Datasets:

Modalities:
Text
Languages:
English
Libraries:
Datasets
License:
Zhangir Azerbayev
squashed?
4365a98
raw
history blame
41.4 kB
(* ========================================================================= *)
(* Axiomatic of the modal provability logic GL. *)
(* *)
(* (c) Copyright, Marco Maggesi, Cosimo Perini Brogi 2020-2022. *)
(* *)
(* The initial part of this code has been adapted from the proof of the *)
(* Godel incompleteness theorems formalized by John Harrison, distributed *)
(* with HOL Light in the subdirectory Arithmetic. *)
(* ========================================================================= *)
let GLaxiom_RULES,GLaxiom_INDUCT,GLaxiom_CASES = new_inductive_definition
`(!p q. GLaxiom (p --> (q --> p))) /\
(!p q r. GLaxiom ((p --> q --> r) --> (p --> q) --> (p --> r))) /\
(!p. GLaxiom (((p --> False) --> False) --> p)) /\
(!p q. GLaxiom ((p <-> q) --> p --> q)) /\
(!p q. GLaxiom ((p <-> q) --> q --> p)) /\
(!p q. GLaxiom ((p --> q) --> (q --> p) --> (p <-> q))) /\
GLaxiom (True <-> False --> False) /\
(!p. GLaxiom (Not p <-> p --> False)) /\
(!p q. GLaxiom (p && q <-> (p --> q --> False) --> False)) /\
(!p q. GLaxiom (p || q <-> Not(Not p && Not q))) /\
(!p q. GLaxiom (Box (p --> q) --> Box p --> Box q)) /\
(!p. GLaxiom (Box (Box p --> p) --> Box p))`;;
(* ------------------------------------------------------------------------- *)
(* Rules. *)
(* ------------------------------------------------------------------------- *)
let GLproves_RULES,GLproves_INDUCT,GLproves_CASES = new_inductive_definition
`(!p. GLaxiom p ==> |-- p) /\
(!p q. |-- (p --> q) /\ |-- p ==> |-- q) /\
(!p. |-- p ==> |-- (Box p))`;;
(* ------------------------------------------------------------------------- *)
(* The primitive basis, separated into its named components. *)
(* ------------------------------------------------------------------------- *)
let GL_axiom_addimp = prove
(`!p q. |-- (p --> (q --> p))`,
MESON_TAC[GLproves_RULES; GLaxiom_RULES]);;
let GL_axiom_distribimp = prove
(`!p q r. |-- ((p --> q --> r) --> (p --> q) --> (p --> r))`,
MESON_TAC[GLproves_RULES; GLaxiom_RULES]);;
let GL_axiom_doubleneg = prove
(`!p. |-- (((p --> False) --> False) --> p)`,
MESON_TAC[GLproves_RULES; GLaxiom_RULES]);;
let GL_axiom_iffimp1 = prove
(`!p q. |-- ((p <-> q) --> p --> q)`,
MESON_TAC[GLproves_RULES; GLaxiom_RULES]);;
let GL_axiom_iffimp2 = prove
(`!p q. |-- ((p <-> q) --> q --> p)`,
MESON_TAC[GLproves_RULES; GLaxiom_RULES]);;
let GL_axiom_impiff = prove
(`!p q. |-- ((p --> q) --> (q --> p) --> (p <-> q))`,
MESON_TAC[GLproves_RULES; GLaxiom_RULES]);;
let GL_axiom_true = prove
(`|-- (True <-> (False --> False))`,
MESON_TAC[GLproves_RULES; GLaxiom_RULES]);;
let GL_axiom_not = prove
(`!p. |-- (Not p <-> (p --> False))`,
MESON_TAC[GLproves_RULES; GLaxiom_RULES]);;
let GL_axiom_and = prove
(`!p q. |-- ((p && q) <-> (p --> q --> False) --> False)`,
MESON_TAC[GLproves_RULES; GLaxiom_RULES]);;
let GL_axiom_or = prove
(`!p q. |-- ((p || q) <-> Not(Not p && Not q))`,
MESON_TAC[GLproves_RULES; GLaxiom_RULES]);;
let GL_axiom_boximp = prove
(`!p q. |-- (Box (p --> q) --> Box p --> Box q)`,
MESON_TAC[GLproves_RULES; GLaxiom_RULES]);;
let GL_axiom_lob = prove
(`!p. |-- (Box (Box p --> p) --> Box p)`,
MESON_TAC[GLproves_RULES; GLaxiom_RULES]);;
let GL_modusponens = prove
(`!p. |-- (p --> q) /\ |-- p ==> |-- q`,
MESON_TAC[GLproves_RULES]);;
let GL_necessitation = prove
(`!p. |-- p ==> |-- (Box p)`,
MESON_TAC[GLproves_RULES]);;
(* ------------------------------------------------------------------------- *)
(* Proof of soundness w.r.t. transitive noetherian frames. *)
(* ------------------------------------------------------------------------- *)
let LOB_IMP_TRANSNT = prove
(`!W R. (!x y:W. R x y ==> x IN W /\ y IN W) /\
(!p. holds_in (W,R) (Box(Box p --> p) --> Box p))
==> (!x y z. x IN W /\ y IN W /\ z IN W /\ R x y /\ R y z ==> R x z) /\
WF (\x y. R y x)`,
MODAL_SCHEMA_TAC THEN STRIP_TAC THEN CONJ_TAC THENL
[X_GEN_TAC `w:W` THEN FIRST_X_ASSUM(MP_TAC o SPECL
[`\v:W. v IN W /\ R w v /\ !w''. w'' IN W /\ R v w'' ==> R w w''`;
`w:W`]) THEN
MESON_TAC[];
REWRITE_TAC[WF_IND] THEN X_GEN_TAC `P:W->bool` THEN DISCH_TAC THEN
FIRST_X_ASSUM(MP_TAC o SPEC `\x:W. !w:W. x IN W /\ R w x ==> P x`) THEN
MATCH_MP_TAC MONO_FORALL THEN ASM_MESON_TAC[]]);;
let TRANSNT_IMP_LOB = prove
(`!W R. (!x y:W. R x y ==> x IN W /\ y IN W) /\
(!x y z. x IN W /\ y IN W /\ z IN W /\ R x y /\ R y z ==> R x z) /\
WF (\x y. R y x)
==> (!p. holds_in (W,R) (Box(Box p --> p) --> Box p))`,
MODAL_SCHEMA_TAC THEN REWRITE_TAC[WF_IND] THEN STRIP_TAC THEN
REPEAT GEN_TAC THEN REPEAT DISCH_TAC THEN FIRST_X_ASSUM MATCH_MP_TAC THEN
ASM_MESON_TAC[]);;
let TRANSNT_EQ_LOB = prove
(`!W R. (!x y:W. R x y ==> x IN W /\ y IN W)
==> ((!x y z. x IN W /\ y IN W /\ z IN W /\ R x y /\ R y z
==> R x z) /\
WF (\x y. R y x) <=>
(!p. holds_in (W,R) (Box(Box p --> p) --> Box p)))`,
REPEAT STRIP_TAC THEN EQ_TAC THEN STRIP_TAC THENL
[MATCH_MP_TAC TRANSNT_IMP_LOB THEN ASM_REWRITE_TAC[];
MATCH_MP_TAC LOB_IMP_TRANSNT THEN ASM_REWRITE_TAC[]]);;
let GLAXIOMS_TRANSNT_VALID = prove
(`!p. GLaxiom p ==> TRANSNT:(W->bool)#(W->W->bool)->bool |= p`,
MATCH_MP_TAC GLaxiom_INDUCT THEN REWRITE_TAC[valid] THEN FIX_TAC "f" THEN
REWRITE_TAC[RIGHT_FORALL_IMP_THM] THEN
SPEC_TAC (`f:(W->bool)#(W->W->bool)`,`f:(W->bool)#(W->W->bool)`) THEN
MATCH_MP_TAC (MESON[PAIR_SURJECTIVE]
`(!W:W->bool R:W->W->bool. P (W,R)) ==> (!f. P f)`) THEN
REWRITE_TAC[TRANSNT] THEN REPEAT GEN_TAC THEN REPEAT CONJ_TAC THEN
TRY (STRIP_TAC THEN MATCH_MP_TAC TRANSNT_IMP_LOB THEN
ASM_REWRITE_TAC[] THEN NO_TAC) THEN
MODAL_TAC);;
let GL_TRANSNT_VALID = prove
(`!p. (|-- p) ==> TRANSNT:(W->bool)#(W->W->bool)->bool |= p`,
MATCH_MP_TAC GLproves_INDUCT THEN REWRITE_TAC[GLAXIOMS_TRANSNT_VALID] THEN
MODAL_TAC);;
(* ------------------------------------------------------------------------- *)
(* Proof of soundness w.r.t. ITF *)
(* ------------------------------------------------------------------------- *)
let ITF = new_definition
`ITF (W:W->bool,R:W->W->bool) <=>
~(W = {}) /\
(!x y:W. R x y ==> x IN W /\ y IN W) /\
FINITE W /\
(!x. x IN W ==> ~R x x) /\
(!x y z. x IN W /\ y IN W /\ z IN W /\ R x y /\ R y z ==> R x z)`;;
let ITF_NT = prove
(`!W R:W->W->bool. ITF(W,R) ==> TRANSNT(W,R)`,
REPEAT GEN_TAC THEN REWRITE_TAC[ITF] THEN STRIP_TAC THEN
ASM_REWRITE_TAC[TRANSNT] THEN MATCH_MP_TAC WF_FINITE THEN
CONJ_TAC THENL [ASM_MESON_TAC[]; ALL_TAC] THEN
CONJ_TAC THENL [ASM_MESON_TAC[]; ALL_TAC] THEN
GEN_TAC THEN MATCH_MP_TAC FINITE_SUBSET THEN EXISTS_TAC `W:W->bool` THEN
ASM_REWRITE_TAC[] THEN ASM SET_TAC[]);;
let GL_ITF_VALID = prove
(`!p. |-- p ==> ITF:(W->bool)#(W->W->bool)->bool |= p`,
GEN_TAC THEN STRIP_TAC THEN
SUBGOAL_THEN `TRANSNT:(W->bool)#(W->W->bool)->bool |= p` MP_TAC THENL
[ASM_SIMP_TAC[GL_TRANSNT_VALID];
REWRITE_TAC[valid; FORALL_PAIR_THM] THEN MESON_TAC[ITF_NT]]);;
let GL_consistent = prove
(`~ |-- False`,
REFUTE_THEN (MP_TAC o MATCH_MP (INST_TYPE [`:num`,`:W`] GL_ITF_VALID)) THEN
REWRITE_TAC[valid; holds; holds_in; FORALL_PAIR_THM;
ITF; NOT_FORALL_THM] THEN
MAP_EVERY EXISTS_TAC [`{0}`; `\x:num y:num. F`] THEN
REWRITE_TAC[NOT_INSERT_EMPTY; FINITE_SING; IN_SING] THEN MESON_TAC[]);;
(* ------------------------------------------------------------------------- *)
(* Some purely propositional schemas and derived rules. *)
(* ------------------------------------------------------------------------- *)
let GL_iff_imp1 = prove
(`!p q. |-- (p <-> q) ==> |-- (p --> q)`,
MESON_TAC[GL_modusponens; GL_axiom_iffimp1]);;
let GL_iff_imp2 = prove
(`!p q. |-- (p <-> q) ==> |-- (q --> p)`,
MESON_TAC[GL_modusponens; GL_axiom_iffimp2]);;
let GL_imp_antisym = prove
(`!p q. |-- (p --> q) /\ |-- (q --> p) ==> |-- (p <-> q)`,
MESON_TAC[GL_modusponens; GL_axiom_impiff]);;
let GL_add_assum = prove
(`!p q. |-- q ==> |-- (p --> q)`,
MESON_TAC[GL_modusponens; GL_axiom_addimp]);;
let GL_imp_refl_th = prove
(`!p. |-- (p --> p)`,
MESON_TAC[GL_modusponens; GL_axiom_distribimp; GL_axiom_addimp]);;
let GL_imp_add_assum = prove
(`!p q r. |-- (q --> r) ==> |-- ((p --> q) --> (p --> r))`,
MESON_TAC[GL_modusponens; GL_axiom_distribimp; GL_add_assum]);;
let GL_imp_unduplicate = prove
(`!p q. |-- (p --> p --> q) ==> |-- (p --> q)`,
MESON_TAC[GL_modusponens; GL_axiom_distribimp; GL_imp_refl_th]);;
let GL_imp_trans = prove
(`!p q. |-- (p --> q) /\ |-- (q --> r) ==> |-- (p --> r)`,
MESON_TAC[GL_modusponens; GL_imp_add_assum]);;
let GL_imp_swap = prove
(`!p q r. |-- (p --> q --> r) ==> |-- (q --> p --> r)`,
MESON_TAC[GL_imp_trans; GL_axiom_addimp; GL_modusponens;
GL_axiom_distribimp]);;
let GL_imp_trans_chain_2 = prove
(`!p q1 q2 r. |-- (p --> q1) /\ |-- (p --> q2) /\ |-- (q1 --> q2 --> r)
==> |-- (p --> r)`,
ASM_MESON_TAC[GL_imp_trans; GL_imp_swap; GL_imp_unduplicate]);;
let GL_imp_trans_th = prove
(`!p q r. |-- ((q --> r) --> (p --> q) --> (p --> r))`,
MESON_TAC[GL_imp_trans; GL_axiom_addimp; GL_axiom_distribimp]);;
let GLimp_add_concl = prove
(`!p q r. |-- (p --> q) ==> |-- ((q --> r) --> (p --> r))`,
MESON_TAC[GL_modusponens; GL_imp_swap; GL_imp_trans_th]);;
let GL_imp_trans2 = prove
(`!p q r s. |-- (p --> q --> r) /\ |-- (r --> s) ==> |-- (p --> q --> s)`,
MESON_TAC[GL_imp_add_assum; GL_modusponens; GL_imp_trans_th]);;
let GL_imp_swap_th = prove
(`!p q r. |-- ((p --> q --> r) --> (q --> p --> r))`,
MESON_TAC[GL_imp_trans; GL_axiom_distribimp; GLimp_add_concl;
GL_axiom_addimp]);;
let GL_contrapos = prove
(`!p q. |-- (p --> q) ==> |-- (Not q --> Not p)`,
MESON_TAC[GL_imp_trans; GL_iff_imp1; GL_axiom_not;
GLimp_add_concl; GL_iff_imp2]);;
let GL_imp_truefalse_th = prove
(`!p q. |-- ((q --> False) --> p --> (p --> q) --> False)`,
MESON_TAC[GL_imp_trans; GL_imp_trans_th; GL_imp_swap_th]);;
let GL_imp_insert = prove
(`!p q r. |-- (p --> r) ==> |-- (p --> q --> r)`,
MESON_TAC[GL_imp_trans; GL_axiom_addimp]);;
let GL_imp_mono_th = prove
(`|-- ((p' --> p) --> (q --> q') --> (p --> q) --> (p' --> q'))`,
MESON_TAC[GL_imp_trans; GL_imp_swap; GL_imp_trans_th]);;
let GL_ex_falso_th = prove
(`!p. |-- (False --> p)`,
MESON_TAC[GL_imp_trans; GL_axiom_addimp; GL_axiom_doubleneg]);;
let GL_ex_falso = prove
(`!p. |-- False ==> |-- p`,
MESON_TAC[GL_ex_falso_th; GL_modusponens]);;
let GL_imp_contr_th = prove
(`!p q. |-- ((p --> False) --> (p --> q))`,
MESON_TAC[GL_imp_add_assum; GL_ex_falso_th]);;
let GL_contrad = prove
(`!p. |-- ((p --> False) --> p) ==> |-- p`,
MESON_TAC[GL_modusponens; GL_axiom_distribimp;
GL_imp_refl_th; GL_axiom_doubleneg]);;
let GL_bool_cases = prove
(`!p q. |-- (p --> q) /\ |-- ((p --> False) --> q) ==> |-- q`,
MESON_TAC[GL_contrad; GL_imp_trans; GLimp_add_concl]);;
let GL_imp_false_rule = prove
(`!p q r. |-- ((q --> False) --> p --> r)
==> |-- (((p --> q) --> False) --> r)`,
MESON_TAC[GLimp_add_concl; GL_imp_add_assum; GL_ex_falso_th;
GL_axiom_addimp; GL_imp_swap; GL_imp_trans;
GL_axiom_doubleneg; GL_imp_unduplicate]);;
let GL_imp_true_rule = prove
(`!p q r. |-- ((p --> False) --> r) /\ |-- (q --> r)
==> |-- ((p --> q) --> r)`,
MESON_TAC[GL_imp_insert; GL_imp_swap; GL_modusponens;
GL_imp_trans_th; GL_bool_cases]);;
let GL_truth_th = prove
(`|-- True`,
MESON_TAC[GL_modusponens; GL_axiom_true; GL_imp_refl_th; GL_iff_imp2]);;
let GL_and_left_th = prove
(`!p q. |-- (p && q --> p)`,
MESON_TAC[GL_imp_add_assum; GL_axiom_addimp; GL_imp_trans; GLimp_add_concl;
GL_axiom_doubleneg; GL_imp_trans; GL_iff_imp1; GL_axiom_and]);;
let GL_and_right_th = prove
(`!p q. |-- (p && q --> q)`,
MESON_TAC[GL_axiom_addimp; GL_imp_trans; GLimp_add_concl; GL_axiom_doubleneg;
GL_iff_imp1; GL_axiom_and]);;
let GL_and_pair_th = prove
(`!p q. |-- (p --> q --> p && q)`,
MESON_TAC[GL_iff_imp2; GL_axiom_and; GL_imp_swap_th; GL_imp_add_assum;
GL_imp_trans2; GL_modusponens; GL_imp_swap; GL_imp_refl_th]);;
let GL_and = prove
(`!p q. |-- (p && q) <=> |-- p /\ |-- q`,
MESON_TAC[GL_and_left_th; GL_and_right_th; GL_and_pair_th; GL_modusponens]);;
let GL_and_elim = prove
(`!p q r. |-- (r --> p && q) ==> |-- (r --> q) /\ |-- (r --> p)`,
MESON_TAC[GL_and_left_th; GL_and_right_th; GL_imp_trans]);;
let GL_shunt = prove
(`!p q r. |-- (p && q --> r) ==> |-- (p --> q --> r)`,
MESON_TAC[GL_modusponens; GL_imp_add_assum; GL_and_pair_th]);;
let GL_ante_conj = prove
(`!p q r. |-- (p --> q --> r) ==> |-- (p && q --> r)`,
MESON_TAC[GL_imp_trans_chain_2; GL_and_left_th; GL_and_right_th]);;
let GL_modusponens_th = prove
(`!p q. |-- ((p --> q) && p --> q)`,
MESON_TAC[GL_imp_refl_th; GL_ante_conj]);;
let GL_not_not_false_th = prove
(`!p. |-- ((p --> False) --> False <-> p)`,
MESON_TAC[GL_imp_antisym; GL_axiom_doubleneg; GL_imp_swap; GL_imp_refl_th]);;
let GL_iff_sym = prove
(`!p q. |-- (p <-> q) <=> |-- (q <-> p)`,
MESON_TAC[GL_iff_imp1; GL_iff_imp2; GL_imp_antisym]);;
let GL_iff_trans = prove
(`!p q r. |-- (p <-> q) /\ |-- (q <-> r) ==> |-- (p <-> r)`,
MESON_TAC[GL_iff_imp1; GL_iff_imp2; GL_imp_trans; GL_imp_antisym]);;
let GL_not_not_th = prove
(`!p. |-- (Not (Not p) <-> p)`,
MESON_TAC[GL_iff_trans; GL_not_not_false_th; GL_axiom_not;
GL_imp_antisym; GLimp_add_concl; GL_iff_imp1; GL_iff_imp2]);;
let GL_contrapos_eq = prove
(`!p q. |-- (Not p --> Not q) <=> |-- (q --> p)`,
MESON_TAC[GL_contrapos; GL_not_not_th; GL_iff_imp1;
GL_iff_imp2; GL_imp_trans]);;
let GL_or_left_th = prove
(`!p q. |-- (q --> p || q)`,
MESON_TAC[GL_imp_trans; GL_not_not_th; GL_iff_imp2; GL_and_right_th;
GL_contrapos; GL_axiom_or]);;
let GL_or_right_th = prove
(`!p q. |-- (p --> p || q)`,
MESON_TAC[GL_imp_trans; GL_not_not_th; GL_iff_imp2; GL_and_left_th;
GL_contrapos; GL_axiom_or]);;
let GL_ante_disj = prove
(`!p q r. |-- (p --> r) /\ |-- (q --> r)
==> |-- (p || q --> r)`,
REPEAT GEN_TAC THEN ONCE_REWRITE_TAC[GSYM GL_contrapos_eq] THEN
MESON_TAC[GL_imp_trans; GL_imp_trans_chain_2; GL_and_pair_th;
GL_contrapos_eq; GL_not_not_th; GL_axiom_or; GL_iff_imp1;
GL_iff_imp2; GL_imp_trans]);;
let GL_iff_def_th = prove
(`!p q. |-- ((p <-> q) <-> (p --> q) && (q --> p))`,
MESON_TAC[GL_imp_antisym; GL_imp_trans_chain_2; GL_axiom_iffimp1;
GL_axiom_iffimp2; GL_and_pair_th; GL_axiom_impiff;
GL_imp_trans_chain_2; GL_and_left_th; GL_and_right_th]);;
let GL_iff_refl_th = prove
(`!p. |-- (p <-> p)`,
MESON_TAC[GL_imp_antisym; GL_imp_refl_th]);;
let GL_imp_box = prove
(`!p q. |-- (p --> q) ==> |-- (Box p --> Box q)`,
MESON_TAC[GL_modusponens; GL_necessitation; GL_axiom_boximp]);;
let GL_box_moduspones = prove
(`!p q. |-- (p --> q) /\ |-- (Box p) ==> |-- (Box q)`,
MESON_TAC[GL_imp_box; GL_modusponens]);;
let GL_box_and = prove
(`!p q. |-- (Box(p && q)) ==> |-- (Box p && Box q)`,
MESON_TAC[GL_and_left_th; GL_and_right_th; GL_imp_box;
GL_box_moduspones; GL_and]);;
let GL_box_and_inv = prove
(`!p q. |-- (Box p && Box q) ==> |-- (Box (p && q))`,
MESON_TAC[GL_and_pair_th; GL_imp_box; GL_axiom_boximp;
GL_imp_trans; GL_ante_conj; GL_modusponens]);;
let GL_and_comm = prove
(`!p q . |-- (p && q) <=> |-- (q && p)`,
MESON_TAC[GL_and]);;
let GL_and_assoc = prove
(`!p q r. |-- ((p && q) && r) <=> |-- (p && (q && r))`,
MESON_TAC[GL_and]);;
let GL_disj_imp = prove
(`!p q r. |-- (p || q --> r) <=> |-- (p --> r) /\ |-- (q --> r)`,
MESON_TAC[GL_ante_disj; GL_or_right_th; GL_or_left_th; GL_imp_trans]);;
let GL_or_elim = prove
(`!p q r. |-- (p || q) /\ |-- (p --> r) /\ |-- (q --> r) ==> |-- r`,
MESON_TAC[GL_disj_imp; GL_modusponens]);;
let GL_or_comm = prove
(`!p q . |-- (p || q) <=> |-- (q || p)`,
MESON_TAC[GL_or_right_th; GL_or_left_th; GL_modusponens; GL_disj_imp]);;
let GL_or_assoc = prove
(`!p q r. |-- ((p || q) || r) <=> |-- (p || (q || r))`,
MESON_TAC[GL_or_right_th; GL_or_left_th; GL_modusponens; GL_disj_imp]);;
let GL_or_intror = prove
(`!p q. |-- q ==> |-- (p || q)`,
MESON_TAC[GL_or_left_th; GL_modusponens]);;
let GL_or_introl = prove
(`!p q. |-- p ==> |-- (p || q)`,
MESON_TAC[GL_or_right_th; GL_modusponens]);;
let GL_or_transl = prove
(`!p q r. |-- (p --> q) ==> |-- (p --> q || r)`,
MESON_TAC[GL_or_right_th; GL_imp_trans]);;
let GL_or_transr = prove
(`!p q r. |-- (p --> r) ==> |-- (p --> q || r)`,
MESON_TAC[GL_or_left_th; GL_imp_trans]);;
let GL_frege = prove
(`!p q r. |-- (p --> q --> r) /\ |-- (p --> q) ==> |-- (p --> r)`,
MESON_TAC[GL_axiom_distribimp; GL_modusponens; GL_shunt; GL_ante_conj]);;
let GL_and_intro = prove
(`!p q r. |-- (p --> q) /\ |-- (p --> r) ==> |-- (p --> q && r)`,
MESON_TAC[GL_and_pair_th; GL_imp_trans_chain_2]);;
let GL_not_def = prove
(`!p. |-- (Not p) <=> |-- (p --> False)`,
MESON_TAC[GL_axiom_not; GL_modusponens; GL_iff_imp1; GL_iff_imp2]);;
let GL_NC = prove
(`!p. |-- (p && Not p) <=> |-- False`,
MESON_TAC[GL_not_def; GL_modusponens; GL_and; GL_ex_falso]);;
let GL_nc_th = prove
(`!p. |-- (p && Not p --> False)`,
MESON_TAC[GL_ante_conj; GL_imp_swap; GL_axiom_not;
GL_axiom_iffimp1; GL_modusponens]);;
let GL_imp_clauses = prove
(`(!p. |-- (p --> True)) /\
(!p. |-- (p --> False) <=> |-- (Not p)) /\
(!p. |-- (True --> p) <=> |-- p) /\
(!p. |-- (False --> p))`,
SIMP_TAC[GL_truth_th; GL_add_assum; GL_not_def; GL_ex_falso_th] THEN
GEN_TAC THEN EQ_TAC THENL
[MESON_TAC[GL_modusponens; GL_truth_th];
MESON_TAC[GL_add_assum]]);;
let GL_and_left_true_th = prove
(`!p. |-- (True && p <-> p)`,
GEN_TAC THEN MATCH_MP_TAC GL_imp_antisym THEN CONJ_TAC THENL
[MATCH_ACCEPT_TAC GL_and_right_th; ALL_TAC] THEN
MATCH_MP_TAC GL_and_intro THEN REWRITE_TAC[GL_imp_refl_th; GL_imp_clauses]);;
let GL_or_and_distr = prove
(`!p q r. |-- ((p || q) && r) ==> |-- ((p && r) || (q && r))`,
REPEAT GEN_TAC THEN ONCE_REWRITE_TAC[GL_and] THEN STRIP_TAC THEN
MATCH_MP_TAC GL_or_elim THEN EXISTS_TAC `p:form` THEN
EXISTS_TAC `q :form` THEN ASM_REWRITE_TAC[] THEN CONJ_TAC THENL
[MATCH_MP_TAC GL_or_transl THEN MATCH_MP_TAC GL_and_intro THEN
REWRITE_TAC[GL_imp_refl_th] THEN ASM_SIMP_TAC[GL_add_assum];
MATCH_MP_TAC GL_or_transr THEN MATCH_MP_TAC GL_and_intro THEN
REWRITE_TAC[GL_imp_refl_th] THEN ASM_SIMP_TAC[GL_add_assum]]);;
let GL_and_or_distr = prove
(`!p q r. |-- ((p && q) || r) ==> |-- ((p || r) && (q || r))`,
REPEAT GEN_TAC THEN ONCE_REWRITE_TAC[GL_and] THEN DISCH_TAC THEN
CONJ_TAC THEN MATCH_MP_TAC GL_or_elim THEN
MAP_EVERY EXISTS_TAC [`p && q`; `r:form`] THEN
ASM_REWRITE_TAC[GL_or_left_th] THEN MATCH_MP_TAC GL_or_transl THEN
ASM_REWRITE_TAC[GL_and_left_th; GL_and_right_th]);;
let GL_or_and_distr_inv = prove
(`!p q r. |-- ((p && r) || (q && r)) ==> |-- ((p || q) && r)`,
REPEAT GEN_TAC THEN DISCH_TAC THEN MATCH_MP_TAC GL_or_elim THEN
MAP_EVERY EXISTS_TAC [`p && r`; `q && r`] THEN ASM_REWRITE_TAC[] THEN
POP_ASSUM (K ALL_TAC) THEN CONJ_TAC THEN MATCH_MP_TAC GL_and_intro THEN
CONJ_TAC THEN REWRITE_TAC[GL_and_left_th; GL_and_right_th] THENL
[MATCH_MP_TAC GL_or_transl THEN MATCH_ACCEPT_TAC GL_and_left_th;
MATCH_MP_TAC GL_or_transr THEN MATCH_ACCEPT_TAC GL_and_left_th]);;
let GL_or_and_distr_equiv = prove
(`!p q r. |-- ((p || q) && r) <=> |-- ((p && r) || (q && r))`,
MESON_TAC[GL_or_and_distr; GL_or_and_distr_inv]);;
let GL_and_or_distr_inv_prelim = prove
(`!p q r. |-- ((p || r) && (q || r)) ==> |-- (q --> (p && q) || r)`,
REPEAT GEN_TAC THEN REWRITE_TAC[GL_and] THEN INTRO_TAC "pr qr" THEN
MATCH_MP_TAC (SPECL [`p:form`; `r:form`] GL_or_elim) THEN
ASM_REWRITE_TAC[] THEN REMOVE_THEN "pr" (K ALL_TAC) THEN CONJ_TAC THENL
[MATCH_MP_TAC GL_shunt THEN MATCH_ACCEPT_TAC GL_or_right_th; ALL_TAC] THEN
MATCH_MP_TAC GL_imp_insert THEN MATCH_ACCEPT_TAC GL_or_left_th);;
let GL_and_or_distr_inv = prove
(`!p q r. |-- ((p || r) && (q || r)) ==> |-- ((p && q) || r)`,
REPEAT GEN_TAC THEN REWRITE_TAC[GL_and] THEN INTRO_TAC "pr qr" THEN
MATCH_MP_TAC (SPECL [`p:form`; `r:form`] GL_or_elim) THEN
ASM_REWRITE_TAC[] THEN REMOVE_THEN "pr" (K ALL_TAC) THEN
REWRITE_TAC[GL_or_left_th] THEN
MATCH_MP_TAC (SPECL [`q:form`; `r:form`] GL_or_elim) THEN
ASM_REWRITE_TAC[] THEN REMOVE_THEN "qr" (K ALL_TAC) THEN CONJ_TAC THENL
[MATCH_MP_TAC GL_imp_swap THEN MATCH_MP_TAC GL_shunt THEN
MATCH_ACCEPT_TAC GL_or_right_th;
MATCH_MP_TAC GL_imp_insert THEN MATCH_ACCEPT_TAC GL_or_left_th]);;
let GL_and_or_distr_equiv = prove
(`!p q r. |-- ((p && q) || r) <=> |-- ((p || r) && (q || r))`,
MESON_TAC[GL_and_or_distr; GL_and_or_distr_inv]);;
let GL_DOUBLENEG_CL = prove
(`!p. |-- (Not(Not p)) ==> |-- p`,
MESON_TAC[GL_not_not_th; GL_modusponens; GL_iff_imp1; GL_iff_imp2]);;
let GL_DOUBLENEG = prove
(`!p. |-- p ==> |-- (Not(Not p))`,
MESON_TAC[GL_not_not_th; GL_modusponens; GL_iff_imp1; GL_iff_imp2]);;
let GL_and_eq_or = prove
(`!p q. |-- (p || q) <=> |-- (Not(Not p && Not q))`,
MESON_TAC[GL_modusponens; GL_axiom_or; GL_iff_imp1; GL_iff_imp2]);;
let GL_tnd_th = prove
(`!p. |-- (p || Not p)`,
GEN_TAC THEN REWRITE_TAC[GL_and_eq_or] THEN
REWRITE_TAC[GL_not_def] THEN MESON_TAC[GL_nc_th]);;
let GL_iff_mp = prove
(`!p q. |-- (p <-> q) /\ |-- p ==> |-- q`,
MESON_TAC[GL_iff_imp1; GL_modusponens]);;
let GL_and_subst = prove
(`!p p' q q'. |-- (p <-> p') /\ |-- (q <-> q')
==> (|-- (p && q) <=> |-- (p' && q'))`,
REPEAT STRIP_TAC THEN REWRITE_TAC[GL_and] THEN
ASM_MESON_TAC[GL_iff_mp; GL_iff_sym]);;
let GL_imp_mono_th = prove
(`!p p' q q'. |-- ((p' --> p) && (q --> q') --> (p --> q) --> (p' --> q'))`,
REPEAT GEN_TAC THEN MATCH_MP_TAC GL_ante_conj THEN
MATCH_ACCEPT_TAC GL_imp_mono_th);;
let GL_imp_mono = prove
(`!p p' q q'. |-- (p' --> p) /\ |-- (q --> q')
==> |-- ((p --> q) --> (p' --> q'))`,
REWRITE_TAC[GSYM GL_and] THEN MESON_TAC[GL_modusponens; GL_imp_mono_th]);;
let GL_iff = prove
(`!p q. |-- (p <-> q) ==> (|-- p <=> |-- q)`,
MESON_TAC[GL_iff_imp1; GL_iff_imp2; GL_modusponens]);;
let GL_iff_def = prove
(`!p q. |-- (p <-> q) <=> |-- (p --> q) /\ |-- (q --> p)`,
REPEAT GEN_TAC THEN EQ_TAC THENL
[MESON_TAC[GL_iff_imp1; GL_iff_imp2];
MATCH_ACCEPT_TAC GL_imp_antisym]);;
let GL_not_subst = prove
(`!p q. |-- (p <-> q) ==> |-- (Not p <-> Not q)`,
MESON_TAC[GL_iff_def; GL_iff_imp2; GL_contrapos]);;
let GL_and_rigth_true_th = prove
(`!p. |-- (p && True <-> p)`,
GEN_TAC THEN REWRITE_TAC[GL_iff_def] THEN CONJ_TAC THENL
[MATCH_ACCEPT_TAC GL_and_left_th; ALL_TAC] THEN
MATCH_MP_TAC GL_and_intro THEN REWRITE_TAC[GL_imp_refl_th] THEN
MATCH_MP_TAC GL_add_assum THEN
MATCH_ACCEPT_TAC GL_truth_th);;
let GL_and_comm_th = prove
(`!p q. |-- (p && q <-> q && p)`,
SUBGOAL_THEN `!p q. |-- (p && q --> q && p)`
(fun th -> MESON_TAC[th; GL_iff_def]) THEN
MESON_TAC[GL_and_intro; GL_and_left_th; GL_and_right_th]);;
let GL_and_assoc_th = prove
(`!p q r. |-- ((p && q) && r <-> p && (q && r))`,
REPEAT GEN_TAC THEN MATCH_MP_TAC GL_imp_antisym THEN CONJ_TAC THEN
MATCH_MP_TAC GL_and_intro THEN
MESON_TAC[GL_and_left_th; GL_and_right_th; GL_imp_trans; GL_and_intro]);;
let GL_and_subst_th = prove
(`!p p' q q'. |-- (p <-> p') /\ |-- (q <-> q')
==> |-- (p && q <-> p' && q')`,
SUBGOAL_THEN
`!p p' q q'. |-- (p <-> p') /\ |-- (q <-> q')
==> |-- (p && q --> p' && q')`
(fun th -> MESON_TAC[th; GL_iff_def]) THEN
REPEAT STRIP_TAC THEN MATCH_MP_TAC GL_and_intro THEN CONJ_TAC THENL
[MATCH_MP_TAC GL_imp_trans THEN EXISTS_TAC `p:form` THEN
REWRITE_TAC[GL_and_left_th] THEN ASM_SIMP_TAC[GL_iff_imp1];
MATCH_MP_TAC GL_imp_trans THEN EXISTS_TAC `q:form` THEN
REWRITE_TAC[GL_and_right_th] THEN ASM_SIMP_TAC[GL_iff_imp1]]);;
let GL_imp_subst = prove
(`!p p' q q'. |-- (p <-> p') /\ |-- (q <-> q')
==> |-- ((p --> q) <-> (p' --> q'))`,
REPEAT GEN_TAC THEN STRIP_TAC THEN REWRITE_TAC[GL_iff_def] THEN
POP_ASSUM_LIST (MP_TAC o end_itlist CONJ) THEN
SUBGOAL_THEN `!p q p' q'.
|-- (p <-> p') /\ |-- (q <-> q')
==> |-- ((p --> q) --> (p' --> q'))`
(fun th -> MESON_TAC[th; GL_iff_sym]) THEN
REPEAT GEN_TAC THEN STRIP_TAC THEN MATCH_MP_TAC GL_imp_mono THEN
ASM_MESON_TAC[GL_iff_imp1; GL_iff_sym]);;
let GL_de_morgan_and_th = prove
(`!p q. |-- (Not (p && q) <-> Not p || Not q)`,
REPEAT GEN_TAC THEN MATCH_MP_TAC GL_iff_trans THEN
EXISTS_TAC `Not (Not (Not p) && Not (Not q))` THEN CONJ_TAC THENL
[MATCH_MP_TAC GL_not_subst THEN ONCE_REWRITE_TAC[GL_iff_sym] THEN
MATCH_MP_TAC GL_and_subst_th THEN CONJ_TAC THEN
MATCH_ACCEPT_TAC GL_not_not_th;
ONCE_REWRITE_TAC[GL_iff_sym] THEN MATCH_ACCEPT_TAC GL_axiom_or]);;
let GL_iff_sym_th = prove
(`!p q. |-- ((p <-> q) <-> (q <-> p))`,
REPEAT GEN_TAC THEN MATCH_MP_TAC GL_iff_trans THEN
EXISTS_TAC `(p --> q) && (q --> p)` THEN ASM_REWRITE_TAC[GL_iff_def_th] THEN
ONCE_REWRITE_TAC[GL_iff_sym] THEN MATCH_MP_TAC GL_iff_trans THEN
EXISTS_TAC `(q --> p) && (p --> q)` THEN
REWRITE_TAC[GL_iff_def_th; GL_and_comm_th]);;
let GL_iff_true_th = prove
(`(!p. |-- ((p <-> True) <-> p)) /\
(!p. |-- ((True <-> p) <-> p))`,
CLAIM_TAC "1" `!p. |-- ((p <-> True) <-> p)` THENL
[GEN_TAC THEN MATCH_MP_TAC GL_imp_antisym THEN CONJ_TAC THENL
[MATCH_MP_TAC GL_imp_trans THEN EXISTS_TAC `True --> p` THEN CONJ_TAC THENL
[MATCH_ACCEPT_TAC GL_axiom_iffimp2; ALL_TAC] THEN
MATCH_MP_TAC GL_imp_trans THEN EXISTS_TAC `(True --> p) && True` THEN
REWRITE_TAC[GL_modusponens_th] THEN MATCH_MP_TAC GL_and_intro THEN
REWRITE_TAC[GL_imp_refl_th] THEN MATCH_MP_TAC GL_add_assum THEN
MATCH_ACCEPT_TAC GL_truth_th;
ALL_TAC] THEN
MATCH_MP_TAC GL_imp_trans THEN
EXISTS_TAC `(p --> True) && (True --> p)` THEN
CONJ_TAC THENL [ALL_TAC; MESON_TAC[GL_iff_def_th; GL_iff_imp2]] THEN
MATCH_MP_TAC GL_and_intro THEN REWRITE_TAC[GL_axiom_addimp] THEN
SIMP_TAC[GL_add_assum; GL_truth_th];
ALL_TAC] THEN
ASM_REWRITE_TAC[] THEN GEN_TAC THEN MATCH_MP_TAC GL_iff_trans THEN
EXISTS_TAC `p <-> True` THEN ASM_REWRITE_TAC[GL_iff_sym_th]);;
let GL_or_subst_th = prove
(`!p p' q q'. |-- (p <-> p') /\ |-- (q <-> q')
==> |-- (p || q <-> p' || q')`,
SUBGOAL_THEN
`!p p' q q'. |-- (p <-> p') /\ |-- (q <-> q')
==> |-- (p || q --> p' || q')`
(fun th -> MESON_TAC[th; GL_iff_sym; GL_iff_def]) THEN
REPEAT STRIP_TAC THEN REWRITE_TAC[GL_disj_imp] THEN CONJ_TAC THEN
MATCH_MP_TAC GL_frege THENL
[EXISTS_TAC `p':form` THEN CONJ_TAC THENL
[MATCH_MP_TAC GL_add_assum THEN MATCH_ACCEPT_TAC GL_or_right_th;
ASM_SIMP_TAC[GL_iff_imp1]];
EXISTS_TAC `q':form` THEN CONJ_TAC THENL
[MATCH_MP_TAC GL_add_assum THEN MATCH_ACCEPT_TAC GL_or_left_th;
ASM_SIMP_TAC[GL_iff_imp1]]]);;
let GL_or_subst_right = prove
(`!p q1 q2. |-- (q1 <-> q2) ==> |-- (p || q1 <-> p || q2)`,
REPEAT STRIP_TAC THEN MATCH_MP_TAC GL_or_subst_th THEN
ASM_REWRITE_TAC[GL_iff_refl_th]);;
let GL_or_rid_th = prove
(`!p. |-- (p || False <-> p)`,
GEN_TAC THEN REWRITE_TAC[GL_iff_def] THEN CONJ_TAC THENL
[REWRITE_TAC[GL_disj_imp; GL_imp_refl_th; GL_ex_falso_th];
MATCH_ACCEPT_TAC GL_or_right_th]);;
let GL_or_lid_th = prove
(`!p. |-- (False || p <-> p)`,
GEN_TAC THEN REWRITE_TAC[GL_iff_def] THEN CONJ_TAC THENL
[REWRITE_TAC[GL_disj_imp; GL_imp_refl_th; GL_ex_falso_th];
MATCH_ACCEPT_TAC GL_or_left_th]);;
let GL_or_assoc_left_th = prove
(`!p q r. |-- (p || (q || r) --> (p || q) || r)`,
REPEAT GEN_TAC THEN REWRITE_TAC[GL_disj_imp] THEN
MESON_TAC[GL_or_left_th; GL_or_right_th; GL_imp_trans]);;
let GL_or_assoc_right_th = prove
(`!p q r. |-- ((p || q) || r --> p || (q || r))`,
REPEAT GEN_TAC THEN REWRITE_TAC[GL_disj_imp] THEN
MESON_TAC[GL_or_left_th; GL_or_right_th; GL_imp_trans]);;
let GL_or_assoc_th = prove
(`!p q r. |-- (p || (q || r) <-> (p || q) || r)`,
REWRITE_TAC[GL_iff_def; GL_or_assoc_left_th; GL_or_assoc_right_th]);;
let GL_and_or_ldistrib_th = prove
(`!p q r. |-- (p && (q || r) <-> p && q || p && r)`,
REPEAT GEN_TAC THEN REWRITE_TAC[GL_iff_def; GL_disj_imp] THEN
REPEAT CONJ_TAC THEN TRY (MATCH_MP_TAC GL_and_intro) THEN
REPEAT CONJ_TAC THEN MATCH_MP_TAC GL_ante_conj THENL
[MATCH_MP_TAC GL_imp_swap THEN REWRITE_TAC[GL_disj_imp] THEN
CONJ_TAC THEN MATCH_MP_TAC GL_imp_swap THEN MATCH_MP_TAC GL_shunt THENL
[MATCH_ACCEPT_TAC GL_or_right_th; MATCH_ACCEPT_TAC GL_or_left_th];
MATCH_ACCEPT_TAC GL_axiom_addimp;
MATCH_MP_TAC GL_add_assum THEN MATCH_ACCEPT_TAC GL_or_right_th;
MATCH_ACCEPT_TAC GL_axiom_addimp;
MATCH_MP_TAC GL_add_assum THEN MATCH_ACCEPT_TAC GL_or_left_th]);;
let GL_not_true_th = prove
(`|-- (Not True <-> False)`,
REWRITE_TAC[GL_iff_def; GL_ex_falso_th; GSYM GL_not_def] THEN
MATCH_MP_TAC GL_iff_mp THEN EXISTS_TAC `True` THEN
REWRITE_TAC[GL_truth_th] THEN ONCE_REWRITE_TAC[GL_iff_sym] THEN
MATCH_ACCEPT_TAC GL_not_not_th);;
let GL_and_subst_right_th = prove
(`!p q1 q2. |-- ((q1 <-> q2) --> (p && q1 <-> p && q2))`,
REPEAT GEN_TAC THEN MATCH_MP_TAC GL_imp_trans THEN
EXISTS_TAC `(p && q1 --> p && q2) && (p && q2 --> p && q1)` THEN
CONJ_TAC THENL
[ALL_TAC; MATCH_MP_TAC GL_iff_imp2 THEN MATCH_ACCEPT_TAC GL_iff_def_th] THEN
SUBGOAL_THEN `!p q1 q2. |-- ((q1 <-> q2) --> (p && q1 --> p && q2))`
(fun th -> MATCH_MP_TAC GL_and_intro THEN
MESON_TAC[th; GL_and_comm_th; GL_imp_trans; GL_iff_def_th;
GL_iff_imp1; GL_iff_imp2]) THEN
REPEAT GEN_TAC THEN MATCH_MP_TAC GL_shunt THEN MATCH_MP_TAC GL_and_intro THEN
CONJ_TAC THENL
[MESON_TAC[GL_and_left_th; GL_and_right_th; GL_imp_trans]; ALL_TAC] THEN
MATCH_MP_TAC GL_imp_trans THEN EXISTS_TAC `(q1 <-> q2) && q1` THEN
CONJ_TAC THENL
[MATCH_MP_TAC GL_and_intro THEN REWRITE_TAC[GL_and_left_th] THEN
MESON_TAC[GL_and_right_th; GL_imp_trans];
MATCH_MP_TAC GL_imp_trans THEN EXISTS_TAC `(q1 --> q2) && q1` THEN
REWRITE_TAC[GL_modusponens_th] THEN MATCH_MP_TAC GL_and_intro THEN
REWRITE_TAC[GL_and_right_th] THEN MATCH_MP_TAC GL_imp_trans THEN
EXISTS_TAC `(q1 <-> q2)` THEN REWRITE_TAC[GL_and_left_th] THEN
MATCH_MP_TAC GL_imp_trans THEN EXISTS_TAC `(q1 --> q2) && (q2 --> q1)` THEN
REWRITE_TAC[GL_and_left_th] THEN MATCH_MP_TAC GL_iff_imp1 THEN
MATCH_ACCEPT_TAC GL_iff_def_th]);;
let GL_and_subst_left_th = prove
(`!p1 p2 q. |-- ((p1 <-> p2) --> (p1 && q <-> p2 && q))`,
REPEAT GEN_TAC THEN MATCH_MP_TAC GL_imp_trans THEN
EXISTS_TAC `(p1 && q --> p2 && q) && (p2 && q --> p1 && q)` THEN
CONJ_TAC THENL
[ALL_TAC; MATCH_MP_TAC GL_iff_imp2 THEN MATCH_ACCEPT_TAC GL_iff_def_th] THEN
SUBGOAL_THEN `!p1 p2 q. |-- ((p1 <-> p2) --> (p1 && q --> p2 && q))`
(fun th -> MATCH_MP_TAC GL_and_intro THEN
MESON_TAC[th; GL_and_comm_th; GL_imp_trans; GL_iff_def_th;
GL_iff_imp1; GL_iff_imp2]) THEN
REPEAT GEN_TAC THEN MATCH_MP_TAC GL_shunt THEN MATCH_MP_TAC GL_and_intro THEN
CONJ_TAC THENL
[ALL_TAC; MESON_TAC[GL_and_left_th; GL_and_right_th; GL_imp_trans]] THEN
MATCH_MP_TAC GL_imp_trans THEN EXISTS_TAC `(p1 <-> p2) && p1` THEN
CONJ_TAC THENL
[MATCH_MP_TAC GL_and_intro THEN REWRITE_TAC[GL_and_left_th] THEN
MESON_TAC[GL_and_right_th; GL_and_left_th; GL_imp_trans];
MATCH_MP_TAC GL_imp_trans THEN EXISTS_TAC `(p1 --> p2) && p1` THEN
REWRITE_TAC[GL_modusponens_th] THEN MATCH_MP_TAC GL_and_intro THEN
REWRITE_TAC[GL_and_right_th] THEN MATCH_MP_TAC GL_imp_trans THEN
EXISTS_TAC `(p1 <-> p2)` THEN REWRITE_TAC[GL_and_left_th] THEN
MATCH_MP_TAC GL_imp_trans THEN EXISTS_TAC `(p1 --> p2) && (p2 --> p1)` THEN
REWRITE_TAC[GL_and_left_th] THEN MATCH_MP_TAC GL_iff_imp1 THEN
MATCH_ACCEPT_TAC GL_iff_def_th]);;
let GL_contrapos_th = prove
(`!p q. |-- ((p --> q) --> (Not q --> Not p))`,
REPEAT GEN_TAC THEN MATCH_MP_TAC GL_imp_swap THEN
MATCH_MP_TAC GL_imp_trans THEN EXISTS_TAC `(q --> False)` THEN CONJ_TAC THENL
[MATCH_MP_TAC GL_iff_imp1 THEN MATCH_ACCEPT_TAC GL_axiom_not;
MATCH_MP_TAC GL_shunt THEN MATCH_MP_TAC GL_imp_trans THEN
EXISTS_TAC `p --> False` THEN CONJ_TAC THENL
[MESON_TAC[GL_ante_conj; GL_imp_trans_th];
MESON_TAC[GL_axiom_not; GL_iff_imp2]]]);;
let GL_contrapos_eq_th = prove
(`!p q. |-- ((p --> q) <-> (Not q --> Not p))`,
SUBGOAL_THEN `!p q. |-- ((Not q --> Not p) --> (p --> q))`
(fun th -> MESON_TAC[th; GL_iff_def; GL_contrapos_th]) THEN
GEN_TAC THEN GEN_TAC THEN MATCH_MP_TAC GL_imp_trans THEN
EXISTS_TAC `Not (Not p) --> Not (Not q)` THEN CONJ_TAC THENL
[MATCH_ACCEPT_TAC GL_contrapos_th; ALL_TAC] THEN
MATCH_MP_TAC GL_iff_imp1 THEN MATCH_MP_TAC GL_imp_subst THEN
MESON_TAC[GL_not_not_th]);;
let GL_iff_sym_th = prove
(`!p q. |-- ((p <-> q) --> (q <-> p))`,
REPEAT GEN_TAC THEN MATCH_MP_TAC GL_imp_trans THEN
EXISTS_TAC `(p --> q) && (q --> p)` THEN CONJ_TAC THENL
[MESON_TAC[GL_iff_def_th; GL_iff_imp1]; ALL_TAC] THEN
MATCH_MP_TAC GL_imp_trans THEN EXISTS_TAC `(q --> p) && (p --> q)` THEN
CONJ_TAC THENL
[MESON_TAC[GL_and_comm_th; GL_iff_imp1];
MESON_TAC[GL_iff_def_th; GL_iff_imp2]]);;
let GL_de_morgan_or_th = prove
(`!p q. |-- (Not (p || q) <-> Not p && Not q)`,
REPEAT GEN_TAC THEN MATCH_MP_TAC GL_iff_trans THEN
EXISTS_TAC `Not (Not (Not p && Not q))` THEN CONJ_TAC THENL
[MATCH_MP_TAC GL_not_subst THEN MATCH_ACCEPT_TAC GL_axiom_or;
MATCH_ACCEPT_TAC GL_not_not_th]);;
let GL_crysippus_th = prove
(`!p q. |-- (Not (p --> q) <-> p && Not q)`,
REPEAT GEN_TAC THEN MATCH_MP_TAC GL_iff_trans THEN
EXISTS_TAC `(p --> Not q --> False) --> False` THEN CONJ_TAC THENL
[ALL_TAC; MESON_TAC[GL_axiom_and; GL_iff_sym]] THEN
MATCH_MP_TAC GL_iff_trans THEN EXISTS_TAC `Not (p --> Not q --> False)` THEN
CONJ_TAC THENL [ALL_TAC; MATCH_ACCEPT_TAC GL_axiom_not] THEN
MATCH_MP_TAC GL_not_subst THEN
MATCH_MP_TAC GL_imp_subst THEN
CONJ_TAC THENL [MATCH_ACCEPT_TAC GL_iff_refl_th; ALL_TAC] THEN
MATCH_MP_TAC GL_iff_trans THEN EXISTS_TAC `Not (Not q)` THEN CONJ_TAC THENL
[MESON_TAC[GL_not_not_th; GL_iff_sym]; MATCH_ACCEPT_TAC GL_axiom_not]);;
(* ------------------------------------------------------------------------- *)
(* Substitution. *)
(* ------------------------------------------------------------------------- *)
let SUBST = new_recursive_definition form_RECURSION
`(!f. SUBST f True = True) /\
(!f. SUBST f False = False) /\
(!f a. SUBST f (Atom a) = f a) /\
(!f p. SUBST f (Not p) = Not (SUBST f p)) /\
(!f p q. SUBST f (p && q) = SUBST f p && SUBST f q) /\
(!f p q. SUBST f (p || q) = SUBST f p || SUBST f q) /\
(!f p q. SUBST f (p --> q) = SUBST f p --> SUBST f q) /\
(!f p q. SUBST f (p <-> q) = SUBST f p <-> SUBST f q) /\
(!f p. SUBST f (Box p) = Box (SUBST f p))`;;
let SUBST_IMP = prove
(`!f p. |-- p ==> |-- (SUBST f p)`,
GEN_TAC THEN MATCH_MP_TAC GLproves_INDUCT THEN REWRITE_TAC[SUBST] THEN
CONJ_TAC THENL
[MATCH_MP_TAC GLaxiom_INDUCT THEN
REPEAT STRIP_TAC THEN MATCH_MP_TAC (CONJUNCT1 GLproves_RULES) THEN
REWRITE_TAC[GLaxiom_RULES; SUBST];
ALL_TAC] THEN
REWRITE_TAC[SUBST; GLproves_RULES]);;
let SUBSTITUTION_LEMMA = prove
(`!f p q. |-- (p <-> q) ==> |-- (SUBST f p <-> SUBST f q)`,
REWRITE_TAC[GSYM SUBST; SUBST_IMP]);;
(* ------------------------------------------------------------------------- *)
(* SUBST_IFF. *)
(* ------------------------------------------------------------------------- *)
let GL_iff_subst = prove
(`!p p' q q'. |-- (p <-> p') /\ |-- (q <-> q')
==> |-- ((p <-> q) <-> (p' <-> q'))`,
SUBGOAL_THEN `!p q p' q'.
|-- (p <-> p') /\ |-- (q <-> q')
==> |-- ((p <-> q) --> (p' <-> q'))`
(fun th -> REPEAT STRIP_TAC THEN REWRITE_TAC[GL_iff_def] THEN
ASM_MESON_TAC[th; GL_iff_sym]) THEN
REPEAT STRIP_TAC THEN MATCH_MP_TAC GL_imp_trans THEN
EXISTS_TAC `(p --> q) && (q --> p)` THEN
CONJ_TAC THENL [MESON_TAC[GL_iff_def_th; GL_iff_imp1]; ALL_TAC] THEN
MATCH_MP_TAC GL_imp_trans THEN EXISTS_TAC `(p' --> q') && (q' --> p')` THEN
CONJ_TAC THENL [ALL_TAC; MESON_TAC[GL_iff_def_th; GL_iff_imp2]] THEN
MATCH_MP_TAC GL_and_intro THEN CONJ_TAC THEN MATCH_MP_TAC GL_ante_conj THENL
[MATCH_MP_TAC GL_imp_insert THEN MATCH_MP_TAC GL_imp_swap THEN
MATCH_MP_TAC GL_imp_trans THEN EXISTS_TAC `p:form` THEN
CONJ_TAC THENL [ASM_MESON_TAC[GL_iff_imp2]; ALL_TAC] THEN
MATCH_MP_TAC GL_shunt THEN MATCH_MP_TAC GL_imp_trans THEN
EXISTS_TAC `q:form` THEN CONJ_TAC THENL
[ALL_TAC; ASM_MESON_TAC[GL_iff_imp1]] THEN
MATCH_MP_TAC GL_ante_conj THEN MATCH_MP_TAC GL_imp_swap THEN
MATCH_ACCEPT_TAC GL_imp_refl_th;
ALL_TAC] THEN
MATCH_MP_TAC GL_add_assum THEN MATCH_MP_TAC GL_imp_swap THEN
MATCH_MP_TAC GL_imp_trans THEN EXISTS_TAC `q:form` THEN
CONJ_TAC THENL [ASM_MESON_TAC[GL_iff_imp2]; ALL_TAC] THEN
MATCH_MP_TAC GL_imp_swap THEN MATCH_MP_TAC GL_imp_add_assum THEN
ASM_MESON_TAC[GL_iff_imp1]);;
let GL_box_iff_th = prove
(`!p q. |-- (Box (p <-> q) --> (Box p <-> Box q))`,
REPEAT GEN_TAC THEN MATCH_MP_TAC GL_imp_trans THEN
EXISTS_TAC `(Box p --> Box q) && (Box q --> Box p)` THEN CONJ_TAC THENL
[ALL_TAC; MATCH_MP_TAC GL_iff_imp2 THEN MATCH_ACCEPT_TAC GL_iff_def_th] THEN
MATCH_MP_TAC GL_and_intro THEN CONJ_TAC THENL
[MATCH_MP_TAC GL_imp_trans THEN EXISTS_TAC `Box (p --> q)` THEN
REWRITE_TAC[GL_axiom_boximp] THEN MATCH_MP_TAC GL_imp_box THEN
MATCH_ACCEPT_TAC GL_axiom_iffimp1;
MATCH_MP_TAC GL_imp_trans THEN EXISTS_TAC `Box (q --> p)` THEN
REWRITE_TAC[GL_axiom_boximp] THEN MATCH_MP_TAC GL_imp_box THEN
MATCH_ACCEPT_TAC GL_axiom_iffimp2]);;
let GL_box_iff = prove
(`!p q. |-- (Box (p <-> q)) ==> |-- (Box p <-> Box q)`,
REPEAT STRIP_TAC THEN MATCH_MP_TAC GL_imp_antisym THEN CONJ_TAC THENL
[MATCH_MP_TAC GL_modusponens THEN EXISTS_TAC `Box (p --> q)` THEN
REWRITE_TAC[GL_axiom_boximp] THEN
MATCH_MP_TAC GL_box_moduspones THEN EXISTS_TAC `(p <-> q)` THEN
ASM_REWRITE_TAC[GL_axiom_iffimp1];
MATCH_MP_TAC GL_modusponens THEN EXISTS_TAC `Box (q --> p)` THEN
REWRITE_TAC[GL_axiom_boximp] THEN
MATCH_MP_TAC GL_box_moduspones THEN EXISTS_TAC `(p <-> q)` THEN
ASM_REWRITE_TAC[GL_axiom_iffimp2]]);;
let GL_box_subst = prove
(`!p q. |-- (p <-> q) ==> |-- (Box p <-> Box q)`,
SIMP_TAC[GL_box_iff; GL_necessitation]);;
let SUBST_IFF = prove
(`!f g p. (!a. |-- (f a <-> g a)) ==> |-- (SUBST f p <-> SUBST g p)`,
GEN_TAC THEN GEN_TAC THEN REWRITE_TAC[RIGHT_FORALL_IMP_THM] THEN
DISCH_TAC THEN MATCH_MP_TAC form_INDUCT THEN
ASM_REWRITE_TAC[SUBST; GL_iff_refl_th] THEN REPEAT STRIP_TAC THENL
[MATCH_MP_TAC GL_not_subst THEN POP_ASSUM MATCH_ACCEPT_TAC;
MATCH_MP_TAC GL_and_subst_th THEN ASM_REWRITE_TAC[];
MATCH_MP_TAC GL_or_subst_th THEN ASM_REWRITE_TAC[];
MATCH_MP_TAC GL_imp_subst THEN ASM_REWRITE_TAC[];
MATCH_MP_TAC GL_iff_subst THEN ASM_REWRITE_TAC[];
MATCH_MP_TAC GL_box_subst THEN POP_ASSUM MATCH_ACCEPT_TAC]);;
(* ----------------------------------------------------------------------- *)
(* Some modal propositional schemas and derived rules. *)
(* ----------------------------------------------------------------------- *)
let GL_box_and_th = prove
(`!p q. |-- (Box(p && q) --> (Box p && Box q))`,
MESON_TAC[GL_and_intro; GL_imp_box;GL_and_left_th;GL_and_right_th]);;
let GL_box_and_inv_th = prove
(`!p q. |-- ((Box p && Box q) --> Box (p && q))`,
MESON_TAC[GL_ante_conj; GL_imp_trans; GL_imp_box; GL_and_pair_th;
GL_axiom_boximp; GL_shunt]);;
let GL_schema_4 = prove
(`!p. |-- (Box p --> Box (Box p))`,
MESON_TAC[GL_axiom_lob; GL_imp_box; GL_and_pair_th; GL_and_intro;
GL_shunt; GL_imp_trans;GL_and_right_th;GL_and_left_th;GL_box_and_th]);;
let GL_dot_box = prove
(`!p. |-- (Box p --> Box p && Box (Box p))`,
MESON_TAC[GL_imp_refl_th; GL_schema_4; GL_and_intro]);;