to (\Sh(\mathcal{D}), \mathcal{O}')$ | |
be a first order thickening of ringed topoi. We freely use the notation | |
introduced in Section \ref{section-thickenings-ringed-topoi}. | |
Let $\mathcal{F}'$ be an $\mathcal{O}'$-module | |
and set $\mathcal{F} = i^*\mathcal{F}'$. | |
In this situation we have a short exact sequence | |
$$ | |
0 \to \mathcal{I}\mathcal{F}' \to \mathcal{F}' \to \mathcal{F} \to 0 | |
$$ | |
of $\mathcal{O}'$-modules. Since $\mathcal{I}^2 = 0$ the | |
$\mathcal{O}'$-module structure on $\mathcal{I}\mathcal{F}'$ | |
comes from a unique $\mathcal{O}$-module structure. | |
Thus the sequence above is an extension as in | |
(\ref{equation-extension-ringed-topoi}). | |
As a special case, if $\mathcal{F}' = \mathcal{O}'$ we have | |
$i^*\mathcal{O}' = \mathcal{O}$ and | |
$\mathcal{I}\mathcal{O}' = \mathcal{I}$ and we recover the | |
sequence of structure sheaves | |
$$ | |
0 \to \mathcal{I} \to \mathcal{O}' \to \mathcal{O} \to 0 | |
$$ | |
\begin{lemma} | |
\label{lemma-inf-map-special-ringed-topoi} | |
Let $i : (\Sh(\mathcal{C}), \mathcal{O}) \to (\Sh(\mathcal{D}), \mathcal{O}')$ | |
be a first order thickening of ringed topoi. | |
Let $\mathcal{F}'$, $\mathcal{G}'$ be $\mathcal{O}'$-modules. | |
Set $\mathcal{F} = i^*\mathcal{F}'$ and $\mathcal{G} = i^*\mathcal{G}'$. | |
Let $\varphi : \mathcal{F} \to \mathcal{G}$ be an $\mathcal{O}$-linear map. | |
The set of lifts of $\varphi$ to an $\mathcal{O}'$-linear map | |
$\varphi' : \mathcal{F}' \to \mathcal{G}'$ is, if nonempty, a principal | |
homogeneous space under | |
$\Hom_\mathcal{O}(\mathcal{F}, \mathcal{I}\mathcal{G}')$. | |
\end{lemma} | |
\begin{proof} | |
This is a special case of Lemma \ref{lemma-inf-map-ringed-topoi} but we also | |
give a direct proof. We have short exact sequences of modules | |
$$ | |
0 \to \mathcal{I} \to \mathcal{O}' \to \mathcal{O} \to 0 | |
\quad\text{and}\quad | |
0 \to \mathcal{I}\mathcal{G}' \to \mathcal{G}' \to \mathcal{G} \to 0 | |
$$ | |
and similarly for $\mathcal{F}'$. | |
Since $\mathcal{I}$ has square zero the $\mathcal{O}'$-module | |
structure on $\mathcal{I}$ and $\mathcal{I}\mathcal{G}'$ comes from | |
a unique $\mathcal{O}$-module structure. It follows that | |
$$ | |
\Hom_{\mathcal{O}'}(\mathcal{F}', \mathcal{I}\mathcal{G}') = | |
\Hom_\mathcal{O}(\mathcal{F}, \mathcal{I}\mathcal{G}') | |
\quad\text{and}\quad | |
\Hom_{\mathcal{O}'}(\mathcal{F}', \mathcal{G}) = | |
\Hom_\mathcal{O}(\mathcal{F}, \mathcal{G}) | |
$$ | |
The lemma now follows from the exact sequence | |
$$ | |
0 \to \Hom_{\mathcal{O}'}(\mathcal{F}', \mathcal{I}\mathcal{G}') \to | |
\Hom_{\mathcal{O}'}(\mathcal{F}', \mathcal{G}') \to | |
\Hom_{\mathcal{O}'}(\mathcal{F}', \mathcal{G}) | |
$$ | |
see Homology, Lemma \ref{homology-lemma-check-exactness}. | |
\end{proof} | |
\begin{lemma} | |
\label{lemma-deform-module-ringed-topoi} | |
Let $(f, f')$ be a morphism of first order thickenings of ringed topoi | |
as in Situation \ref{situation-morphism-thickenings-ringed-topoi}. | |
Let $\mathcal{F}'$ be an $\mathcal{O}'$-module | |
and set $\mathcal{F} = i^*\mathcal{F}'$. | |
Assume that $\mathcal{F}$ is flat over $\mathcal{O}_\mathcal{B}$ | |
and that $(f, f')$ is a strict morphism of thickenings | |
(Definition \ref{definition-strict-morphism-thickenings-ringed-topoi}). | |
Then the following are equivalent | |
\begin{enumerate} | |
\item $\mathcal{F}'$ is flat over $\mathcal{O}_{\mathcal{B}'}$, and | |
\item the canonical map | |
$f^*\mathcal{J} \otimes_\mathcal{O} \mathcal{F} \to | |
\mathcal{I}\mathcal{F}'$ | |
is an isomorphism. | |
\end{enumerate} | |
Moreover, in this case the maps | |
$$ | |
f^*\mathcal{J} \otimes_\mathcal{O} \mathcal{F} \to | |
\mathcal{I} \otimes_\mathcal{O} \mathcal{F} \to | |
\mathcal{I}\mathcal{F}' | |
$$ | |
are isomorphisms. | |
\end{lemma} | |
\begin{proof} | |
The map $f^*\mathcal{J} \to \mathcal{I}$ is surjective | |
as $(f, f')$ is a strict morphism of thickenings. | |
Hence the final statement is a consequence of (2). | |
\medskip\noindent | |
Proof of the equivalence of (1) and (2). By definition flatness over | |
$\mathcal{O}_\mathcal{B}$ means flatness over $f^{-1}\mathcal{O}_\mathcal{B}$. | |
Similarly for flatness over $f^{-1}\mathcal{O}_{\mathcal{B}'}$. | |
Note that the strictness of $(f, f')$ and the assumption that | |
$\mathcal{F} = i^*\mathcal{F}'$ imply that | |
$$ | |
\mathcal{F} = \mathcal{F}'/(f^{-1}\mathcal{J})\mathcal{F}' | |
$$ | |
as sheaves on $\mathcal{C}$. Moreover, observe that | |
$f^*\mathcal{J} \otimes_\mathcal{O} \mathcal{F} = | |
f^{-1}\mathcal{J} \otimes_{f^{-1}\mathcal{O}_\mathcal{B}} \mathcal{F}$. | |
Hence the equivalence of (1) and (2) follows from | |
Modules on Sites, Lemma \ref{sites-modules-lemma-flat-over-thickening}. | |
\end{proof} | |
\begin{lemma} | |
\label{lemma-deform-fp-module-ringed-topoi} | |
Let $(f, f')$ be a morphism of first order thickenings of ringed topoi | |
as in Situation \ref{situation-morphism-thickenings-ringed-topoi}. | |
Let $\mathcal{F}'$ be an $\mathcal{O}'$-module | |
and set $\mathcal{F} = i^*\mathcal{F}'$. | |
Assume that $\mathcal{F}'$ is flat over $\mathcal{O}_{\mathcal{B}'}$ | |
and that $(f, f')$ is a strict morphism of thickenings. | |
Then the following are equivalent | |
\begin{enumerate} | |
\item $\mathcal{F}'$ is an $\mathcal{O}'$-module of finite presentation, and | |
\item $\mathcal{F}$ is an $\mathcal{O}$-module of finite presentation. | |
\end{enumerate} | |
\end{lemma} | |
\begin{proof} | |
The implication (1) $\Rightarrow$ (2) follows from | |
Modules on Sites, Lemma \ref{sites-modules-lemma-local-pullback}. | |
For the converse, assume $\mathcal{F}$ of finite presentation. | |
We may and do assume that $\mathcal{C} = \mathcal{C}'$. | |
By Lemma \ref{lemma-deform-module-ringed-topoi} we have a short exact sequence | |
$$ | |
0 \to \mathcal{I} \otimes_{\mathcal{O}_X} \mathcal{F} \to | |
\mathcal{F}' \to \mathcal{F} \to 0 | |
$$ | |
Let $U$ be an object of $\mathcal{C}$ such that $\mathcal{F}|_U$ has a | |
presentation | |
$$ | |
\mathcal{O}_U^{\oplus m} \to \mathcal{O}_U^{\oplus n} \to \mathcal{F}|_U \to 0 | |
$$ | |
After replacing $U$ by the members of a covering we may assume the | |
map $\mathcal{O}_U^{\oplus n} \to \mathcal{F}|_U$ lifts to a map | |
$(\mathcal{O}'_U)^{\oplus n} \to \mathcal{F}'|_U$. The induced map | |
$\mathcal{I}^{\oplus n} \to \mathcal{I} \otimes \mathcal{F}$ is | |
surjective by right exactness of $\otimes$. Thus after replacing $U$ | |
by the members of a covering we can find a lift | |
$(\mathcal{O}'|_U)^{\oplus m} \to (\mathcal{O}'|_U)^{\oplus n}$ | |
of the given map $\mathcal{O}_U^{\oplus m} \to \mathcal{O}_U^{\oplus n}$ | |
such that | |
$$ | |
(\mathcal{O}'_U)^{\oplus m} \to (\mathcal{O}'_U)^{\oplus n} \to | |
\mathcal{F}'|_U \to 0 | |
$$ | |
is a complex. Using right exactness of $\otimes$ once more it is seen | |
that this complex is exact. | |
\end{proof} | |
\begin{lemma} | |
\label{lemma-inf-map-rel-ringed-topoi} | |
Let $(f, f')$ be a morphism of first order thickenings as in | |
Situation \ref{situation-morphism-thickenings-ringed-topoi}. | |
Let $\mathcal{F}'$, $\mathcal{G}'$ be $\mathcal{O}'$-modules and set | |
$\mathcal{F} = i^*\mathcal{F}'$ and $\mathcal{G} = i^*\mathcal{G}'$. | |
Let $\varphi : \mathcal{F} \to \mathcal{G}$ be an $\mathcal{O}$-linear map. | |
Assume that $\mathcal{G}'$ is flat over $\mathcal{O}_{\mathcal{B}'}$ and that | |
$(f, f')$ is a strict morphism of thickenings. | |
The set of lifts of $\varphi$ to an $\mathcal{O}'$-linear map | |
$\varphi' : \mathcal{F}' \to \mathcal{G}'$ is, if nonempty, a principal | |
homogeneous space under | |
$$ | |
\Hom_\mathcal{O}(\mathcal{F}, | |
\mathcal{G} \otimes_\mathcal{O} f^*\mathcal{J}) | |
$$ | |
\end{lemma} | |
\begin{proof} | |
Combine Lemmas \ref{lemma-inf-map-special-ringed-topoi} and | |
\ref{lemma-deform-module-ringed-topoi}. | |
\end{proof} | |
\begin{lemma} | |
\label{lemma-inf-obs-map-special-ringed-topoi} | |
Let $i : (\Sh(\mathcal{C}), \mathcal{O}) \to (\Sh(\mathcal{D}), \mathcal{O}')$ | |
be a first order thickening of ringed topoi. | |
Let $\mathcal{F}'$, $\mathcal{G}'$ be $\mathcal{O}'$-modules and set | |
$\mathcal{F} = i^*\mathcal{F}'$ and $\mathcal{G} = i^*\mathcal{G}'$. | |
Let $\varphi : \mathcal{F} \to \mathcal{G}$ be an $\mathcal{O}$-linear map. | |
There exists an element | |
$$ | |
o(\varphi) \in | |
\Ext^1_\mathcal{O}(Li^*\mathcal{F}', \mathcal{I}\mathcal{G}') | |
$$ | |
whose vanishing is a necessary and sufficient condition for the | |
existence of a lift of $\varphi$ to an $\mathcal{O}'$-linear map | |
$\varphi' : \mathcal{F}' \to \mathcal{G}'$. | |
\end{lemma} | |
\begin{proof} | |
It is clear from the proof of Lemma \ref{lemma-inf-map-special-ringed-topoi} | |
that the vanishing of the boundary of $\varphi$ via the map | |
$$ | |
\Hom_\mathcal{O}(\mathcal{F}, \mathcal{G}) = | |
\Hom_{\mathcal{O}'}(\mathcal{F}', \mathcal{G}) \longrightarrow | |
\Ext^1_{\mathcal{O}'}(\mathcal{F}', \mathcal{I}\mathcal{G}') | |
$$ | |
is a necessary and sufficient condition for the existence of a lift. We | |
conclude as | |
$$ | |
\Ext^1_{\mathcal{O}'}(\mathcal{F}', \mathcal{I}\mathcal{G}') = | |
\Ext^1_\mathcal{O}(Li^*\mathcal{F}', \mathcal{I}\mathcal{G}') | |
$$ | |
the adjointness of $i_* = Ri_*$ and $Li^*$ on the derived category | |
(Cohomology on Sites, Lemma \ref{sites-cohomology-lemma-adjoint}). | |
\end{proof} | |
\begin{lemma} | |
\label{lemma-inf-obs-map-rel-ringed-topoi} | |
Let $(f, f')$ be a morphism of first order thickenings as in | |
Situation \ref{situation-morphism-thickenings-ringed-topoi}. | |
Let $\mathcal{F}'$, $\mathcal{G}'$ be $\mathcal{O}'$-modules and set | |
$\mathcal{F} = i^*\mathcal{F}'$ and $\mathcal{G} = i^*\mathcal{G}'$. | |
Let $\varphi : \mathcal{F} \to \mathcal{G}$ be an $\mathcal{O}$-linear map. | |
Assume that $\mathcal{F}'$ and $\mathcal{G}'$ are flat over | |
$\mathcal{O}_{\mathcal{B}'}$ and | |
that $(f, f')$ is a strict morphism of thickenings. There exists an element | |
$$ | |
o(\varphi) \in | |
\Ext^1_\mathcal{O}(\mathcal{F}, | |
\mathcal{G} \otimes_\mathcal{O} f^*\mathcal{J}) | |
$$ | |
whose vanishing is a necessary and sufficient condition for the | |
existence of a lift of $\varphi$ to an $\mathcal{O}'$-linear map | |
$\varphi' : \mathcal{F}' \to \mathcal{G}'$. | |
\end{lemma} | |
\begin{proof}[First proof] | |
This follows from Lemma \ref{lemma-inf-obs-map-special-ringed-topoi} | |
as we claim that under the assumptions of the lemma we have | |
$$ | |
\Ext^1_\mathcal{O}(Li^*\mathcal{F}', \mathcal{I}\mathcal{G}') = | |
\Ext^1_\mathcal{O}(\mathcal{F}, | |
\mathcal{G} \otimes_\mathcal{O} f^*\mathcal{J}) | |
$$ | |
Namely, we have | |
$\mathcal{I}\mathcal{G}' = | |
\mathcal{G} \otimes_\mathcal{O} f^*\mathcal{J}$ | |
by Lemma \ref{lemma-deform-module-ringed-topoi}. | |
On the other hand, observe that | |
$$ | |
H^{-1}(Li^*\mathcal{F}') = | |
\text{Tor}_1^{\mathcal{O}'}(\mathcal{F}', \mathcal{O}) | |
$$ | |
(local computation omitted). Using the short exact sequence | |
$$ | |
0 \to \mathcal{I} \to \mathcal{O}' \to \mathcal{O} \to 0 | |
$$ | |
we see that this $\text{Tor}_1$ is computed by the kernel of the map | |
$\mathcal{I} \otimes_\mathcal{O} \mathcal{F} \to \mathcal{I}\mathcal{F}'$ | |
which is zero by the final assertion of | |
Lemma \ref{lemma-deform-module-ringed-topoi}. | |
Thus $\tau_{\geq -1}Li^*\mathcal{F}' = \mathcal{F}$. | |
On the other hand, we have | |
$$ | |
\Ext^1_\mathcal{O}(Li^*\mathcal{F}', | |
\mathcal{I}\mathcal{G}') = | |
\Ext^1_\mathcal{O}(\tau_{\geq -1}Li^*\mathcal{F}', | |
\mathcal{I}\mathcal{G}') | |
$$ | |
by the dual of | |
Derived Categories, Lemma \ref{derived-lemma-negative-vanishing}. | |
\end{proof} | |
\begin{proof}[Second proof] | |
We can apply Lemma \ref{lemma-inf-obs-map-ringed-topoi} as follows. Note that | |
$\mathcal{K} = \mathcal{I} \otimes_\mathcal{O} \mathcal{F}$ and | |
$\mathcal{L} = \mathcal{I} \otimes_\mathcal{O} \mathcal{G}$ | |
by Lemma \ref{lemma-deform-module-ringed-topoi}, that | |
$c_{\mathcal{F}'} = 1 \otimes 1$ and $c_{\mathcal{G}'} = 1 \otimes 1$ | |
and taking $\psi = 1 \otimes \varphi$ the diagram of the lemma | |
commutes. Thus $o(\varphi) = o(\varphi, 1 \otimes \varphi)$ | |
works. | |
\end{proof} | |
\begin{lemma} | |
\label{lemma-inf-ext-rel-ringed-topoi} | |
Let $(f, f')$ be a morphism of first order thickenings as in | |
Situation \ref{situation-morphism-thickenings-ringed-topoi}. | |
Let $\mathcal{F}$ be an $\mathcal{O}$-module. | |
Assume $(f, f')$ is a strict morphism of thickenings and | |
$\mathcal{F}$ flat over $\mathcal{O}_\mathcal{B}$. If there exists a pair | |
$(\mathcal{F}', \alpha)$ consisting of an | |
$\mathcal{O}'$-module $\mathcal{F}'$ flat over $\mathcal{O}_{\mathcal{B}'}$ | |
and an isomorphism | |
$\alpha : i^*\mathcal{F}' \to \mathcal{F}$, then the set of | |
isomorphism classes of such pairs is principal homogeneous | |
under | |
$\Ext^1_\mathcal{O}( | |
\mathcal{F}, \mathcal{I} \otimes_\mathcal{O} \mathcal{F})$. | |
\end{lemma} | |
\begin{proof} | |
If we assume there exists one such module, then the canonical map | |
$$ | |
f^*\mathcal{J} \otimes_\mathcal{O} \mathcal{F} \to | |
\mathcal{I} \otimes_\mathcal{O} \mathcal{F} | |
$$ | |
is an isomorphism by Lemma \ref{lemma-deform-module-ringed-topoi}. Apply | |
Lemma \ref{lemma-inf-ext-ringed-topoi} with $\mathcal{K} = | |
\mathcal{I} \otimes_\mathcal{O} \mathcal{F}$ | |
and $c = 1$. By Lemma \ref{lemma-deform-module-ringed-topoi} | |
the corresponding extensions | |
$\mathcal{F}'$ are all flat over $\mathcal{O}_{\mathcal{B}'}$. | |
\end{proof} | |
\begin{lemma} | |
\label{lemma-inf-obs-ext-rel-ringed-topoi} | |
Let $(f, f')$ be a morphism of first order thickenings as in | |
Situation \ref{situation-morphism-thickenings-ringed-topoi}. | |
Let $\mathcal{F}$ be an $\mathcal{O}$-module. Assume | |
$(f, f')$ is a strict morphism of thickenings | |
and $\mathcal{F}$ flat over $\mathcal{O}_\mathcal{B}$. There exists an | |
$\mathcal{O}'$-module $\mathcal{F}'$ flat over $\mathcal{O}_{\mathcal{B}'}$ | |
with $i^*\mathcal{F}' \cong \mathcal{F}$, if and only if | |
\begin{enumerate} | |
\item the canonical map | |
$f^*\mathcal{J} \otimes_\mathcal{O} \mathcal{F} \to | |
\mathcal{I} \otimes_\mathcal{O} \mathcal{F}$ | |
is an isomorphism, and | |
\item the class | |
$o(\mathcal{F}, \mathcal{I} \otimes_\mathcal{O} \mathcal{F}, 1) | |
\in \Ext^2_\mathcal{O}( | |
\mathcal{F}, \mathcal{I} \otimes_\mathcal{O} \mathcal{F})$ | |
of Lemma \ref{lemma-inf-obs-ext-ringed-topoi} is zero. | |
\end{enumerate} | |
\end{lemma} | |
\begin{proof} | |
This follows immediately from the characterization of | |
$\mathcal{O}'$-modules flat over $\mathcal{O}_{\mathcal{B}'}$ of | |
Lemma \ref{lemma-deform-module-ringed-topoi} and | |
Lemma \ref{lemma-inf-obs-ext-ringed-topoi}. | |
\end{proof} | |
\section{Application to flat modules on flat thickenings of ringed topoi} | |
\label{section-flat-ringed-topoi} | |
\noindent | |
Consider a commutative diagram | |
$$ | |
\xymatrix{ | |
(\Sh(\mathcal{C}), \mathcal{O}) \ar[r]_i \ar[d]_f & | |
(\Sh(\mathcal{D}), \mathcal{O}') \ar[d]^{f'} \\ | |
(\Sh(\mathcal{B}), \mathcal{O}_\mathcal{B}) \ar[r]^t & | |
(\Sh(\mathcal{B}'), \mathcal{O}_{\mathcal{B}'}) | |
} | |
$$ | |
of ringed topoi whose horizontal arrows are first order thickenings | |
as in Situation \ref{situation-morphism-thickenings-ringed-topoi}. Set | |
$\mathcal{I} = \Ker(i^\sharp) \subset \mathcal{O}'$ and | |
$\mathcal{J} = \Ker(t^\sharp) \subset \mathcal{O}_{\mathcal{B}'}$. | |
Let $\mathcal{F}$ be an $\mathcal{O}$-module. Assume that | |
\begin{enumerate} | |
\item $(f, f')$ is a strict morphism of thickenings, | |
\item $f'$ is flat, and | |
\item $\mathcal{F}$ is flat over $\mathcal{O}_\mathcal{B}$. | |
\end{enumerate} | |
Note that (1) $+$ (2) imply that $\mathcal{I} = f^*\mathcal{J}$ | |
(apply Lemma \ref{lemma-deform-module-ringed-topoi} to $\mathcal{O}'$). | |
The theory of the preceding section is especially nice | |
under these assumptions. We summarize the results already obtained | |
in the following lemma. | |
\begin{lemma} | |
\label{lemma-flat-ringed-topoi} | |
In the situation above. | |
\begin{enumerate} | |
\item There exists an $\mathcal{O}'$-module $\mathcal{F}'$ flat over | |
$\mathcal{O}_{\mathcal{B}'}$ with $i^*\mathcal{F}' \cong \mathcal{F}$, | |
if and only if | |
the class $o(\mathcal{F}, f^*\mathcal{J} \otimes_\mathcal{O} \mathcal{F}, 1) | |
\in \Ext^2_\mathcal{O}( | |
\mathcal{F}, f^*\mathcal{J} \otimes_\mathcal{O} \mathcal{F})$ | |
of Lemma \ref{lemma-inf-obs-ext-ringed-topoi} is zero. | |
\item If such a module exists, then the set of isomorphism classes | |
of lifts is principal homogeneous under | |
$\Ext^1_\mathcal{O}( | |
\mathcal{F}, f^*\mathcal{J} \otimes_\mathcal{O} \mathcal{F})$. | |
\item Given a lift $\mathcal{F}'$, the set of automorphisms of | |
$\mathcal{F}'$ which pull back to $\text{id}_\mathcal{F}$ is canonically | |
isomorphic to $\Ext^0_\mathcal{O}( | |
\mathcal{F}, f^*\mathcal{J} \otimes_\mathcal{O} \mathcal{F})$. | |
\end{enumerate} | |
\end{lemma} | |
\begin{proof} | |
Part (1) follows from Lemma \ref{lemma-inf-obs-ext-rel-ringed-topoi} | |
as we have seen above that $\mathcal{I} = f^*\mathcal{J}$. | |
Part (2) follows from Lemma \ref{lemma-inf-ext-rel-ringed-topoi}. | |
Part (3) follows from Lemma \ref{lemma-inf-map-rel-ringed-topoi}. | |
\end{proof} | |
\begin{situation} | |
\label{situation-morphism-flat-thickenings-ringed-topoi} | |
Let $f : (\Sh(\mathcal{C}), \mathcal{O}) \to | |
(\Sh(\mathcal{B}), \mathcal{O}_\mathcal{B})$ be a morphism of | |
ringed topoi. Consider a commutative diagram | |
$$ | |
\xymatrix{ | |
(\Sh(\mathcal{C}'_1), \mathcal{O}'_1) \ar[r]_h \ar[d]_{f'_1} & | |
(\Sh(\mathcal{C}'_2), \mathcal{O}'_2) \ar[d]_{f'_2} \\ | |
(\Sh(\mathcal{B}'_1), \mathcal{O}_{\mathcal{B}'_1}) \ar[r] & | |
(\Sh(\mathcal{B}'_2), \mathcal{O}_{\mathcal{B}'_2}) | |
} | |
$$ | |
where $h$ is a morphism of first order thickenings | |
of $(\Sh(\mathcal{C}), \mathcal{O})$, the lower horizontal arrow | |
is a morphism of first order thickenings of | |
$(\Sh(\mathcal{B}), \mathcal{O}_\mathcal{B})$, each $f'_i$ restricts | |
to $f$, both pairs $(f, f_i')$ are strict morphisms of thickenings, and | |
both $f'_i$ are flat. Finally, let $\mathcal{F}$ be an | |
$\mathcal{O}$-module flat over $\mathcal{O}_\mathcal{B}$. | |
\end{situation} | |
\begin{lemma} | |
\label{lemma-functorial-ringed-topoi} | |
In Situation \ref{situation-morphism-flat-thickenings-ringed-topoi} | |
the obstruction class | |
$o(\mathcal{F}, f^*\mathcal{J}_2 \otimes_\mathcal{O} \mathcal{F}, 1)$ | |
maps to the obstruction class | |
$o(\mathcal{F}, f^*\mathcal{J}_1 \otimes_\mathcal{O} \mathcal{F}, 1)$ | |
under the canonical map | |
$$ | |
\Ext^2_\mathcal{O}( | |
\mathcal{F}, f^*\mathcal{J}_2 \otimes_\mathcal{O} \mathcal{F}) | |
\to \Ext^2_\mathcal{O}( | |
\mathcal{F}, f^*\mathcal{J}_1 \otimes_\mathcal{O} \mathcal{F}) | |
$$ | |
\end{lemma} | |
\begin{proof} | |
Follows from Remark \ref{remark-obstruction-extension-functorial-ringed-topoi}. | |
\end{proof} | |
\begin{situation} | |
\label{situation-ses-flat-thickenings-ringed-topoi} | |
Let $f : (\Sh(\mathcal{C}), \mathcal{O}) \to | |
(\Sh(\mathcal{B}), \mathcal{O}_\mathcal{B})$ be a morphism of | |
ringed topoi. Consider a commutative diagram | |
$$ | |
\xymatrix{ | |
(\Sh(\mathcal{C}'_1), \mathcal{O}'_1) \ar[r]_h \ar[d]_{f'_1} & | |
(\Sh(\mathcal{C}'_2), \mathcal{O}'_2) \ar[r] \ar[d]_{f'_2} & | |
(\Sh(\mathcal{C}'_3), \mathcal{O}'_3) \ar[d]_{f'_3} \\ | |
(\Sh(\mathcal{B}'_1), \mathcal{O}_{\mathcal{B}'_1}) \ar[r] & | |
(\Sh(\mathcal{B}'_2), \mathcal{O}_{\mathcal{B}'_2}) \ar[r] & | |
(\Sh(\mathcal{B}'_3), \mathcal{O}_{\mathcal{B}'_3}) | |
} | |
$$ | |
where (a) the top row is a short exact sequence of first order thickenings | |
of $(\Sh(\mathcal{C}), \mathcal{O})$, (b) the lower row is a short exact | |
sequence of first order thickenings of | |
$(\Sh(\mathcal{B}), \mathcal{O}_\mathcal{B})$, (c) each $f'_i$ restricts | |
to $f$, (d) each pair $(f, f_i')$ is a strict morphism of thickenings, and | |
(e) each $f'_i$ is flat. Finally, let $\mathcal{F}'_2$ be an | |
$\mathcal{O}'_2$-module flat over $\mathcal{O}_{\mathcal{B}'_2}$ and | |
set $\mathcal{F} = \mathcal{F}'_2 \otimes \mathcal{O}$. Let | |
$\pi : (\Sh(\mathcal{C}'_1), \mathcal{O}'_1) \to | |
(\Sh(\mathcal{C}), \mathcal{O})$ be the canonical splitting | |
(Remark \ref{remark-short-exact-sequence-thickenings-ringed-topoi}). | |
\end{situation} | |
\begin{lemma} | |
\label{lemma-verify-iv-ringed-topoi} | |
In Situation \ref{situation-ses-flat-thickenings-ringed-topoi} the modules | |
$\pi^*\mathcal{F}$ and $h^*\mathcal{F}'_2$ are $\mathcal{O}'_1$-modules | |
flat over $\mathcal{O}_{\mathcal{B}'_1}$ restricting to $\mathcal{F}$ on | |
$(\Sh(\mathcal{C}), \mathcal{O})$. | |
Their difference (Lemma \ref{lemma-flat-ringed-topoi}) is an element | |
$\theta$ of | |
$\Ext^1_\mathcal{O}(\mathcal{F}, | |
f^*\mathcal{J}_1 \otimes_\mathcal{O} \mathcal{F})$ | |
whose boundary in | |
$\Ext^2_\mathcal{O}(\mathcal{F}, | |
f^*\mathcal{J}_3 \otimes_\mathcal{O} \mathcal{F})$ | |
equals the obstruction (Lemma \ref{lemma-flat-ringed-topoi}) | |
to lifting $\mathcal{F}$ to an $\mathcal{O}'_3$-module flat over | |
$\mathcal{O}_{\mathcal{B}'_3}$. | |
\end{lemma} | |
\begin{proof} | |
Note that both $\pi^*\mathcal{F}$ and $h^*\mathcal{F}'_2$ | |
restrict to $\mathcal{F}$ on $(\Sh(\mathcal{C}), \mathcal{O})$ | |
and that the kernels of | |
$\pi^*\mathcal{F} \to \mathcal{F}$ and $h^*\mathcal{F}'_2 \to \mathcal{F}$ | |
are given by $f^*\mathcal{J}_1 \otimes_\mathcal{O} \mathcal{F}$. | |
Hence flatness by Lemma \ref{lemma-deform-module-ringed-topoi}. | |
Taking the boundary makes sense as the sequence of modules | |
$$ | |
0 \to f^*\mathcal{J}_3 \otimes_\mathcal{O} \mathcal{F} \to | |
f^*\mathcal{J}_2 \otimes_\mathcal{O} \mathcal{F} \to | |
f^*\mathcal{J}_1 \otimes_\mathcal{O} \mathcal{F} \to 0 | |
$$ | |
is short exact due to the assumptions in | |
Situation \ref{situation-ses-flat-thickenings-ringed-topoi} | |
and the fact that $\mathcal{F}$ is flat over $\mathcal{O}_\mathcal{B}$. | |
The statement on the obstruction class is a direct translation | |
of the result of | |
Remark \ref{remark-complex-thickenings-and-ses-modules-ringed-topoi} | |
to this particular situation. | |
\end{proof} | |
\section{Deformations of ringed topoi and the naive cotangent complex} | |
\label{section-deformations-ringed-topoi} | |
\noindent | |
In this section we use the naive cotangent complex to do a little bit | |
of deformation theory. We start with a first order thickening | |
$t : (\Sh(\mathcal{B}), \mathcal{O}_\mathcal{B}) \to | |
(\Sh(\mathcal{B}'), \mathcal{O}_{\mathcal{B}'})$ of ringed topoi. | |
We denote $\mathcal{J} = \Ker(t^\sharp)$ and we | |
identify the underlying topoi of $\mathcal{B}$ and $\mathcal{B}'$. | |
Moreover we assume given a morphism of ringed topoi | |
$f : (\Sh(\mathcal{C}), \mathcal{O}) \to | |
(\Sh(\mathcal{B}), \mathcal{O}_\mathcal{B})$, an $\mathcal{O}$-module | |
$\mathcal{G}$, and a map $f^{-1}\mathcal{J} \to \mathcal{G}$ | |
of sheaves of $f^{-1}\mathcal{O}_\mathcal{B}$-modules. | |
In this section we ask ourselves whether we can find | |
the question mark fitting into the following diagram | |
\begin{equation} | |
\label{equation-to-solve-ringed-topoi} | |
\vcenter{ | |
\xymatrix{ | |
0 \ar[r] & \mathcal{G} \ar[r] & {?} \ar[r] & \mathcal{O} \ar[r] & 0 \\ | |
0 \ar[r] & f^{-1}\mathcal{J} \ar[u]^c \ar[r] & | |
f^{-1}\mathcal{O}_{\mathcal{B}'} \ar[u] \ar[r] & | |
f^{-1}\mathcal{O}_\mathcal{B} \ar[u] \ar[r] & 0 | |
} | |
} | |
\end{equation} | |
and moreover how unique the solution is (if it exists). More precisely, | |
we look for a first order thickening | |
$i : (\Sh(\mathcal{C}), \mathcal{O}) \to (\Sh(\mathcal{C}'), \mathcal{O}')$ | |
and a morphism of thickenings $(f, f')$ as in | |
(\ref{equation-morphism-thickenings-ringed-topoi}) | |
where $\Ker(i^\sharp)$ is identified with $\mathcal{G}$ | |
such that $(f')^\sharp$ induces the given map $c$. | |
We will say $(\Sh(\mathcal{C}'), \mathcal{O}')$ is a {\it solution} to | |
(\ref{equation-to-solve-ringed-topoi}). | |
\begin{lemma} | |
\label{lemma-huge-diagram-ringed-topoi} | |
Assume given a commutative diagram of morphisms ringed topoi | |
\begin{equation} | |
\label{equation-huge-1-ringed-topoi} | |
\vcenter{ | |
\xymatrix{ | |
& (\Sh(\mathcal{C}_2), \mathcal{O}_2) \ar[r]_{i_2} \ar[d]_{f_2} \ar[ddl]_g & | |
(\Sh(\mathcal{C}'_2), \mathcal{O}'_2) \ar[d]^{f'_2} \\ | |
& | |
(\Sh(\mathcal{B}_2), \mathcal{O}_{\mathcal{B}_2}) \ar[r]^{t_2} \ar[ddl]|\hole & | |
(\Sh(\mathcal{B}'_2), \mathcal{O}_{\mathcal{B}'_2}) \ar[ddl] \\ | |
(\Sh(\mathcal{C}_1), \mathcal{O}_1) \ar[r]_{i_1} \ar[d]_{f_1} & | |
(\Sh(\mathcal{C}'_1), \mathcal{O}'_1) \ar[d]^{f'_1} \\ | |
(\Sh(\mathcal{B}_1), \mathcal{O}_{\mathcal{B}_1}) \ar[r]^{t_1} & | |
(\Sh(\mathcal{B}'_1), \mathcal{O}_{\mathcal{B}'_1}) | |
} | |
} | |
\end{equation} | |
whose horizontal arrows are first order thickenings. Set | |
$\mathcal{G}_j = \Ker(i_j^\sharp)$ and assume given a | |
map of $g^{-1}\mathcal{O}_1$-modules | |
$\nu : g^{-1}\mathcal{G}_1 \to \mathcal{G}_2$ | |
giving rise to the commutative diagram | |
\begin{equation} | |
\label{equation-huge-2-ringed-topoi} | |
\vcenter{ | |
\xymatrix{ | |
& 0 \ar[r] & \mathcal{G}_2 \ar[r] & | |
\mathcal{O}'_2 \ar[r] & | |
\mathcal{O}_2 \ar[r] & 0 \\ | |
& 0 \ar[r]|\hole & | |
f_2^{-1}\mathcal{J}_2 \ar[u]_{c_2} \ar[r] & | |
f_2^{-1}\mathcal{O}_{\mathcal{B}'_2} \ar[u] \ar[r]|\hole & | |
f_2^{-1}\mathcal{O}_{\mathcal{B}_2} \ar[u] \ar[r] & 0 \\ | |
0 \ar[r] & | |
\mathcal{G}_1 \ar[ruu] \ar[r] & | |
\mathcal{O}'_1 \ar[r] & | |
\mathcal{O}_1 \ar[ruu] \ar[r] & 0 \\ | |
0 \ar[r] & | |
f_1^{-1}\mathcal{J}_1 \ar[ruu]|\hole \ar[u]^{c_1} \ar[r] & | |
f_1^{-1}\mathcal{O}_{\mathcal{B}'_1} \ar[ruu]|\hole \ar[u] \ar[r] & | |
f_1^{-1}\mathcal{O}_{\mathcal{B}_1} \ar[ruu]|\hole \ar[u] \ar[r] & 0 | |
} | |
} | |
\end{equation} | |
with front and back solutions to (\ref{equation-to-solve-ringed-topoi}). | |
(The north-north-west arrows are maps on $\mathcal{C}_2$ after applying | |
$g^{-1}$ to the source.) | |
\begin{enumerate} | |
\item There exist a canonical element in | |
$\Ext^1_{\mathcal{O}_2}( | |
Lg^*\NL_{\mathcal{O}_1/\mathcal{O}_{\mathcal{B}_1}}, \mathcal{G}_2)$ | |
whose vanishing is a necessary and sufficient condition for the existence | |
of a morphism of ringed topoi | |
$(\Sh(\mathcal{C}'_2), \mathcal{O}'_2) \to | |
(\Sh(\mathcal{C}'_1), \mathcal{O}'_1)$ fitting into | |
(\ref{equation-huge-1-ringed-topoi}) compatibly with $\nu$. | |
\item If there exists a morphism | |
$(\Sh(\mathcal{C}'_2), \mathcal{O}'_2) \to | |
(\Sh(\mathcal{C}'_1), \mathcal{O}'_1)$ | |
fitting into | |
(\ref{equation-huge-1-ringed-topoi}) compatibly with $\nu$ the set | |
of all such morphisms is a principal homogeneous space under | |
$$ | |
\Hom_{\mathcal{O}_1}( | |
\Omega_{\mathcal{O}_1/\mathcal{O}_{\mathcal{B}_1}}, g_*\mathcal{G}_2) = | |
\Hom_{\mathcal{O}_2}( | |
g^*\Omega_{\mathcal{O}_1/\mathcal{O}_{\mathcal{B}_1}}, \mathcal{G}_2) = | |
\Ext^0_{\mathcal{O}_2}( | |
Lg^*\NL_{\mathcal{O}_1/\mathcal{O}_{\mathcal{B}_1}}, \mathcal{G}_2). | |
$$ | |
\end{enumerate} | |
\end{lemma} | |
\begin{proof} | |
The proof of this lemma is identical to the proof of | |
Lemma \ref{lemma-huge-diagram-ringed-spaces}. | |
We urge the reader to read that proof instead of this one. | |
We will identify the underlying topoi for every | |
thickening in sight (we have already used this convention | |
in the statement). The equalities in the last statement of the | |
lemma are immediate from the definitions. Thus we will work with the groups | |
$\Ext^k_{\mathcal{O}_2}( | |
Lg^*\NL_{\mathcal{O}_1/\mathcal{O}_{\mathcal{B}_1}}, \mathcal{G}_2)$, | |
$k = 0, 1$ in the rest of the proof. We first argue that we can reduce | |
to the case where the underlying topos of all ringed topoi in the lemma | |
is the same. | |
\medskip\noindent | |
To do this, observe that | |
$g^{-1}\NL_{\mathcal{O}_1/\mathcal{O}_{\mathcal{B}_1}}$ is equal to the naive | |
cotangent complex of the homomorphism of sheaves of rings | |
$g^{-1}f_1^{-1}\mathcal{O}_{\mathcal{B}_1} \to g^{-1}\mathcal{O}_1$, see | |
Modules on Sites, Lemma \ref{sites-modules-lemma-pullback-differentials}. | |
Moreover, the degree $0$ term of | |
$\NL_{\mathcal{O}_1/\mathcal{O}_{\mathcal{B}_1}}$ is a flat | |
$\mathcal{O}_1$-module, hence the canonical map | |
$$ | |
Lg^*\NL_{\mathcal{O}_1/\mathcal{O}_{\mathcal{B}_1}} | |
\longrightarrow | |
g^{-1}\NL_{\mathcal{O}_1/\mathcal{O}_{\mathcal{B}_1}} | |
\otimes_{g^{-1}\mathcal{O}_1} \mathcal{O}_2 | |
$$ | |
induces an isomorphism on cohomology sheaves in degrees $0$ and $-1$. | |
Thus we may replace the Ext groups of the lemma with | |
$$ | |
\Ext^k_{g^{-1}\mathcal{O}_1}( | |
g^{-1}\NL_{\mathcal{O}_1/\mathcal{O}_{\mathcal{B}_1}}, \mathcal{G}_2) = | |
\Ext^k_{g^{-1}\mathcal{O}_1}( | |
\NL_{g^{-1}\mathcal{O}_1/g^{-1}f_1^{-1}\mathcal{O}_{\mathcal{B}_1}}, | |
\mathcal{G}_2) | |
$$ | |
The set of morphism of ringed topoi | |
$(\Sh(\mathcal{C}'_2), \mathcal{O}'_2) \to | |
(\Sh(\mathcal{C}'_1), \mathcal{O}'_1)$ fitting into | |
(\ref{equation-huge-1-ringed-topoi}) compatibly with $\nu$ is in | |
one-to-one bijection with the set of homomorphisms of | |
$g^{-1}f_1^{-1}\mathcal{O}_{\mathcal{B}'_1}$-algebras | |
$g^{-1}\mathcal{O}'_1 \to \mathcal{O}'_2$ which are compatible with | |
$f^\sharp$ and $\nu$. In this way we see that we may assume we have a | |
diagram (\ref{equation-huge-2-ringed-topoi}) of sheaves on a site | |
$\mathcal{C}$ (with $f_1 = f_2 = \text{id}$ on underlying topoi) | |
and we are looking to find a homomorphism of sheaves of rings | |
$\mathcal{O}'_1 \to \mathcal{O}'_2$ fitting into it. | |
\medskip\noindent | |
In the rest of the proof of the lemma we assume | |
all underlying topological spaces are the | |
same, i.e., we have a diagram (\ref{equation-huge-2-ringed-topoi}) | |
of sheaves on a site $\mathcal{C}$ (with $f_1 = f_2 = \text{id}$ | |
on underlying topoi) and we are looking for | |
homomorphisms of sheaves of rings | |
$\mathcal{O}'_1 \to \mathcal{O}'_2$ fitting into it. | |
As ext groups we will use | |
$\Ext^k_{\mathcal{O}_1}( | |
\NL_{\mathcal{O}_1/\mathcal{O}_{\mathcal{B}_1}}, \mathcal{G}_2)$, $k = 0, 1$. | |
\medskip\noindent | |
Step 1. Construction of the obstruction class. Consider the sheaf | |
of sets | |
$$ | |
\mathcal{E} = \mathcal{O}'_1 \times_{\mathcal{O}_2} \mathcal{O}'_2 | |
$$ | |
This comes with a surjective map $\alpha : \mathcal{E} \to \mathcal{O}_1$ | |
and hence we can use $\NL(\alpha)$ instead of | |
$\NL_{\mathcal{O}_1/\mathcal{O}_{\mathcal{B}_1}}$, see | |
Modules on Sites, Lemma \ref{sites-modules-lemma-NL-up-to-qis}. | |
Set | |
$$ | |
\mathcal{I}' = | |
\Ker(\mathcal{O}_{\mathcal{B}'_1}[\mathcal{E}] \to \mathcal{O}_1) | |
\quad\text{and}\quad | |
\mathcal{I} = | |
\Ker(\mathcal{O}_{\mathcal{B}_1}[\mathcal{E}] \to \mathcal{O}_1) | |
$$ | |
There is a surjection $\mathcal{I}' \to \mathcal{I}$ whose kernel | |
is $\mathcal{J}_1\mathcal{O}_{\mathcal{B}'_1}[\mathcal{E}]$. | |
We obtain two homomorphisms of $\mathcal{O}_{\mathcal{B}'_2}$-algebras | |
$$ | |
a : \mathcal{O}_{\mathcal{B}'_1}[\mathcal{E}] \to \mathcal{O}'_1 | |
\quad\text{and}\quad | |
b : \mathcal{O}_{\mathcal{B}'_1}[\mathcal{E}] \to \mathcal{O}'_2 | |
$$ | |
which induce maps $a|_{\mathcal{I}'} : \mathcal{I}' \to \mathcal{G}_1$ and | |
$b|_{\mathcal{I}'} : \mathcal{I}' \to \mathcal{G}_2$. Both $a$ and $b$ | |
annihilate $(\mathcal{I}')^2$. Moreover $a$ and $b$ agree on | |
$\mathcal{J}_1\mathcal{O}_{\mathcal{B}'_1}[\mathcal{E}]$ | |
as maps into $\mathcal{G}_2$ | |
because the left hand square of (\ref{equation-huge-2-ringed-topoi}) | |
is commutative. Thus the difference | |
$b|_{\mathcal{I}'} - \nu \circ a|_{\mathcal{I}'}$ | |
induces a well defined $\mathcal{O}_1$-linear map | |
$$ | |
\xi : \mathcal{I}/\mathcal{I}^2 \longrightarrow \mathcal{G}_2 | |
$$ | |
which sends the class of a local section $f$ of $\mathcal{I}$ to | |
$a(f') - \nu(b(f'))$ where $f'$ is a lift of $f$ to a local | |
section of $\mathcal{I}'$. We let | |
$[\xi] \in \Ext^1_{\mathcal{O}_1}(\NL(\alpha), \mathcal{G}_2)$ | |
be the image (see below). | |
\medskip\noindent | |
Step 2. Vanishing of $[\xi]$ is necessary. Let us write $\Omega = | |
\Omega_{\mathcal{O}_{\mathcal{B}_1}[\mathcal{E}]/\mathcal{O}_{\mathcal{B}_1}} | |
\otimes_{\mathcal{O}_{\mathcal{B}_1}[\mathcal{E}]} \mathcal{O}_1$. | |
Observe that $\NL(\alpha) = (\mathcal{I}/\mathcal{I}^2 \to \Omega)$ | |
fits into a distinguished triangle | |
$$ | |
\Omega[0] \to | |
\NL(\alpha) \to | |
\mathcal{I}/\mathcal{I}^2[1] \to | |
\Omega[1] | |
$$ | |
Thus we see that $[\xi]$ is zero if and only if $\xi$ | |
is a composition $\mathcal{I}/\mathcal{I}^2 \to \Omega \to \mathcal{G}_2$ | |
for some map $\Omega \to \mathcal{G}_2$. Suppose there exists a | |
homomorphisms of sheaves of rings | |
$\varphi : \mathcal{O}'_1 \to \mathcal{O}'_2$ fitting into | |
(\ref{equation-huge-2-ringed-topoi}). In this case consider the map | |
$\mathcal{O}'_1[\mathcal{E}] \to \mathcal{G}_2$, | |
$f' \mapsto b(f') - \varphi(a(f'))$. A calculation | |
shows this annihilates $\mathcal{J}_1\mathcal{O}_{\mathcal{B}'_1}[\mathcal{E}]$ | |
and induces a derivation | |
$\mathcal{O}_{\mathcal{B}_1}[\mathcal{E}] \to \mathcal{G}_2$. | |
The resulting linear map $\Omega \to \mathcal{G}_2$ witnesses the | |
fact that $[\xi] = 0$ in this case. | |
\medskip\noindent | |
Step 3. Vanishing of $[\xi]$ is sufficient. Let | |
$\theta : \Omega \to \mathcal{G}_2$ be a $\mathcal{O}_1$-linear map | |
such that $\xi$ is equal to | |
$\theta \circ (\mathcal{I}/\mathcal{I}^2 \to \Omega)$. | |
Then a calculation shows that | |
$$ | |
b + \theta \circ d : | |
\mathcal{O}_{\mathcal{B}'_1}[\mathcal{E}] | |
\longrightarrow | |
\mathcal{O}'_2 | |
$$ | |
annihilates $\mathcal{I}'$ and hence defines a map | |
$\mathcal{O}'_1 \to \mathcal{O}'_2$ fitting into | |
(\ref{equation-huge-2-ringed-topoi}). | |
\medskip\noindent | |
Proof of (2) in the special case above. Omitted. Hint: | |
This is exactly the same as the proof of (2) of | |
Lemma \ref{lemma-huge-diagram}. | |
\end{proof} | |
\begin{lemma} | |
\label{lemma-NL-represent-ext-class-ringed-topoi} | |
Let $\mathcal{C}$ be a site. Let $\mathcal{A} \to \mathcal{B}$ be a | |
homomorphism of sheaves of rings on $\mathcal{C}$. | |
Let $\mathcal{G}$ be a $\mathcal{B}$-module. | |
Let | |
$\xi \in \Ext^1_\mathcal{B}(\NL_{\mathcal{B}/\mathcal{A}}, \mathcal{G})$. | |
There exists a map of sheaves of sets $\alpha : \mathcal{E} \to \mathcal{B}$ | |
such that $\xi \in \Ext^1_\mathcal{B}(\NL(\alpha), \mathcal{G})$ | |
is the class of a map $\mathcal{I}/\mathcal{I}^2 \to \mathcal{G}$ | |
(see proof for notation). | |
\end{lemma} | |
\begin{proof} | |
Recall that given $\alpha : \mathcal{E} \to \mathcal{B}$ | |
such that $\mathcal{A}[\mathcal{E}] \to \mathcal{B}$ is surjective | |
with kernel $\mathcal{I}$ the complex | |
$\NL(\alpha) = (\mathcal{I}/\mathcal{I}^2 \to | |
\Omega_{\mathcal{A}[\mathcal{E}]/\mathcal{A}} | |
\otimes_{\mathcal{A}[\mathcal{E}]} \mathcal{B})$ is canonically | |
isomorphic to $\NL_{\mathcal{B}/\mathcal{A}}$, see | |
Modules on Sites, Lemma \ref{sites-modules-lemma-NL-up-to-qis}. | |
Observe moreover, that | |
$\Omega = \Omega_{\mathcal{A}[\mathcal{E}]/\mathcal{A}} | |
\otimes_{\mathcal{A}[\mathcal{E}]} \mathcal{B}$ is the sheaf | |
associated to the presheaf | |
$U \mapsto \bigoplus_{e \in \mathcal{E}(U)} \mathcal{B}(U)$. | |
In other words, $\Omega$ is the free $\mathcal{B}$-module on the | |
sheaf of sets $\mathcal{E}$ and in particular there is a canonical | |
map $\mathcal{E} \to \Omega$. | |
\medskip\noindent | |
Having said this, pick some $\mathcal{E}$ (for example | |
$\mathcal{E} = \mathcal{B}$ as in the definition of the naive cotangent | |
complex). The obstruction to writing $\xi$ as the class of a map | |
$\mathcal{I}/\mathcal{I}^2 \to \mathcal{G}$ is an element in | |
$\Ext^1_\mathcal{B}(\Omega, \mathcal{G})$. Say this is represented | |
by the extension $0 \to \mathcal{G} \to \mathcal{H} \to \Omega \to 0$ | |
of $\mathcal{B}$-modules. Consider the sheaf of sets | |
$\mathcal{E}' = \mathcal{E} \times_\Omega \mathcal{H}$ | |
which comes with an induced map $\alpha' : \mathcal{E}' \to \mathcal{B}$. | |
Let $\mathcal{I}' = \Ker(\mathcal{A}[\mathcal{E}'] \to \mathcal{B})$ | |
and $\Omega' = \Omega_{\mathcal{A}[\mathcal{E}']/\mathcal{A}} | |
\otimes_{\mathcal{A}[\mathcal{E}']} \mathcal{B}$. | |
The pullback of $\xi$ under the quasi-isomorphism | |
$\NL(\alpha') \to \NL(\alpha)$ maps to zero in | |
$\Ext^1_\mathcal{B}(\Omega', \mathcal{G})$ | |
because the pullback of the extension $\mathcal{H}$ | |
by the map $\Omega' \to \Omega$ is split as $\Omega'$ is the free | |
$\mathcal{B}$-module on the sheaf of sets $\mathcal{E}'$ and since | |
by construction there is a commutative diagram | |
$$ | |
\xymatrix{ | |
\mathcal{E}' \ar[r] \ar[d] & \mathcal{E} \ar[d] \\ | |
\mathcal{H} \ar[r] & \Omega | |
} | |
$$ | |
This finishes the proof. | |
\end{proof} | |
\begin{lemma} | |
\label{lemma-choices-ringed-topoi} | |
If there exists a solution to (\ref{equation-to-solve-ringed-topoi}), | |
then the set of isomorphism classes of solutions is principal homogeneous | |
under $\Ext^1_\mathcal{O}( | |
\NL_{\mathcal{O}/\mathcal{O}_\mathcal{B}}, \mathcal{G})$. | |
\end{lemma} | |
\begin{proof} | |
We observe right away that given two solutions $\mathcal{O}'_1$ and | |
$\mathcal{O}'_2$ to (\ref{equation-to-solve-ringed-topoi}) we obtain by | |
Lemma \ref{lemma-huge-diagram-ringed-topoi} an obstruction element | |
$o(\mathcal{O}'_1, \mathcal{O}'_2) \in \Ext^1_\mathcal{O}( | |
\NL_{\mathcal{O}/\mathcal{O}_\mathcal{B}}, \mathcal{G})$ | |
to the existence of a map $\mathcal{O}'_1 \to \mathcal{O}'_2$. | |
Clearly, this element | |
is the obstruction to the existence of an isomorphism, hence separates | |
the isomorphism classes. To finish the proof it therefore suffices to | |
show that given a solution $\mathcal{O}'$ and an element | |
$\xi \in \Ext^1_\mathcal{O}( | |
\NL_{\mathcal{O}/\mathcal{O}_\mathcal{B}}, \mathcal{G})$ | |
we can find a second solution $\mathcal{O}'_\xi$ such that | |
$o(\mathcal{O}', \mathcal{O}'_\xi) = \xi$. | |
\medskip\noindent | |
Pick $\alpha : \mathcal{E} \to \mathcal{O}$ as in | |
Lemma \ref{lemma-NL-represent-ext-class-ringed-topoi} | |
for the class $\xi$. Consider the surjection | |
$f^{-1}\mathcal{O}_\mathcal{B}[\mathcal{E}] \to \mathcal{O}$ | |
with kernel $\mathcal{I}$ and corresponding naive cotangent complex | |
$\NL(\alpha) = (\mathcal{I}/\mathcal{I}^2 \to | |
\Omega_{f^{-1}\mathcal{O}_\mathcal{B}[\mathcal{E}]/ | |
f^{-1}\mathcal{O}_\mathcal{B}} | |
\otimes_{f^{-1}\mathcal{O}_\mathcal{B}[\mathcal{E}]} \mathcal{O})$. | |
By the lemma $\xi$ is the class of a morphism | |
$\delta : \mathcal{I}/\mathcal{I}^2 \to \mathcal{G}$. | |
After replacing $\mathcal{E}$ by | |
$\mathcal{E} \times_\mathcal{O} \mathcal{O}'$ we may also assume | |
that $\alpha$ factors through a map | |
$\alpha' : \mathcal{E} \to \mathcal{O}'$. | |
\medskip\noindent | |
These choices determine an $f^{-1}\mathcal{O}_{\mathcal{B}'}$-algebra map | |
$\varphi : \mathcal{O}_{\mathcal{B}'}[\mathcal{E}] \to \mathcal{O}'$. | |
Let $\mathcal{I}' = \Ker(\varphi)$. | |
Observe that $\varphi$ induces a map | |
$\varphi|_{\mathcal{I}'} : \mathcal{I}' \to \mathcal{G}$ | |
and that $\mathcal{O}'$ is the pushout, as in the following | |
diagram | |
$$ | |
\xymatrix{ | |
0 \ar[r] & \mathcal{G} \ar[r] & \mathcal{O}' \ar[r] & | |
\mathcal{O} \ar[r] & 0 \\ | |
0 \ar[r] & \mathcal{I}' \ar[u]^{\varphi|_{\mathcal{I}'}} \ar[r] & | |
f^{-1}\mathcal{O}_{\mathcal{B}'}[\mathcal{E}] \ar[u] \ar[r] & | |
\mathcal{O} \ar[u]_{=} \ar[r] & 0 | |
} | |
$$ | |
Let $\psi : \mathcal{I}' \to \mathcal{G}$ be the sum of the map | |
$\varphi|_{\mathcal{I}'}$ and the composition | |
$$ | |
\mathcal{I}' \to \mathcal{I}'/(\mathcal{I}')^2 \to | |
\mathcal{I}/\mathcal{I}^2 \xrightarrow{\delta} \mathcal{G}. | |
$$ | |
Then the pushout along $\psi$ is an other ring extension | |
$\mathcal{O}'_\xi$ fitting into a diagram as above. | |
A calculation (omitted) shows that $o(\mathcal{O}', \mathcal{O}'_\xi) = \xi$ | |
as desired. | |
\end{proof} | |
\begin{lemma} | |
\label{lemma-extensions-of-relative-ringed-topoi} | |
Let $f : (\Sh(\mathcal{C}), \mathcal{O}) \to | |
(\Sh(\mathcal{B}), \mathcal{O}_\mathcal{B})$ be a morphism of | |
ringed topoi. Let $\mathcal{G}$ be an $\mathcal{O}$-module. | |
The set of isomorphism classes of extensions of | |
$f^{-1}\mathcal{O}_\mathcal{B}$-algebras | |
$$ | |
0 \to \mathcal{G} \to \mathcal{O}' \to \mathcal{O} \to 0 | |
$$ | |
where $\mathcal{G}$ is an ideal of square zero\footnote{In other words, | |
the set of isomorphism classes of first order thickenings | |
$i : (\Sh(\mathcal{C}), \mathcal{O}) \to (\Sh(\mathcal{C}), \mathcal{O}')$ | |
over $(\Sh(\mathcal{B}), \mathcal{O}_\mathcal{B})$ endowed with an isomorphism | |
$\mathcal{G} \to \Ker(i^\sharp)$ of $\mathcal{O}$-modules.} | |
is canonically bijective to | |
$\Ext^1_\mathcal{O}(\NL_{\mathcal{O}/\mathcal{O}_\mathcal{B}}, \mathcal{G})$. | |
\end{lemma} | |
\begin{proof} | |
To prove this we apply the previous results to the case where | |
(\ref{equation-to-solve-ringed-topoi}) is given by the diagram | |
$$ | |
\xymatrix{ | |
0 \ar[r] & | |
\mathcal{G} \ar[r] & | |
{?} \ar[r] & | |
\mathcal{O} \ar[r] & 0 \\ | |
0 \ar[r] & | |
0 \ar[u] \ar[r] & | |
f^{-1}\mathcal{O}_\mathcal{B} \ar[u] \ar[r]^{\text{id}} & | |
f^{-1}\mathcal{O}_\mathcal{B} \ar[u] \ar[r] & 0 | |
} | |
$$ | |
Thus our lemma follows from Lemma \ref{lemma-choices-ringed-topoi} | |
and the fact that there exists a solution, namely | |
$\mathcal{G} \oplus \mathcal{O}$. | |
(See remark below for a direct construction of the bijection.) | |
\end{proof} | |
\begin{remark} | |
\label{remark-extensions-of-relative-ringed-topoi} | |
Let $f : (\Sh(\mathcal{C}), \mathcal{O}) \to | |
(\mathcal{B}, \mathcal{O}_\mathcal{B})$ and $\mathcal{G}$ | |
be as in Lemma \ref{lemma-extensions-of-relative-ringed-topoi}. | |
Consider an extension | |
$0 \to \mathcal{G} \to \mathcal{O}' \to \mathcal{O} \to 0$ | |
as in the lemma. We can choose a sheaf of sets $\mathcal{E}$ | |
and a commutative diagram | |
$$ | |
\xymatrix{ | |
\mathcal{E} \ar[d]_{\alpha'} \ar[rd]^\alpha \\ | |
\mathcal{O}' \ar[r] & \mathcal{O} | |
} | |
$$ | |
such that $f^{-1}\mathcal{O}_\mathcal{B}[\mathcal{E}] \to \mathcal{O}$ | |
is surjective with kernel $\mathcal{J}$. | |
(For example you can take any sheaf of sets surjecting | |
onto $\mathcal{O}'$.) Then | |
$$ | |
\NL_{\mathcal{O}/\mathcal{O}_\mathcal{B}} \cong \NL(\alpha) = | |
\left( | |
\mathcal{J}/\mathcal{J}^2 | |
\longrightarrow | |
\Omega_{f^{-1}\mathcal{O}_\mathcal{B}[\mathcal{E}]/ | |
f^{-1}\mathcal{O}_\mathcal{B}} | |
\otimes_{f^{-1}\mathcal{O}_\mathcal{B}[\mathcal{E}]} \mathcal{O}\right) | |
$$ | |
See Modules on Sites, Section \ref{sites-modules-section-netherlander} | |
and in particular Lemma \ref{sites-modules-lemma-NL-up-to-qis}. | |
Of course $\alpha'$ determines a map | |
$f^{-1}\mathcal{O}_\mathcal{B}[\mathcal{E}] \to \mathcal{O}'$ | |
which in turn determines a map | |
$$ | |
\mathcal{J}/\mathcal{J}^2 \longrightarrow \mathcal{G} | |
$$ | |
which in turn determines the element of | |
$\Ext^1_\mathcal{O}(\NL(\alpha), \mathcal{G}) = | |
\Ext^1_\mathcal{O}(\NL_{\mathcal{O}/\mathcal{O}_\mathcal{B}}, \mathcal{G})$ | |
corresponding to $\mathcal{O}'$ by the bijection of the lemma. | |
\end{remark} | |
\begin{lemma} | |
\label{lemma-extensions-of-relative-ringed-topoi-functorial} | |
Let $f : (\Sh(\mathcal{C}), \mathcal{O}_\mathcal{C}) \to | |
(\Sh(\mathcal{B}), \mathcal{O}_\mathcal{B})$ and | |
$g : (\Sh(\mathcal{D}), \mathcal{O}_\mathcal{D}) \to | |
(\Sh(\mathcal{C}), \mathcal{O}_\mathcal{C})$ be morphisms | |
of ringed topoi. Let $\mathcal{F}$ be a $\mathcal{O}_\mathcal{C}$-module. | |
Let $\mathcal{G}$ be a $\mathcal{O}_\mathcal{D}$-module. Let | |
$c : g^*\mathcal{F} \to \mathcal{G}$ be a $\mathcal{O}_\mathcal{D}$-linear | |
map. Finally, consider | |
\begin{enumerate} | |
\item[(a)] | |
$0 \to \mathcal{F} \to \mathcal{O}_{\mathcal{C}'} \to | |
\mathcal{O}_\mathcal{C} \to 0$ | |
an extension of $f^{-1}\mathcal{O}_\mathcal{B}$-algebras | |
corresponding to | |
$\xi \in \Ext^1_{\mathcal{O}_\mathcal{C}}( | |
\NL_{\mathcal{O}_\mathcal{C}/\mathcal{O}_\mathcal{B}}, \mathcal{F})$, and | |
\item[(b)] | |
$0 \to \mathcal{G} \to \mathcal{O}_{\mathcal{D}'} \to | |
\mathcal{O}_\mathcal{D} \to 0$ | |
an extension of $g^{-1}f^{-1}\mathcal{O}_\mathcal{B}$-algebras | |
corresponding to | |
$\zeta \in \Ext^1_{\mathcal{O}_\mathcal{D}}( | |
\NL_{\mathcal{O}_\mathcal{D}/\mathcal{O}_\mathcal{B}}, \mathcal{G})$. | |
\end{enumerate} | |
See Lemma \ref{lemma-extensions-of-relative-ringed-topoi}. | |
Then there is a morphism | |
$$ | |
g' : | |
(\Sh(\mathcal{D}), \mathcal{O}_{\mathcal{D}'}) | |
\longrightarrow | |
(\Sh(\mathcal{C}), \mathcal{O}_{\mathcal{C}'}) | |
$$ | |
of ringed topoi over $(\Sh(\mathcal{B}), \mathcal{O}_\mathcal{B})$ | |
compatible with $g$ and $c$ if and only if $\xi$ and $\zeta$ | |
map to the same element of | |
$\Ext^1_{\mathcal{O}_\mathcal{D}}( | |
Lg^*\NL_{\mathcal{O}_\mathcal{C}/\mathcal{O}_\mathcal{B}}, \mathcal{G})$. | |
\end{lemma} | |
\begin{proof} | |
The stament makes sense as we have the maps | |
$$ | |
\Ext^1_{\mathcal{O}_\mathcal{C}}( | |
\NL_{\mathcal{O}_\mathcal{C}/\mathcal{O}_\mathcal{B}}, \mathcal{F}) \to | |
\Ext^1_{\mathcal{O}_\mathcal{D}}( | |
Lg^*\NL_{\mathcal{O}_\mathcal{C}/\mathcal{O}_\mathcal{B}}, Lg^*\mathcal{F}) \to | |
\Ext^1_{\mathcal{O}_\mathcal{D}} | |
(Lg^*\NL_{\mathcal{O}_\mathcal{C}/\mathcal{O}_\mathcal{B}}, \mathcal{G}) | |
$$ | |
using the map $Lg^*\mathcal{F} \to g^*\mathcal{F} \xrightarrow{c} \mathcal{G}$ | |
and | |
$$ | |
\Ext^1_{\mathcal{O}_Y}( | |
\NL_{\mathcal{O}_\mathcal{D}/\mathcal{O}_\mathcal{B}}, \mathcal{G}) \to | |
\Ext^1_{\mathcal{O}_Y}( | |
Lg^*\NL_{\mathcal{O}_\mathcal{C}/\mathcal{O}_\mathcal{B}}, \mathcal{G}) | |
$$ | |
using the map $Lg^*\NL_{\mathcal{O}_\mathcal{C}/\mathcal{O}_\mathcal{B}} \to | |
\NL_{\mathcal{O}_\mathcal{D}/\mathcal{O}_\mathcal{B}}$. | |
The statement of the lemma can be deduced from | |
Lemma \ref{lemma-huge-diagram-ringed-topoi} applied to the diagram | |
$$ | |
\xymatrix{ | |
& 0 \ar[r] & | |
\mathcal{G} \ar[r] & | |
\mathcal{O}_{\mathcal{D}'} \ar[r] & | |
\mathcal{O}_\mathcal{D} \ar[r] & 0 \\ | |
& 0 \ar[r]|\hole & 0 \ar[u] \ar[r] & | |
g^{-1}f^{-1}\mathcal{O}_\mathcal{B} \ar[u] \ar[r]|\hole & | |
g^{-1}f^{-1}\mathcal{O}_\mathcal{B} \ar[u] \ar[r] & 0 \\ | |
0 \ar[r] & | |
\mathcal{F} \ar[ruu] \ar[r] & | |
\mathcal{O}_{\mathcal{C}'} \ar[r] & | |
\mathcal{O}_\mathcal{C} \ar[ruu] \ar[r] & 0 \\ | |
0 \ar[r] & 0 \ar[ruu]|\hole \ar[u] \ar[r] & | |
f^{-1}\mathcal{O}_\mathcal{B} \ar[ruu]|\hole \ar[u] \ar[r] & | |
f^{-1}\mathcal{O}_\mathcal{B} \ar[ruu]|\hole \ar[u] \ar[r] & 0 | |
} | |
$$ | |
and a compatibility between the constructions in the proofs | |
of Lemmas \ref{lemma-extensions-of-relative-ringed-topoi} and | |
\ref{lemma-huge-diagram-ringed-topoi} | |
whose statement and proof we omit. (See remark below for a direct argument.) | |
\end{proof} | |
\begin{remark} | |
\label{remark-extensions-of-relative-ringed-topoi-functorial} | |
Let $f : (\Sh(\mathcal{C}), \mathcal{O}_\mathcal{C}) \to | |
(\Sh(\mathcal{B}), \mathcal{O}_\mathcal{B})$, | |
$g : (\Sh(\mathcal{D}), \mathcal{O}_\mathcal{D}) \to | |
(\Sh(\mathcal{C}), \mathcal{O}_\mathcal{C})$, | |
$\mathcal{F}$, | |
$\mathcal{G}$, | |
$c : g^*\mathcal{F} \to \mathcal{G}$, | |
$0 \to \mathcal{F} \to \mathcal{O}_{\mathcal{C}'} \to | |
\mathcal{O}_\mathcal{C} \to 0$, | |
$\xi \in \Ext^1_{\mathcal{O}_\mathcal{C}}( | |
\NL_{\mathcal{O}_\mathcal{C}/\mathcal{O}_\mathcal{B}}, \mathcal{F})$, | |
$0 \to \mathcal{G} \to \mathcal{O}_{\mathcal{D}'} \to | |
\mathcal{O}_\mathcal{D} \to 0$, and | |
$\zeta \in \Ext^1_{\mathcal{O}_\mathcal{D}}( | |
\NL_{\mathcal{O}_\mathcal{D}/\mathcal{O}_\mathcal{B}}, \mathcal{G})$ | |
be as in Lemma \ref{lemma-extensions-of-relative-ringed-topoi-functorial}. | |
Using pushout along $c : g^{-1}\mathcal{F} \to \mathcal{G}$ | |
we can construct an extension | |
$$ | |
\xymatrix{ | |
0 \ar[r] & | |
\mathcal{G} \ar[r] & | |
\mathcal{O}'_1 \ar[r] & | |
g^{-1}\mathcal{O}_\mathcal{C} \ar[r] & 0 \\ | |
0 \ar[r] & | |
g^{-1}\mathcal{F} \ar[u]^c \ar[r] & | |
g^{-1}\mathcal{O}_{\mathcal{C}'} \ar[u] \ar[r] & | |
g^{-1}\mathcal{O}_\mathcal{C} \ar@{=}[u] \ar[r] & 0 | |
} | |
$$ | |
Using pullback along | |
$g^\sharp : g^{-1}\mathcal{O}_\mathcal{C} \to \mathcal{O}_\mathcal{D}$ | |
we can construct an extension | |
$$ | |
\xymatrix{ | |
0 \ar[r] & | |
\mathcal{G} \ar[r] & | |
\mathcal{O}_{\mathcal{D}'} \ar[r] & | |
\mathcal{O}_\mathcal{D} \ar[r] & 0 \\ | |
0 \ar[r] & | |
\mathcal{G} \ar@{=}[u] \ar[r] & | |
\mathcal{O}'_2 \ar[u] \ar[r] & | |
g^{-1}\mathcal{O}_\mathcal{C} \ar[u] \ar[r] & 0 | |
} | |
$$ | |
A diagram chase tells us that there exists a morphism | |
$g' : (\Sh(\mathcal{D}), \mathcal{O}_{\mathcal{D}'}) \to | |
(\Sh(\mathcal{C}), \mathcal{O}_{\mathcal{C}'})$ | |
over $(\Sh(\mathcal{B}), \mathcal{O}_\mathcal{B})$ | |
compatible with $g$ and $c$ if and only if $\mathcal{O}'_1$ is isomorphic | |
to $\mathcal{O}'_2$ as $g^{-1}f^{-1}\mathcal{O}_\mathcal{B}$-algebra extensions | |
of $g^{-1}\mathcal{O}_\mathcal{C}$ by $\mathcal{G}$. By | |
Lemma \ref{lemma-extensions-of-relative-ringed-topoi} | |
these extensions are classified by the LHS of | |
$$ | |
\Ext^1_{g^{-1}\mathcal{O}_\mathcal{C}}( | |
\NL_{g^{-1}\mathcal{O}_\mathcal{C}/g^{-1}f^{-1}\mathcal{O}_\mathcal{B}}, | |
\mathcal{G}) = | |
\Ext^1_{\mathcal{O}_\mathcal{D}}( | |
Lg^*\NL_{\mathcal{O}_\mathcal{C}/\mathcal{O}_\mathcal{B}}, \mathcal{G}) | |
$$ | |
Here the equality comes from tensor-hom adjunction and | |
the equalities | |
$$ | |
\NL_{g^{-1}\mathcal{O}_\mathcal{C}/g^{-1}f^{-1}\mathcal{O}_\mathcal{B}} = | |
g^{-1}\NL_{\mathcal{O}_\mathcal{C}/\mathcal{O}_\mathcal{B}} | |
\quad\text{and}\quad | |
Lg^*\NL_{\mathcal{O}_\mathcal{C}/\mathcal{O}_\mathcal{B}} = | |
g^{-1}\NL_{\mathcal{O}_\mathcal{C}/\mathcal{O}_\mathcal{B}} | |
\otimes_{g^{-1}\mathcal{O}_X}^\mathbf{L} \mathcal{O}_Y | |
$$ | |
For the first of these see | |
Modules on Sites, Lemma \ref{sites-modules-lemma-pullback-NL}; the second | |
follows from the definition of derived pullback. | |
Thus, in order to see that | |
Lemma \ref{lemma-extensions-of-relative-ringed-topoi-functorial} | |
is true, it suffices to show that $\mathcal{O}'_1$ corresponds | |
to the image of $\xi$ and that $\mathcal{O}'_2$ correspond to | |
the image of $\zeta$. | |
The correspondence between $\xi$ and $\mathcal{O}'_1$ | |
is immediate from the construction of the class $\xi$ in | |
Remark \ref{remark-extensions-of-relative-ringed-topoi}. | |
For the correspondence between $\zeta$ and $\mathcal{O}'_2$, | |
we first choose a commutative diagram | |
$$ | |
\xymatrix{ | |
\mathcal{E} \ar[d]_{\beta'} \ar[rd]^\beta \\ | |
\mathcal{O}_{\mathcal{D}'} \ar[r] & \mathcal{O}_\mathcal{D} | |
} | |
$$ | |
such that $g^{-1}f^{-1}\mathcal{O}_\mathcal{B}[\mathcal{E}] \to | |
\mathcal{O}_\mathcal{D}$ | |
is surjective with kernel $\mathcal{K}$. Next choose a | |
commutative diagram | |
$$ | |
\xymatrix{ | |
\mathcal{E} \ar[d]_{\beta'} & | |
\mathcal{E}' \ar[l]^\varphi \ar[d]_{\alpha'} \ar[rd]^\alpha \\ | |
\mathcal{O}_{\mathcal{D}'} & | |
\mathcal{O}'_2 \ar[l] \ar[r] & | |
g^{-1}\mathcal{O}_\mathcal{C} | |
} | |
$$ | |
such that $g^{-1}f^{-1}\mathcal{O}_\mathcal{B}[\mathcal{E}'] \to | |
g^{-1}\mathcal{O}_\mathcal{C}$ | |
is surjective with kernel $\mathcal{J}$. (For example just take | |
$\mathcal{E}' = \mathcal{E} \amalg \mathcal{O}'_2$ as a sheaf of sets.) | |
The map $\varphi$ induces a map of complexes $\NL(\alpha) \to \NL(\beta)$ | |
(notation as in Modules, Section \ref{modules-section-netherlander}) | |
and in particular | |
$\bar\varphi : \mathcal{J}/\mathcal{J}^2 \to \mathcal{K}/\mathcal{K}^2$. | |
Then $\NL(\alpha) \cong \NL_{\mathcal{O}_\mathcal{D}/\mathcal{O}_\mathcal{B}}$ | |
and | |
$\NL(\beta) \cong | |
\NL_{g^{-1}\mathcal{O}_\mathcal{C}/g^{-1}f^{-1}\mathcal{O}_\mathcal{B}}$ | |
and the map of complexes $\NL(\alpha) \to \NL(\beta)$ | |
represents the map | |
$Lg^*\NL_{\mathcal{O}_\mathcal{C}/\mathcal{O}_\mathcal{B}} \to | |
\NL_{\mathcal{O}_\mathcal{D}/\mathcal{O}_\mathcal{B}}$ | |
used in the | |
statement of Lemma \ref{lemma-extensions-of-relative-ringed-topoi-functorial} | |
(see first part of its proof). Now $\zeta$ corresponds to the | |
class of the map $\mathcal{K}/\mathcal{K}^2 \to \mathcal{G}$ | |
induced by $\beta'$, see | |
Remark \ref{remark-extensions-of-relative-ringed-topoi}. | |
Similarly, the extension $\mathcal{O}'_2$ corresponds to the map | |
$\mathcal{J}/\mathcal{J}^2 \to \mathcal{G}$ induced by $\alpha'$. | |
The commutative diagram above shows that this map is | |
the composition of the map $\mathcal{K}/\mathcal{K}^2 \to \mathcal{G}$ | |
induced by $\beta'$ with the map | |
$\bar\varphi : \mathcal{J}/\mathcal{J}^2 \to \mathcal{K}/\mathcal{K}^2$. | |
This proves the compatibility we were looking for. | |
\end{remark} | |
\begin{lemma} | |
\label{lemma-parametrize-solutions-ringed-topoi} | |
Let $t : (\Sh(\mathcal{B}), \mathcal{O}_\mathcal{B}) \to | |
(\Sh(\mathcal{B}'), \mathcal{O}_{\mathcal{B}'})$, | |
$\mathcal{J} = \Ker(t^\sharp)$, | |
$f : (\Sh(\mathcal{C}), \mathcal{O}) \to | |
(\Sh(\mathcal{B}), \mathcal{O}_\mathcal{B})$, $\mathcal{G}$, and | |
$c : \mathcal{J} \to \mathcal{G}$ be as in | |
(\ref{equation-to-solve-ringed-topoi}). | |
Denote $\xi \in \Ext^1_{\mathcal{O}_\mathcal{B}}( | |
\NL_{\mathcal{O}_\mathcal{B}/\mathcal{O}_{\mathcal{B}'}}, \mathcal{J})$ | |
the element corresponding to the extension $\mathcal{O}_{\mathcal{B}'}$ | |
of $\mathcal{O}_\mathcal{B}$ by $\mathcal{J}$ via | |
Lemma \ref{lemma-extensions-of-relative-ringed-topoi}. | |
The set of isomorphism classes of solutions is canonically bijective | |
to the fibre of | |
$$ | |
\Ext^1_\mathcal{O}(\NL_{\mathcal{O}/\mathcal{O}_{\mathcal{B}'}}, | |
\mathcal{G})\to | |
\Ext^1_\mathcal{O}( | |
Lf^*\NL_{\mathcal{O}_\mathcal{B}/\mathcal{O}_{\mathcal{B}'}}, \mathcal{G}) | |
$$ | |
over the image of $\xi$. | |
\end{lemma} | |
\begin{proof} | |
By Lemma \ref{lemma-extensions-of-relative-ringed-topoi} | |
applied to $t \circ f : (\Sh(\mathcal{C}), \mathcal{O}) \to | |
(\Sh(\mathcal{B}'), \mathcal{O}_{\mathcal{B}'})$ | |
and the $\mathcal{O}$-module $\mathcal{G}$ | |
we see that elements $\zeta$ of | |
$\Ext^1_\mathcal{O}(\NL_{\mathcal{O}/\mathcal{O}_{\mathcal{B}'}}, | |
\mathcal{G})$ | |
parametrize extensions | |
$0 \to \mathcal{G} \to \mathcal{O}' \to \mathcal{O} \to 0$ | |
of $f^{-1}\mathcal{O}_{\mathcal{B}'}$-algebras. By | |
Lemma \ref{lemma-extensions-of-relative-ringed-topoi-functorial} applied | |
to | |
$$ | |
(\Sh(\mathcal{C}), \mathcal{O}) \xrightarrow{f} | |
(\Sh(\mathcal{B}), \mathcal{O}_\mathcal{B}) \xrightarrow{t} | |
(\Sh(\mathcal{B}'), \mathcal{O}_{\mathcal{B}'}) | |
$$ | |
and $c : \mathcal{J} \to \mathcal{G}$ | |
we see that there is an morphism | |
$$ | |
f' : | |
(\Sh(\mathcal{C}), \mathcal{O}') | |
\longrightarrow | |
(\Sh(\mathcal{B}'), \mathcal{O}_{\mathcal{B}'}) | |
$$ | |
over $(\Sh(\mathcal{B}'), \mathcal{O}_{\mathcal{B}'})$ | |
compatible with $c$ and $f$ if and only if | |
$\zeta$ maps to $\xi$. Of course this is the same thing as saying | |
$\mathcal{O}'$ is a solution of (\ref{equation-to-solve-ringed-topoi}). | |
\end{proof} | |
\section{Deformations of algebraic spaces} | |
\label{section-deformations-spaces} | |
\noindent | |
In this section we spell out what the results in | |
Section \ref{section-deformations-ringed-topoi} | |
mean for deformations of algebraic spaces. | |
\begin{lemma} | |
\label{lemma-match-thickenings} | |
Let $S$ be a scheme. Let $i : Z \to Z'$ be a morphism of algebraic spaces | |
over $S$. The following are equivalent | |
\begin{enumerate} | |
\item $i$ is a thickening of algebraic spaces as defined | |
in More on Morphisms of Spaces, Section | |
\ref{spaces-more-morphisms-section-thickenings}, and | |
\item the associated morphism | |
$i_{small} : (\Sh(Z_\etale), \mathcal{O}_Z) \to | |
(\Sh(Z'_\etale), \mathcal{O}_{Z'})$ | |
of ringed topoi (Properties of Spaces, Lemma | |
\ref{spaces-properties-lemma-morphism-ringed-topoi}) | |
is a thickening in the sense of | |
Section \ref{section-thickenings-ringed-topoi}. | |
\end{enumerate} | |
\end{lemma} | |
\begin{proof} | |
We stress that this is not a triviality. | |
\medskip\noindent | |
Assume (1). By More on Morphisms of Spaces, Lemma | |
\ref{spaces-more-morphisms-lemma-thickening-equivalence} | |
the morphism $i$ induces an equivalence of small \'etale | |
sites and in particular of topoi. Of course $i^\sharp$ | |
is surjective with locally nilpotent kernel by definition | |
of thickenings. | |
\medskip\noindent | |
Assume (2). (This direction is less important and more of | |
a curiosity.) For any \'etale morphism $Y' \to Z'$ we see | |
that $Y = Z \times_{Z'} Y'$ has the same \'etale topos | |
as $Y'$. In particular, $Y'$ is quasi-compact if and only if | |
$Y$ is quasi-compact because being quasi-compact | |
is a topos theoretic notion (Sites, Lemma \ref{sites-lemma-quasi-compact}). | |
Having said this we see that $Y'$ is quasi-compact and quasi-separated | |
if and only if $Y$ is quasi-compact and quasi-separated | |
(because you can characterize $Y'$ being quasi-separated by saying | |
that for all $Y'_1, Y'_2$ quasi-compact algebraic spaces \'etale over $Y'$ | |
we have that $Y'_1 \times_{Y'} Y'_2$ is quasi-compact). | |
Take $Y'$ affine. Then the algebraic space $Y$ is | |
quasi-compact and quasi-separated. For any | |
quasi-coherent $\mathcal{O}_Y$-module $\mathcal{F}$ we have | |
$H^q(Y, \mathcal{F}) = H^q(Y', (Y \to Y')_*\mathcal{F})$ | |
because the \'etale topoi are the same. | |
Then $H^q(Y', (Y \to Y')_*\mathcal{F}) = 0$ | |
because the pushforward is quasi-coherent | |
(Morphisms of Spaces, Lemma \ref{spaces-morphisms-lemma-pushforward}) | |
and $Y$ is affine. It follows that $Y'$ is affine by | |
Cohomology of Spaces, Proposition | |
\ref{spaces-cohomology-proposition-vanishing-affine} | |
(there surely is a proof of this direction of the lemma | |
avoiding this reference). | |
Hence $i$ is an affine morphism. In the affine case it | |
follows easily from the conditions in | |
Section \ref{section-thickenings-ringed-topoi} | |
that $i$ is a thickening of algebraic spaces. | |
\end{proof} | |
\begin{lemma} | |
\label{lemma-deform-spaces} | |
Let $S$ be a scheme. | |
Let $Y \subset Y'$ be a first order thickening of algebraic spaces | |
over $S$. | |
Let $f : X \to Y$ be a flat morphism of algebraic spaces over $S$. | |
If there exists a flat morphism $f' : X' \to Y'$ of algebraic spaces over $S$ | |
and an isomorphsm $a : X \to X' \times_{Y'} Y$ over $Y$, then | |
\begin{enumerate} | |
\item the set of isomorphism classes of pairs $(f' : X' \to Y', a)$ is | |
principal homogeneous under | |
$\Ext^1_{\mathcal{O}_X}(\NL_{X/Y}, f^*\mathcal{C}_{Y/Y'})$, and | |
\item the set of automorphisms of $\varphi : X' \to X'$ | |
over $Y'$ which reduce to the identity on $X' \times_{Y'} Y$ | |
is $\Ext^0_{\mathcal{O}_X}(\NL_{X/Y}, f^*\mathcal{C}_{Y/Y'})$. | |
\end{enumerate} | |
\end{lemma} | |
\begin{proof} | |
We will apply the material on deformations of ringed topoi | |
to the small \'etale topoi of the algebraic spaces in the lemma. | |
We may think of $X$ as a closed subspace of $X'$ | |
so that $(f, f') : (X \subset X') \to (Y \subset Y')$ | |
is a morphism of first order thickenings. | |
By Lemma \ref{lemma-match-thickenings} | |
this translates into a morphism of thickenings of ringed topoi. | |
Then we see from More on Morphisms of Spaces, Lemma | |
\ref{spaces-more-morphisms-lemma-deform} | |
(or from the more general Lemma \ref{lemma-deform-module-ringed-topoi}) | |
that the ideal sheaf of $X$ in $X'$ is equal to $f^*\mathcal{C}_{Y'/Y}$ | |
and this is in fact equivalent to flatness of $X'$ over $Y'$. | |
Hence we have a commutative diagram | |
$$ | |
\xymatrix{ | |
0 \ar[r] & f^*\mathcal{C}_{Y/Y'} \ar[r] & | |
\mathcal{O}_{X'} \ar[r] & | |
\mathcal{O}_X \ar[r] & 0 \\ | |
0 \ar[r] & | |
f_{small}^{-1}\mathcal{C}_{Y/Y'} \ar[u] \ar[r] & | |
f_{small}^{-1}\mathcal{O}_{Y'} \ar[u] \ar[r] & | |
f_{small}^{-1}\mathcal{O}_Y \ar[u] \ar[r] & 0 | |
} | |
$$ | |
Please compare with (\ref{equation-to-solve-ringed-topoi}). | |
Observe that automorphisms $\varphi$ as in (2) | |
give automorphisms $\varphi^\sharp : \mathcal{O}_{X'} \to \mathcal{O}_{X'}$ | |
fitting in the diagram above. Conversely, an automorphism | |
$\alpha : \mathcal{O}_{X'} \to \mathcal{O}_{X'}$ | |
fitting into the diagram of sheaves above is equal to $\varphi^\sharp$ | |
for some automorphism $\varphi$ as in (2) | |
by More on Morphisms of Spaces, Lemma | |
\ref{spaces-more-morphisms-lemma-first-order-thickening-maps}. | |
Finally, by More on Morphisms of Spaces, Lemma | |
\ref{spaces-more-morphisms-lemma-first-order-thickening} | |
if we find another sheaf of rings $\mathcal{A}$ on $X_\etale$ | |
fitting into the diagram | |
$$ | |
\xymatrix{ | |
0 \ar[r] & f^*\mathcal{C}_{Y/Y'} \ar[r] & | |
\mathcal{A} \ar[r] & | |
\mathcal{O}_X \ar[r] & 0 \\ | |
0 \ar[r] & | |
f_{small}^{-1}\mathcal{C}_{Y/Y'} \ar[u] \ar[r] & | |
f_{small}^{-1}\mathcal{O}_{Y'} \ar[u] \ar[r] & | |
f_{small}^{-1}\mathcal{O}_Y \ar[u] \ar[r] & 0 | |
} | |
$$ | |
then there exists a first order thickening $X \subset X''$ | |
with $\mathcal{O}_{X''} = \mathcal{A}$ and applying | |
More on Morphisms of Spaces, Lemma | |
\ref{spaces-more-morphisms-lemma-first-order-thickening-maps} | |
once more, we obtain a morphism | |
$(f, f'') : (X \subset X'') \to (Y \subset Y')$ with all the | |
desired properties. | |
Thus part (1) follows from | |
Lemma \ref{lemma-choices-ringed-topoi} | |
and part (2) from part (2) of | |
Lemma \ref{lemma-huge-diagram-ringed-topoi}. | |
(Note that $\NL_{X/Y}$ as defined for a morphism of algebraic spaces in | |
More on Morphisms of Spaces, Section | |
\ref{spaces-more-morphisms-section-netherlander} | |
agrees with $\NL_{X/Y}$ as used in | |
Section \ref{section-deformations-ringed-topoi}.) | |
\end{proof} | |
\noindent | |
Let $S$ be a scheme. Let $f : X \to B$ | |
be a morphism of algebraic spaces over $S$. | |
Let $\mathcal{F} \to \mathcal{G}$ be a homomorphism of $\mathcal{O}_X$-modules | |
(not necessarily quasi-coherent). | |
Consider the functor | |
$$ | |
F : | |
\left\{ | |
\begin{matrix} | |
\text{extensions of }f^{-1}\mathcal{O}_B\text{ algebras}\\ | |
0 \to \mathcal{F} \to \mathcal{O}' \to \mathcal{O}_X \to 0\\ | |
\text{where }\mathcal{F}\text{ is an ideal of square zero} | |
\end{matrix} | |
\right\} | |
\longrightarrow | |
\left\{ | |
\begin{matrix} | |
\text{extensions of }f^{-1}\mathcal{O}_B\text{ algebras}\\ | |
0 \to \mathcal{G} \to \mathcal{O}' \to \mathcal{O}_X \to 0\\ | |
\text{where }\mathcal{G}\text{ is an ideal of square zero} | |
\end{matrix} | |
\right\} | |
$$ | |
given by pushout. | |
\begin{lemma} | |
\label{lemma-thickening-space-quasi-coherent} | |
In the situation above assume that $X$ is quasi-compact and quasi-separated | |
and that $DQ_X(\mathcal{F}) \to DQ_X(\mathcal{G})$ | |
(Derived Categories of Spaces, Section | |
\ref{spaces-perfect-section-better-coherator}) | |
is an isomorphism. Then the functor $F$ is an equivalence of categories. | |
\end{lemma} | |
\begin{proof} | |
Recall that $\NL_{X/B}$ is an object of $D_\QCoh(\mathcal{O}_X)$, see | |
More on Morphisms of Spaces, Lemma | |
\ref{spaces-more-morphisms-lemma-netherlander-quasi-coherent}. | |
Hence our assumption implies the maps | |
$$ | |
\Ext^i_X(\NL_{X/B}, \mathcal{F}) \longrightarrow | |
\Ext^i_X(\NL_{X/B}, \mathcal{G}) | |
$$ | |
are isomorphisms for all $i$. This implies our functor is fully | |
faithful by Lemma \ref{lemma-huge-diagram-ringed-topoi}. | |
On the other hand, the functor is essentially surjective by | |
Lemma \ref{lemma-choices-ringed-topoi} because | |
we have the solutions $\mathcal{O}_X \oplus \mathcal{F}$ | |
and $\mathcal{O}_X \oplus \mathcal{G}$ in both categories. | |
\end{proof} | |
\noindent | |
Let $S$ be a scheme. Let $B \subset B'$ be a first order thickening of | |
algebraic spaces over $S$ with ideal sheaf $\mathcal{J}$ | |
which we view either as a quasi-coherent $\mathcal{O}_B$-module | |
or as a quasi-coherent sheaf of ideals on $B'$, see | |
More on Morphisms of Spaces, Section | |
\ref{spaces-more-morphisms-section-thickenings}. | |
Let $f : X \to B$ be a morphism of algebraic spaces over $S$. | |
Let $\mathcal{F} \to \mathcal{G}$ be a homomorphism of | |
$\mathcal{O}_X$-modules (not necessarily quasi-coherent). | |
Let $c : f^{-1}\mathcal{J} \to \mathcal{F}$ be a map | |
of $f^{-1}\mathcal{O}_B$-modules and denote | |
$c' : f^{-1}\mathcal{J} \to \mathcal{G}$ the composition. | |
Consider the functor | |
$$ | |
FT : | |
\{\text{solutions to }(\ref{equation-to-solve-ringed-topoi}) | |
\text{ for }\mathcal{F}\text{ and }c\} | |
\longrightarrow | |
\{\text{solutions to }(\ref{equation-to-solve-ringed-topoi}) | |
\text{ for }\mathcal{G}\text{ and }c'\} | |
$$ | |
given by pushout. | |
\begin{lemma} | |
\label{lemma-thickening-over-thickening-space-quasi-coherent} | |
In the situation above assume that $X$ is quasi-compact and quasi-separated | |
and that $DQ_X(\mathcal{F}) \to DQ_X(\mathcal{G})$ | |
(Derived Categories of Spaces, Section | |
\ref{spaces-perfect-section-better-coherator}) | |
is an isomorphism. Then the functor $FT$ is an equivalence of categories. | |
\end{lemma} | |
\begin{proof} | |
A solution of (\ref{equation-to-solve-ringed-topoi}) for $\mathcal{F}$ | |
in particular gives an extension of $f^{-1}\mathcal{O}_{B'}$-algebras | |
$$ | |
0 \to \mathcal{F} \to \mathcal{O}' \to \mathcal{O}_X \to 0 | |
$$ | |
where $\mathcal{F}$ is an ideal of square zero. Similarly for $\mathcal{G}$. | |
Moreover, given such an extension, we obtain a map | |
$c_{\mathcal{O}'} : f^{-1}\mathcal{J} \to \mathcal{F}$. | |
Thus we are looking at the full subcategory of such extensions | |
of $f^{-1}\mathcal{O}_{B'}$-algebras with $c = c_{\mathcal{O}'}$. | |
Clearly, if $\mathcal{O}'' = F(\mathcal{O}')$ where | |
$F$ is the equivalence of Lemma \ref{lemma-thickening-space-quasi-coherent} | |
(applied to $X \to B'$ this time), | |
then $c_{\mathcal{O}''}$ is the composition of | |
$c_{\mathcal{O}'}$ and the map $\mathcal{F} \to \mathcal{G}$. | |
This proves the lemma. | |
\end{proof} | |
\section{Deformations of complexes} | |
\label{section-deformations-complexes} | |
\noindent | |
This section is a warmup for the next one. | |
We will use as much as possible the material | |
in the chapters on commutative algebra. | |
\begin{lemma} | |
\label{lemma-canonical-class-algebra} | |
Let $R' \to R$ be a surjection of rings whose kernel is an ideal | |
$I$ of square zero. For every $K \in D^-(R)$ there is a canonical | |
map | |
$$ | |
\omega(K) : K \longrightarrow K \otimes_R^\mathbf{L} I[2] | |
$$ | |
in $D(R)$ with the following properties | |
\begin{enumerate} | |
\item $\omega(K) = 0$ if and only if there exists | |
$K' \in D(R')$ with $K' \otimes_{R'}^\mathbf{L} R = K$, | |
\item given $K \to L$ in $D^-(R)$ the diagram | |
$$ | |
\xymatrix{ | |
K \ar[d] \ar[rr]_-{\omega(K)} & & | |
K \otimes^\mathbf{L}_R I[2] \ar[d] \\ | |
L \ar[rr]^-{\omega(L)} & & | |
L \otimes^\mathbf{L}_R I[2] | |
} | |
$$ | |
commutes, and | |
\item formation of $\omega(K)$ is compatible with ring maps $R' \to S'$ | |
(see proof for a precise statement). | |
\end{enumerate} | |
\end{lemma} | |
\begin{proof} | |
Choose a bounded above complex $K^\bullet$ of free $R$-modules representing | |
$K$. Then we can choose free $R'$-modules $(K')^n$ lifting $K^n$. | |
We can choose $R'$-module maps $(d')^n_K : (K')^n \to (K')^{n + 1}$ | |
lifting the differentials $d^n_K : K^n \to K^{n + 1}$ of $K^\bullet$. | |
Although the compositions | |
$$ | |
(d')^{n + 1}_K \circ (d')^n_K : (K')^n \to (K')^{n + 2} | |
$$ | |
may not be zero, they do factor as | |
$$ | |
(K')^n \to K^n \xrightarrow{\omega^n_K} | |
K^{n + 2} \otimes_R I = I(K')^{n + 2} \to (K')^{n + 2} | |
$$ | |
because $d^{n + 1} \circ d^n = 0$. | |
A calculation shows that $\omega^n_K$ defines a map of complexes. | |
This map of complexes defines $\omega(K)$. | |
\medskip\noindent | |
Let us prove this construction is compatible with a map of complexes | |
$\alpha^\bullet : K^\bullet \to L^\bullet$ of bounded above free $R$-modules | |
and given choices of lifts $(K')^n, (L')^n, (d')^n_K, (d')^n_L$. | |
Namely, choose $(\alpha')^n : (K')^n \to (L')^n$ lifting the | |
components $\alpha^n : K^n \to L^n$. As before we get a | |
factorization | |
$$ | |
(K')^n \to K^n \xrightarrow{h^n} | |
L^{n + 1} \otimes_R I = I(L')^{n + 1} \to (L')^{n + 2} | |
$$ | |
of $(d')^n_L \circ (\alpha')^n - (\alpha')^{n + 1} \circ (d')_K^n$. | |
Then it is an pleasant calculation to show that | |
$$ | |
\omega^n_L \circ \alpha^n = | |
(d_L^{n + 1} \otimes \text{id}_I) \circ h^n + h^{n + 1} \circ d_K^n + | |
(\alpha^{n + 2} \otimes \text{id}_I) \circ \omega^n_K | |
$$ | |
This proves the commutativity of the diagram in (2) of the lemma | |
in this particular case. Using this for two different choices | |
of bounded above free complexes representing $K$, we find that | |
$\omega(K)$ is well defined! And of course (2) holds in general as well. | |
\medskip\noindent | |
If $K$ lifts to $K'$ in $D^-(R')$, then we can represent | |
$K'$ by a bounded above complex of free $R'$-modules | |
and we see immediately that $\omega(K) = 0$. | |
Conversely, going back to our choices $K^\bullet$, | |
$(K')^n$, $(d')^n_K$, if $\omega(K) = 0$, then we can find | |
$g^n : K^n \to K^{n + 1} \otimes_R I$ with | |
$$ | |
\omega^n = (d_K^{n + 1} \otimes \text{id}_I) \circ g^n + | |
g^{n + 1} \circ d_K^n | |
$$ | |
This means that with differentials | |
$(d')^n_K + g^n : (K')^n \to (K')^{n + 1}$ | |
we obtain a complex of free $R'$-modules lifting $K^\bullet$. | |
This proves (1). | |
\medskip\noindent | |
Finally, part (3) means the following: Let $R' \to S'$ be a map of | |
rings. Set $S = S' \otimes_{R'} R$ and denote $J = IS' \subset S'$ | |
the square zero kernel of $S' \to S$. Then given $K \in D^-(R)$ | |
the statement is that we get a commutative diagram | |
$$ | |
\xymatrix{ | |
K \otimes_R^\mathbf{L} S \ar[d] \ar[rr]_-{\omega(K) \otimes \text{id}} & & | |
(K \otimes^\mathbf{L}_R I[2]) \otimes_R^\mathbf{L} S \ar[d] \\ | |
K \otimes_R^\mathbf{L} S \ar[rr]^-{\omega(K \otimes_R^\mathbf{L} S)} & & | |
(K \otimes_R^\mathbf{L} S) \otimes^\mathbf{L}_S J[2] | |
} | |
$$ | |
Here the right vertical arrow comes from | |
$$ | |
(K \otimes^\mathbf{L}_R I[2]) \otimes_R^\mathbf{L} S = | |
(K \otimes_R^\mathbf{L} S) \otimes_S^\mathbf{L} | |
(I \otimes_R^\mathbf{L} S)[2] \longrightarrow | |
(K \otimes_R^\mathbf{L} S) \otimes_S^\mathbf{L} J[2] | |
$$ | |
Choose $K^\bullet$, $(K')^n$, and $(d')^n_K$ as above. | |
Then we can use $K^\bullet \otimes_R S$, $(K')^n \otimes_{R'} S'$, and | |
$(d')^n_K \otimes \text{id}_{S'}$ for the construction of | |
$\omega(K \otimes_R^\mathbf{L} S)$. | |
With these choices commutativity | |
is immediately verified on the level of maps of complexes. | |
\end{proof} | |
\section{Deformations of complexes on ringed topoi} | |
\label{section-thickenings-complexes} | |
\noindent | |
This material is taken from \cite{lieblich-complexes}. | |
\medskip\noindent | |
The material in this section works in the setting of a first order thickening | |
of ringed topoi as defined in Section \ref{section-thickenings-ringed-topoi}. | |
However, in order to simplify the notation we will assume the underlying | |
sites $\mathcal{C}$ and $\mathcal{D}$ are the same. | |
Moreover, the surjective homomorphism $\mathcal{O}' \to \mathcal{O}$ | |
of sheaves of rings will be denoted $\mathcal{O} \to \mathcal{O}_0$ | |
as is perhaps more customary in the literature. | |
\begin{lemma} | |
\label{lemma-lift-complex} | |
Let $\mathcal{C}$ be a site. Let $\mathcal{O} \to \mathcal{O}_0$ | |
be a surjection of sheaves of rings. Assume given the following data | |
\begin{enumerate} | |
\item flat $\mathcal{O}$-modules $\mathcal{G}^n$, | |
\item maps of $\mathcal{O}$-modules $\mathcal{G}^n \to \mathcal{G}^{n + 1}$, | |
\item a complex $\mathcal{K}_0^\bullet$ of $\mathcal{O}_0$-modules, | |
\item maps of $\mathcal{O}$-modules $\mathcal{G}^n \to \mathcal{K}_0^n$ | |
\end{enumerate} | |
such that | |
\begin{enumerate} | |
\item[(a)] $H^n(\mathcal{K}_0^\bullet) = 0$ for $n \gg 0$, | |
\item[(b)] $\mathcal{G}^n = 0$ for $n \gg 0$, | |
\item[(c)] with | |
$\mathcal{G}^n_0 = \mathcal{G}^n \otimes_\mathcal{O} \mathcal{O}_0$ | |
the induced maps determine a complex $\mathcal{G}_0^\bullet$ and a map | |
of complexes $\mathcal{G}_0^\bullet \to \mathcal{K}_0^\bullet$. | |
\end{enumerate} | |
Then there exist | |
\begin{enumerate} | |
\item[(\romannumeral1)] | |
flat $\mathcal{O}$-modules $\mathcal{F}^n$, | |
\item[(\romannumeral2)] | |
maps of $\mathcal{O}$-modules $\mathcal{F}^n \to \mathcal{F}^{n + 1}$, | |
\item[(\romannumeral3)] | |
maps of $\mathcal{O}$-modules $\mathcal{F}^n \to \mathcal{K}_0^n$, | |
\item[(\romannumeral4)] | |
maps of $\mathcal{O}$-modules $\mathcal{G}^n \to \mathcal{F}^n$, | |
\end{enumerate} | |
such that $\mathcal{F}^n = 0$ for $n \gg 0$, such that the diagrams | |
$$ | |
\xymatrix{ | |
\mathcal{G}^n \ar[r] \ar[d] & \mathcal{G}^{n + 1} \ar[d] \\ | |
\mathcal{F}^n \ar[r] & \mathcal{F}^{n + 1} | |
} | |
$$ | |
commute for all $n$, such that the composition | |
$\mathcal{G}^n \to \mathcal{F}^n \to \mathcal{K}_0^n$ | |
is the given map $\mathcal{G}^n \to \mathcal{K}_0^n$, and such that with | |
$\mathcal{F}^n_0 = \mathcal{F}^n \otimes_\mathcal{O} \mathcal{O}_0$ | |
we obtain a complex $\mathcal{F}_0^\bullet$ and map of complexes | |
$\mathcal{F}_0^\bullet \to \mathcal{K}_0^\bullet$ which is a | |
quasi-isomorphism. | |
\end{lemma} | |
\begin{proof} | |
We will prove by descending induction on $e$ that we can find $\mathcal{F}^n$, | |
$\mathcal{G}^n \to \mathcal{F}^n$, and | |
$\mathcal{F}^n \to \mathcal{F}^{n + 1}$ for $n \geq e$ | |
fitting into a commutative diagram | |
$$ | |
\xymatrix{ | |
\ldots \ar[r] & | |
\mathcal{G}^{e - 1} \ar[r] \ar@/_2pc/[dd] & | |
\mathcal{G}^e \ar[d] \ar[r] \ar@/_2pc/[dd] & | |
\mathcal{G}^{e + 1} \ar[d] \ar[r] \ar@/_2pc/[dd]|\hole & | |
\ldots \\ | |
& & | |
\mathcal{F}^e \ar[d] \ar[r] & | |
\mathcal{F}^{e + 1} \ar[d] \ar[r] & \ldots \\ | |
\ldots \ar[r] & | |
\mathcal{K}_0^{e - 1} \ar[r] & | |
\mathcal{K}_0^e \ar[r] & | |
\mathcal{K}_0^{e + 1} \ar[r] & \ldots | |
} | |
$$ | |
such that $\mathcal{F}_0^\bullet$ is a complex, | |
the induced map $\mathcal{F}_0^\bullet \to \mathcal{K}_0^\bullet$ | |
induces an isomorphism on $H^n$ for $n > e$ and a surjection | |
for $n = e$. For $e \gg 0$ this is true because we can take | |
$\mathcal{F}^n = 0$ for $n \geq e$ in that case by assumptions | |
(a) and (b). | |
\medskip\noindent | |
Induction step. We have to construct $\mathcal{F}^{e - 1}$ | |
and the maps $\mathcal{G}^{e - 1} \to \mathcal{F}^{e - 1}$, | |
$\mathcal{F}^{e - 1} \to \mathcal{F}^e$, and | |
$\mathcal{F}^{e - 1} \to \mathcal{K}_0^{e - 1}$. | |
We will choose $\mathcal{F}^{e - 1} = A \oplus B \oplus C$ | |
as a direct sum of three pieces. | |
\medskip\noindent | |
For the first we take $A = \mathcal{G}^{e - 1}$ and we choose our map | |
$\mathcal{G}^{e - 1} \to \mathcal{F}^{e - 1}$ to be the inclusion of | |
the first summand. The maps $A \to \mathcal{K}^{e - 1}_0$ | |
and $A \to \mathcal{F}^e$ will be the obvious ones. | |
\medskip\noindent | |
To choose $B$ we consider the surjection (by induction hypothesis) | |
$$ | |
\gamma : | |
\Ker(\mathcal{F}^e_0 \to \mathcal{F}^{e + 1}_0) | |
\longrightarrow | |
\Ker(\mathcal{K}^e_0 \to \mathcal{K}^{e + 1}_0)/ | |
\Im(\mathcal{K}^{e - 1}_0 \to \mathcal{K}^e_0) | |
$$ | |
We can choose a set $I$, for each $i \in I$ | |
an object $U_i$ of $\mathcal{C}$, and sections | |
$s_i \in \mathcal{F}^e(U_i)$, $t_i \in \mathcal{K}^{e - 1}_0(U_i)$ | |
such that | |
\begin{enumerate} | |
\item $s_i$ maps to a section of $\Ker(\gamma) \subset | |
\Ker(\mathcal{F}^e_0 \to \mathcal{F}^{e + 1}_0)$, | |
\item $s_i$ and $t_i$ map to the same section of | |
$\mathcal{K}^e_0$, | |
\item the sections $s_i$ generate $\Ker(\gamma)$ as an $\mathcal{O}_0$-module. | |
\end{enumerate} | |
We omit giving the full justification for this; | |
one uses that $\mathcal{F}^e \to \mathcal{F}^e_0$ | |
is a surjective maps of sheaves of sets. Then we set | |
to put | |
$$ | |
B = \bigoplus\nolimits_{i \in I} j_{U_i!}\mathcal{O}_{U_i} | |
$$ | |
and define the maps $B \to \mathcal{F}^e$ and $B \to \mathcal{K}_0^{e - 1}$ | |
by using $s_i$ and $t_i$ to determine where to send the summand | |
$j_{U_i!}\mathcal{O}_{U_i}$. | |
\medskip\noindent | |
With $\mathcal{F}^{e - 1} = A \oplus B$ and maps as above, | |
this produces a diagram as above for $e - 1$ such that | |
$\mathcal{F}_0^\bullet \to \mathcal{K}_0^\bullet$ | |
induces an isomorphism on $H^n$ for $n \geq e$. | |
To get the map to be surjective on $H^{e - 1}$ we choose | |
the summand $C$ as follows. | |
Choose a set $J$, for each $j \in J$ an object $U_j$ of $\mathcal{C}$ | |
and a section $t_j$ of $\Ker(\mathcal{K}^{e - 1}_0 \to \mathcal{K}^e_0)$ | |
over $U_j$ such that these sections generate this kernel over | |
$\mathcal{O}_0$. Then we put | |
$$ | |
C = \bigoplus\nolimits_{j \in J} j_{U_j!}\mathcal{O}_{U_j} | |
$$ | |
and the zero map $C \to \mathcal{F}^e$ and the map | |
$C \to \mathcal{K}_0^{e - 1}$ by using $s_j$ to determine where to the summand | |
$j_{U_j!}\mathcal{O}_{U_j}$. This finishes the induction step | |
by taking $\mathcal{F}^{e - 1} = A \oplus B \oplus C$ and | |
maps as indicated. | |
\end{proof} | |
\begin{lemma} | |
\label{lemma-canonical-class} | |
Let $\mathcal{C}$ be a site. Let $\mathcal{O} \to \mathcal{O}_0$ | |
be a surjection of sheaves of rings whose kernel is an ideal sheaf | |
$\mathcal{I}$ of square zero. For every object | |
$K_0$ in $D^-(\mathcal{O}_0)$ there is a canonical map | |
$$ | |
\omega(K_0) : | |
K_0 \longrightarrow | |
K_0 \otimes_{\mathcal{O}_0}^\mathbf{L} \mathcal{I}[2] | |
$$ | |
in $D(\mathcal{O}_0)$ such that for any map | |
$K_0 \to L_0$ in $D^-(\mathcal{O}_0)$ the diagram | |
$$ | |
\xymatrix{ | |
K_0 \ar[d] \ar[rr]_-{\omega(K_0)} & & | |
(K_0 \otimes^\mathbf{L}_{\mathcal{O}_0} \mathcal{I})[2] \ar[d] \\ | |
L_0 \ar[rr]^-{\omega(L_0)} & & | |
(L_0 \otimes^\mathbf{L}_{\mathcal{O}_0} \mathcal{I})[2] | |
} | |
$$ | |
commutes. | |
\end{lemma} | |
\begin{proof} | |
Represent $K_0$ by any complex | |
$\mathcal{K}_0^\bullet$ of $\mathcal{O}_0$-modules. | |
Apply Lemma \ref{lemma-lift-complex} | |
with $\mathcal{G}^n = 0$ for all $n$. | |
Denote $d : \mathcal{F}^n \to \mathcal{F}^{n + 1}$ | |
the maps produced by the lemma. Then we see that | |
$d \circ d : \mathcal{F}^n \to \mathcal{F}^{n + 2}$ | |
is zero modulo $\mathcal{I}$. Since $\mathcal{F}^n$ is flat, | |
we see that | |
$\mathcal{I}\mathcal{F}^n = | |
\mathcal{F}^n \otimes_{\mathcal{O}} \mathcal{I} = | |
\mathcal{F}^n_0 \otimes_{\mathcal{O}_0} \mathcal{I}$. | |
Hence we obtain a canonical map of complexes | |
$$ | |
d \circ d : \mathcal{F}_0^\bullet | |
\longrightarrow | |
(\mathcal{F}_0^\bullet \otimes_{\mathcal{O}_0} \mathcal{I})[2] | |
$$ | |
Since $\mathcal{F}_0^\bullet$ is a bounded above complex | |
of flat $\mathcal{O}_0$-modules, it is K-flat and may be used | |
to compute derived tensor product. Moreover, the map of | |
complexes $\mathcal{F}_0^\bullet \to \mathcal{K}_0^\bullet$ | |
is a quasi-isomorphism by construction. Therefore the source and | |
target of the map just constructed represent $K_0$ and | |
$K_0 \otimes_{\mathcal{O}_0}^\mathbf{L} \mathcal{I}[2]$ | |
and we obtain our map $\omega(K_0)$. | |
\medskip\noindent | |
Let us show that this procedure is compatible with maps of complexes. | |
Namely, let $\mathcal{L}_0^\bullet$ represent another object of | |
$D^-(\mathcal{O}_0)$ and suppose that | |
$$ | |
\mathcal{K}_0^\bullet \longrightarrow \mathcal{L}_0^\bullet | |
$$ | |
is a map of complexes. Apply Lemma \ref{lemma-lift-complex} | |
for the complex $\mathcal{L}_0^\bullet$, the flat modules | |
$\mathcal{F}^n$, the maps $\mathcal{F}^n \to \mathcal{F}^{n + 1}$, | |
and the compositions | |
$\mathcal{F}^n \to \mathcal{K}_0^n \to \mathcal{L}_0^n$ | |
(we apologize for the reversal of letters used). | |
We obtain flat modules $\mathcal{G}^n$, maps | |
$\mathcal{F}^n \to \mathcal{G}^n$, maps | |
$\mathcal{G}^n \to \mathcal{G}^{n + 1}$, and maps | |
$\mathcal{G}^n \to \mathcal{L}_0^n$ with all properties | |
as in the lemma. Then it is clear that | |
$$ | |
\xymatrix{ | |
\mathcal{F}_0^\bullet \ar[d] \ar[r] & | |
(\mathcal{F}_0^\bullet \otimes_{\mathcal{O}_0} \mathcal{I})[2] \ar[d] \\ | |
\mathcal{G}_0^\bullet \ar[r] & | |
(\mathcal{G}_0^\bullet \otimes_{\mathcal{O}_0} \mathcal{I})[2] | |
} | |
$$ | |
is a commutative diagram of complexes. | |
\medskip\noindent | |
To see that $\omega(K_0)$ is well defined, suppose that we have two complexes | |
$\mathcal{K}_0^\bullet$ and $(\mathcal{K}'_0)^\bullet$ | |
of $\mathcal{O}_0$-modules representing $K_0$ and two systems | |
$(\mathcal{F}^n, d : \mathcal{F}^n \to \mathcal{F}^{n + 1}, | |
\mathcal{F}^n \to \mathcal{K}_0^n)$ | |
and | |
$((\mathcal{F}')^n, d : (\mathcal{F}')^n \to (\mathcal{F}')^{n + 1}, | |
(\mathcal{F}')^n \to \mathcal{K}_0^n)$ | |
as above. Then we can choose a complex $(\mathcal{K}''_0)^\bullet$ | |
and quasi-isomorphisms | |
$\mathcal{K}_0^\bullet \to (\mathcal{K}''_0)^\bullet$ | |
and | |
$(\mathcal{K}'_0)^\bullet \to (\mathcal{K}''_0)^\bullet$ | |
realizing the fact that both complexes represent $K_0$ in the | |
derived category. Next, we apply the result of the previous paragraph | |
to | |
$$ | |
(\mathcal{K}_0)^\bullet \oplus (\mathcal{K}'_0)^\bullet | |
\longrightarrow | |
(\mathcal{K}''_0)^\bullet | |
$$ | |
This produces a commutative diagram | |
$$ | |
\xymatrix{ | |
\mathcal{F}_0^\bullet \oplus (\mathcal{F}'_0)^\bullet | |
\ar[d] \ar[r] & | |
(\mathcal{F}_0^\bullet \otimes_{\mathcal{O}_0} \mathcal{I})[2] \oplus | |
((\mathcal{F}'_0)^\bullet \otimes_{\mathcal{O}_0} \mathcal{I})[2] \ar[d] \\ | |
\mathcal{G}_0^\bullet \ar[r] & | |
(\mathcal{G}_0^\bullet \otimes_{\mathcal{O}_0} \mathcal{I})[2] | |
} | |
$$ | |
Since the vertical arrows give quasi-isomorphisms on the summands | |
we conclude the desired commutativity in $D(\mathcal{O}_0)$. | |
\medskip\noindent | |
Having established well-definedness, the statement on compatibility | |
with maps is a consequence of the result in the second | |
paragraph. | |
\end{proof} | |
\begin{lemma} | |
\label{lemma-induced-map} | |
Let $(\mathcal{C}, \mathcal{O})$ be a ringed site. | |
Let $\alpha : K \to L$ be a map of $D^-(\mathcal{O})$. | |
Let $\mathcal{F}$ be a sheaf of $\mathcal{O}$-modules. | |
Let $n \in \mathbf{Z}$. | |
\begin{enumerate} | |
\item If $H^i(\alpha)$ is an isomorphism for $i \geq n$, | |
then $H^i(\alpha \otimes_\mathcal{O}^\mathbf{L} \text{id}_\mathcal{F})$ | |
is an isomorphism for $i \geq n$. | |
\item If $H^i(\alpha)$ is an isomorphism for $i > n$ | |
and surjective for $i = n$, | |
then $H^i(\alpha \otimes_\mathcal{O}^\mathbf{L} \text{id}_\mathcal{F})$ | |
is an isomorphism for $i > n$ and surjective for $i = n$. | |
\end{enumerate} | |
\end{lemma} | |
\begin{proof} | |
Choose a distinguished triangle | |
$$ | |
K \to L \to C \to K[1] | |
$$ | |
In case (2) we see that $H^i(C) = 0$ for $i \geq n$. | |
Hence $H^i(C \otimes_\mathcal{O}^\mathbf{L} \mathcal{F}) = 0$ | |
for $i \geq n$ by (the dual of) | |
Derived Categories, Lemma \ref{derived-lemma-negative-vanishing}. | |
This in turn shows that | |
$H^i(\alpha \otimes_\mathcal{O}^\mathbf{L} \text{id}_\mathcal{F})$ | |
is an isomorphism for $i > n$ and surjective for $i = n$. | |
In case (1) we moreover see that $H^{n - 1}(L) \to H^{n - 1}(C)$ | |
is surjective. Considering the diagram | |
$$ | |
\xymatrix{ | |
H^{n - 1}(L) \otimes_\mathcal{O} \mathcal{F} \ar[r] \ar[d] & | |
H^{n - 1}(C) \otimes_\mathcal{O} \mathcal{F} \ar@{=}[d] \\ | |
H^{n - 1}(L \otimes_\mathcal{O}^\mathbf{L} \mathcal{F}) \ar[r] & | |
H^{n - 1}(C \otimes_\mathcal{O}^\mathbf{L} \mathcal{F}) | |
} | |
$$ | |
we conclude the lower horizontal arrow is surjective. Combined with what | |
was said before this implies that | |
$H^n(\alpha \otimes_\mathcal{O}^\mathbf{L} \text{id}_\mathcal{F})$ | |
is an isomorphism. | |
\end{proof} | |
\begin{lemma} | |
\label{lemma-canonical-class-obstruction} | |
Let $\mathcal{C}$ be a site. Let $\mathcal{O} \to \mathcal{O}_0$ | |
be a surjection of sheaves of rings whose kernel is an ideal sheaf | |
$\mathcal{I}$ of square zero. For every object | |
$K_0$ in $D^-(\mathcal{O}_0)$ the following are equivalent | |
\begin{enumerate} | |
\item the class | |
$\omega(K_0) \in | |
\Ext^2_{\mathcal{O}_0}(K_0, K_0 \otimes_{\mathcal{O}_0} \mathcal{I})$ | |
constructed in Lemma \ref{lemma-canonical-class} is zero, | |
\item there exists $K \in D^-(\mathcal{O})$ with | |
$K \otimes_\mathcal{O}^\mathbf{L} \mathcal{O}_0 = K_0$ | |
in $D(\mathcal{O}_0)$. | |
\end{enumerate} | |
\end{lemma} | |
\begin{proof} | |
Let $K$ be as in (2). Then we can represent $K$ by a bounded above | |
complex $\mathcal{F}^\bullet$ of flat $\mathcal{O}$-modules. | |
Then $\mathcal{F}_0^\bullet = | |
\mathcal{F}^\bullet \otimes_{\mathcal{O}} \mathcal{O}_0$ | |
represents $K_0$ in $D(\mathcal{O}_0)$. | |
Since $d_{\mathcal{F}^\bullet} \circ d_{\mathcal{F}^\bullet} = 0$ | |
as $\mathcal{F}^\bullet$ is a complex, we see from the very construction | |
of $\omega(K_0)$ that it is zero. | |
\medskip\noindent | |
Assume (1). Let $\mathcal{F}^n$, $d : \mathcal{F}^n \to \mathcal{F}^{n + 1}$ | |
be as in the construction of $\omega(K_0)$. The nullity of | |
$\omega(K_0)$ implies that the map | |
$$ | |
\omega = d \circ d : \mathcal{F}_0^\bullet | |
\longrightarrow | |
(\mathcal{F}_0^\bullet \otimes_{\mathcal{O}_0} \mathcal{I})[2] | |
$$ | |
is zero in $D(\mathcal{O}_0)$. By definition of the derived category | |
as the localization of the homotopy category of complexes | |
of $\mathcal{O}_0$-modules, there exists a quasi-isomorphism | |
$\alpha : \mathcal{G}_0^\bullet \to \mathcal{F}_0^\bullet$ | |
such that there exist $\mathcal{O}_0$-modules maps | |
$h^n : \mathcal{G}_0^n \to | |
\mathcal{F}_0^{n + 1} \otimes_\mathcal{O} \mathcal{I}$ | |
with | |
$$ | |
\omega \circ \alpha = | |
d_{\mathcal{F}_0^\bullet \otimes \mathcal{I}} \circ h + | |
h \circ d_{\mathcal{G}_0^\bullet} | |
$$ | |
We set | |
$$ | |
\mathcal{H}^n = \mathcal{F}^n \times_{\mathcal{F}^n_0} \mathcal{G}_0^n | |
$$ | |
and we define | |
$$ | |
d' : \mathcal{H}^n \longrightarrow \mathcal{H}^{n + 1},\quad | |
(f^n, g_0^n) \longmapsto (d(f^n) - h^n(g_0^n), d(g_0^n)) | |
$$ | |
with obvious notation using that | |
$\mathcal{F}_0^{n + 1} \otimes_{\mathcal{O}_0} \mathcal{I} = | |
\mathcal{F}^{n + 1} \otimes_\mathcal{O} \mathcal{I} = | |
\mathcal{I}\mathcal{F}^{n + 1} \subset \mathcal{F}^{n + 1}$. | |
Then one checks $d' \circ d' = 0$ by our choice of $h^n$ | |
and definition of $\omega$. | |
Hence $\mathcal{H}^\bullet$ defines an object in $D(\mathcal{O})$. | |
On the other hand, there is a short exact sequence of complexes | |
of $\mathcal{O}$-modules | |
$$ | |
0 \to \mathcal{F}_0^\bullet \otimes_{\mathcal{O}_0} \mathcal{I} \to | |
\mathcal{H}^\bullet \to \mathcal{G}_0^\bullet \to 0 | |
$$ | |
We still have to show that | |
$\mathcal{H}^\bullet \otimes_\mathcal{O}^\mathbf{L} \mathcal{O}_0$ | |
is isomorphic to $K_0$. | |
Choose a quasi-isomorphism | |
$\mathcal{E}^\bullet \to \mathcal{H}^\bullet$ | |
where $\mathcal{E}^\bullet$ is a bounded above complex of flat | |
$\mathcal{O}$-modules. We obtain a commutative diagram | |
$$ | |
\xymatrix{ | |
0 \ar[r] & | |
\mathcal{E}^\bullet \otimes_\mathcal{O} \mathcal{I} \ar[d]^\beta \ar[r] & | |
\mathcal{E}^\bullet \ar[d]^\gamma \ar[r] & | |
\mathcal{E}_0^\bullet \ar[d]^\delta \ar[r] & | |
0 \\ | |
0 \ar[r] & | |
\mathcal{F}_0^\bullet \otimes_{\mathcal{O}_0} \mathcal{I} \ar[r] & | |
\mathcal{H}^\bullet \ar[r] & | |
\mathcal{G}_0^\bullet \ar[r] & | |
0 | |
} | |
$$ | |
We claim that $\delta$ is a quasi-isomorphism. Since $H^i(\delta)$ | |
is an isomorphism for $i \gg 0$, we can use descending induction | |
on $n$ such that $H^i(\delta)$ is an isomorphism for $i \geq n$. | |
Observe that | |
$\mathcal{E}^\bullet \otimes_\mathcal{O} \mathcal{I}$ | |
represents | |
$\mathcal{E}_0^\bullet \otimes_{\mathcal{O}_0}^\mathbf{L} \mathcal{I}$, | |
that | |
$\mathcal{F}_0^\bullet \otimes_{\mathcal{O}_0} \mathcal{I}$ | |
represents | |
$\mathcal{G}_0^\bullet \otimes_{\mathcal{O}_0}^\mathbf{L} \mathcal{I}$, | |
and that | |
$\beta = \delta \otimes_{\mathcal{O}_0}^\mathbf{L} \text{id}_\mathcal{I}$ | |
as maps in $D(\mathcal{O}_0)$. This is true because | |
$\beta = | |
(\alpha \otimes \text{id}_\mathcal{I}) | |
\circ | |
(\delta \otimes \text{id}_\mathcal{I})$. | |
Suppose that $H^i(\delta)$ is an isomorphism in degrees $\geq n$. | |
Then the same is true for $\beta$ by what we just said | |
and Lemma \ref{lemma-induced-map}. | |
Then we can look at the diagram | |
$$ | |
\xymatrix{ | |
H^{n - 1}(\mathcal{E}^\bullet \otimes_\mathcal{O} \mathcal{I}) | |
\ar[r] \ar[d]^{H^{n - 1}(\beta)} & | |
H^{n - 1}(\mathcal{E}^\bullet) \ar[r] \ar[d] & | |
H^{n - 1}(\mathcal{E}_0^\bullet) \ar[r] \ar[d]^{H^{n - 1}(\delta)} & | |
H^n(\mathcal{E}^\bullet \otimes_\mathcal{O} \mathcal{I}) | |
\ar[r] \ar[d]^{H^n(\beta)} & | |
H^n(\mathcal{E}^\bullet) \ar[d] \\ | |
H^{n - 1}(\mathcal{F}_0^\bullet \otimes_\mathcal{O} \mathcal{I}) \ar[r] & | |
H^{n - 1}(\mathcal{H}^\bullet) \ar[r] & | |
H^{n - 1}(\mathcal{G}_0^\bullet) \ar[r] & | |
H^n(\mathcal{F}_0^\bullet \otimes_\mathcal{O} \mathcal{I}) \ar[r] & | |
H^n(\mathcal{H}^\bullet) | |
} | |
$$ | |
Using Homology, Lemma \ref{homology-lemma-four-lemma} | |
we see that $H^{n - 1}(\delta)$ is surjective. | |
This in turn implies that $H^{n - 1}(\beta)$ is surjective | |
by Lemma \ref{lemma-induced-map}. | |
Using Homology, Lemma \ref{homology-lemma-four-lemma} | |
again we see that $H^{n - 1}(\delta)$ is an isomorphism. | |
The claim holds by induction, so $\delta$ is a quasi-isomorphism | |
which is what we wanted to show. | |
\end{proof} | |
\begin{lemma} | |
\label{lemma-lift-map-complexes} | |
Let $\mathcal{C}$ be a site. Let $\mathcal{O} \to \mathcal{O}_0$ | |
be a surjection of sheaves of rings. Assume given the following data | |
\begin{enumerate} | |
\item a complex of $\mathcal{O}$-modules $\mathcal{F}^\bullet$, | |
\item a complex $\mathcal{K}_0^\bullet$ of $\mathcal{O}_0$-modules, | |
\item a quasi-isomorphism $\mathcal{K}_0^\bullet \to | |
\mathcal{F}^\bullet \otimes_\mathcal{O} \mathcal{O}_0$, | |
\end{enumerate} | |
Then there exist a quasi-isomorphism | |
$\mathcal{G}^\bullet \to \mathcal{F}^\bullet$ such that the map | |
of complexes | |
$\mathcal{G}^\bullet \otimes_\mathcal{O} \mathcal{O}_0 \to | |
\mathcal{F}^\bullet \otimes_\mathcal{O} \mathcal{O}_0$ factors | |
through $\mathcal{K}_0^\bullet$ in the homotopy category | |
of complexes of $\mathcal{O}_0$-modules. | |
\end{lemma} | |
\begin{proof} | |
Set $\mathcal{F}_0^\bullet = | |
\mathcal{F}^\bullet \otimes_\mathcal{O} \mathcal{O}_0$. | |
By Derived Categories, Lemma \ref{derived-lemma-make-surjective} | |
there exists a factorization | |
$$ | |
\mathcal{K}_0^\bullet \to \mathcal{L}_0^\bullet \to \mathcal{F}_0^\bullet | |
$$ | |
of the given map such that the first arrow has an inverse up | |
to homotopy and the second arrow is termwise split surjective. | |
Hence we may assume that $\mathcal{K}_0^\bullet \to \mathcal{F}_0^\bullet$ | |
is termwise surjective. | |
In that case we take | |
$$ | |
\mathcal{G}^n = \mathcal{F}^n \times_{\mathcal{F}^n_0} \mathcal{K}_0^n | |
$$ | |
and everything is clear. | |
\end{proof} | |
\begin{lemma} | |
\label{lemma-inf-obs-map-defo-complex} | |
Let $\mathcal{C}$ be a site. Let $\mathcal{O} \to \mathcal{O}_0$ | |
be a surjection of sheaves of rings whose kernel is an ideal sheaf | |
$\mathcal{I}$ of square zero. Let $K, L \in D^-(\mathcal{O})$. | |
Set $K_0 = K \otimes_\mathcal{O}^\mathbf{L} \mathcal{O}_0$ | |
and $L_0 = L \otimes_\mathcal{O}^\mathbf{L} \mathcal{O}_0$ | |
in $D^-(\mathcal{O}_0)$. Given $\alpha_0 : K_0 \to L_0$ in $D(\mathcal{O}_0)$ | |
there is a canonical element | |
$$ | |
o(\alpha_0) \in \Ext^1_{\mathcal{O}_0}(K_0, | |
L_0 \otimes_{\mathcal{O}_0}^\mathbf{L} \mathcal{I}) | |
$$ | |
whose vanishing is necessary and sufficient for the | |
existence of a map $\alpha : K \to L$ in $D(\mathcal{O})$ | |
with $\alpha_0 = \alpha \otimes_\mathcal{O}^\mathbf{L} \text{id}$. | |
\end{lemma} | |
\begin{proof} | |
Finding $\alpha : K \to L$ lifing $\alpha_0$ is the same as finding | |
$\alpha : K \to L$ such that the composition $K \xrightarrow{\alpha} L \to L_0$ | |
is equal to the composition $K \to K_0 \xrightarrow{\alpha_0} L_0$. | |
The short exact sequence | |
$0 \to \mathcal{I} \to \mathcal{O} \to \mathcal{O}_0 \to 0$ | |
gives rise to a canonical distinguished triangle | |
$$ | |
L \otimes_\mathcal{O}^\mathbf{L} \mathcal{I} \to | |
L \to | |
L_0 \to | |
(L \otimes_\mathcal{O}^\mathbf{L} \mathcal{I})[1] | |
$$ | |
in $D(\mathcal{O})$. | |
By Derived Categories, Lemma \ref{derived-lemma-representable-homological} | |
the composition | |
$$ | |
K \to K_0 \xrightarrow{\alpha_0} L_0 \to | |
(L \otimes_\mathcal{O}^\mathbf{L} \mathcal{I})[1] | |
$$ | |
is zero if and only if we can find $\alpha : K \to L$ | |
lifting $\alpha_0$. The composition is an element in | |
$$ | |
\Hom_{D(\mathcal{O})}(K, (L \otimes_\mathcal{O}^\mathbf{L} \mathcal{I})[1]) = | |
\Hom_{D(\mathcal{O}_0)}(K_0, | |
(L \otimes_\mathcal{O}^\mathbf{L} \mathcal{I})[1]) = | |
\Ext^1_{\mathcal{O}_0}(K_0, | |
L_0 \otimes_{\mathcal{O}_0}^\mathbf{L} \mathcal{I}) | |
$$ | |
by adjunction. | |
\end{proof} | |
\begin{lemma} | |
\label{lemma-first-order-defos-complex} | |
Let $\mathcal{C}$ be a site. Let $\mathcal{O} \to \mathcal{O}_0$ | |
be a surjection of sheaves of rings whose kernel is an ideal sheaf | |
$\mathcal{I}$ of square zero. Let $K_0 \in D^-(\mathcal{O})$. | |
A lift of $K_0$ is a pair $(K, \alpha_0)$ consisting of an object | |
$K$ in $D^-(\mathcal{O})$ and an isomorphism | |
$\alpha_0 : K \otimes_\mathcal{O}^\mathbf{L} \mathcal{O}_0 \to K_0$ | |
in $D(\mathcal{O}_0)$. | |
\begin{enumerate} | |
\item Given a lift $(K, \alpha)$ the group of automorphism of the pair | |
is canonically the cokernel of a map | |
$$ | |
\Ext^{-1}_{\mathcal{O}_0}(K_0, K_0) | |
\longrightarrow | |
\Hom_{\mathcal{O}_0}(K_0, K_0 \otimes_{\mathcal{O}_0}^\mathbf{L} \mathcal{I}) | |
$$ | |
\item If there is a lift, then the set of isomorphism classes of lifts | |
is principal homogenenous under | |
$\Ext^1_{\mathcal{O}_0}(K_0, | |
K_0 \otimes_{\mathcal{O}_0}^\mathbf{L} \mathcal{I})$. | |
\end{enumerate} | |
\end{lemma} | |
\begin{proof} | |
An automorphism of $(K, \alpha)$ is a map $\varphi : K \to K$ | |
in $D(\mathcal{O})$ with | |
$\varphi \otimes_\mathcal{O} \text{id}_{\mathcal{O}_0} = \text{id}$. | |
This is the same thing as saying that | |
$$ | |
K \xrightarrow{\varphi - \text{id}} K \to | |
K \otimes_\mathcal{O}^\mathbf{L} \mathcal{O}_0 | |
$$ | |
is zero. We conclude the group of automorphisms is | |
the cokernel of a map | |
$$ | |
\Hom_\mathcal{O}(K, K_0[-1]) | |
\longrightarrow | |
\Hom_\mathcal{O}(K, K_0 \otimes_{\mathcal{O}_0}^\mathbf{L} \mathcal{I}) | |
$$ | |
by the distinguished triangle | |
$$ | |
K \otimes_\mathcal{O}^\mathbf{L} \mathcal{I} \to | |
K \to | |
K \otimes_\mathcal{O}^\mathbf{L} \mathcal{O}_0 \to | |
(K \otimes_\mathcal{O}^\mathbf{L} \mathcal{I})[1] | |
$$ | |
in $D(\mathcal{O})$ and | |
Derived Categories, Lemma \ref{derived-lemma-representable-homological}. | |
To translate into the groups in the lemma use adjunction | |
of the restriction functor $D(\mathcal{O}_0) \to D(\mathcal{O})$ and | |
$- \otimes_\mathcal{O} \mathcal{O}_0 : D(\mathcal{O}) \to D(\mathcal{O}_0)$. | |
This proves (1). | |
\medskip\noindent | |
Proof of (2). | |
Assume that $K_0 = K \otimes_\mathcal{O}^\mathbf{L} \mathcal{O}_0$ | |
in $D(\mathcal{O})$. By Lemma \ref{lemma-inf-obs-map-defo-complex} | |
the map sending a lift $(K', \alpha_0)$ to the obstruction $o(\alpha_0)$ | |
to lifting $\alpha_0$ defines a canonical injective map | |
from the set of isomomorphism classes of pairs | |
to $\Ext^1_{\mathcal{O}_0}(K_0, | |
K_0 \otimes_{\mathcal{O}_0}^\mathbf{L} \mathcal{I})$. | |
To finish the proof we show that it is surjective. | |
Pick $\xi : K_0 \to (K_0 \otimes_{\mathcal{O}_0}^\mathbf{L} \mathcal{I})[1]$ | |
in the $\Ext^1$ of the lemma. | |
Choose a bounded above complex $\mathcal{F}^\bullet$ | |
of flat $\mathcal{O}$-modules representing $K$. | |
The map $\xi$ can be represented as $t \circ s^{-1}$ | |
where $s : \mathcal{K}_0^\bullet \to \mathcal{F}_0^\bullet$ | |
is a quasi-isomorphism and | |
$t : \mathcal{K}_0^\bullet \to | |
\mathcal{F}_0^\bullet \otimes_{\mathcal{O}_0} \mathcal{I}[1]$ | |
is a map of complexes. | |
By Lemma \ref{lemma-lift-map-complexes} | |
we can assume there exists a quasi-isomorphism | |
$\mathcal{G}^\bullet \to \mathcal{F}^\bullet$ | |
of complexes of $\mathcal{O}$-modules | |
such that $\mathcal{G}_0^\bullet \to \mathcal{F}_0^\bullet$ | |
factors through $s$ up to homotopy. | |
We may and do replace $\mathcal{G}^\bullet$ by a bounded | |
above complex of flat $\mathcal{O}$-modules (by picking a qis | |
from such to $\mathcal{G}^\bullet$ and replacing). | |
Then we see that $\xi$ is represented by | |
a map of complexes | |
$t : \mathcal{G}_0^\bullet \to | |
\mathcal{F}_0^\bullet \otimes_{\mathcal{O}_0} \mathcal{I}[1]$ | |
and the quasi-isomorphism $\mathcal{G}_0^\bullet \to \mathcal{F}_0^\bullet$. | |
Set | |
$$ | |
\mathcal{H}^n = \mathcal{F}^n \times_{\mathcal{F}_0^n} \mathcal{G}_0^n | |
$$ | |
with differentials | |
$$ | |
\mathcal{H}^n \to \mathcal{H}^{n + 1},\quad | |
(f^n, g_0^n) \mapsto (d(f^n) + t(g_0^n), d(g_0^n)) | |
$$ | |
This makes sense as | |
$\mathcal{F}_0^{n + 1} \otimes_{\mathcal{O}_0} \mathcal{I} = | |
\mathcal{F}^{n + 1} \otimes_\mathcal{O} \mathcal{I} = | |
\mathcal{I}\mathcal{F}^{n + 1} \subset \mathcal{F}^{n + 1}$. | |
We omit the computation that shows that $\mathcal{H}^\bullet$ | |
is a complex of $\mathcal{O}$-modules. By construction there is | |
a short exact sequence | |
$$ | |
0 \to \mathcal{F}_0^\bullet \otimes_{\mathcal{O}_0} \mathcal{I} \to | |
\mathcal{H}^\bullet \to \mathcal{G}_0^\bullet \to 0 | |
$$ | |
of complexes of $\mathcal{O}$-modules. | |
Exactly as in the proof of Lemma \ref{lemma-canonical-class-obstruction} | |
one shows that this sequence induces an isomorphism | |
$\alpha_0 : | |
\mathcal{H}^\bullet \otimes_\mathcal{O}^\mathbf{L} \mathcal{O}_0 \to | |
\mathcal{G}_0^\bullet$ in $D(\mathcal{O}_0)$. | |
In other words, we have produced a pair $(\mathcal{H}^\bullet, \alpha_0)$. | |
We omit the verification that $o(\alpha_0) = \xi$; hint: $o(\alpha_0)$ | |
can be computed explitly in this case as we have maps | |
$\mathcal{H}^n \to \mathcal{F}^n$ (not compatible with differentials) | |
lifting the components of $\alpha_0$. This finishes the proof. | |
\end{proof} | |
\input{chapters} | |
\bibliography{my} | |
\bibliographystyle{amsalpha} | |
\end{document} | |