Datasets:

Modalities:
Text
Languages:
English
Libraries:
Datasets
License:
Zhangir Azerbayev
squashed?
4365a98
raw
history blame
17.1 kB
import algebra.group_power
import ring_theory.ideal_operations
import ring_theory.subring
import for_mathlib.rings
import for_mathlib.equiv
import valuation.linear_ordered_comm_group_with_zero
/-!
# The basics of valuation theory.
The basic theory of valuations (non-archimedean norms) on a commutative ring,
following T. Wedhorn's unpublished notes “Adic Spaces” ([Wedhorn])
The definition of a valuation we use here is Definition 1.22 of [Wedhorn]. `valuation R Γ₀`
is the type of valuations R → Γ₀, with a coercion to the underlying
function. If v is a valuation from R to Γ₀ then the induced group
homomorphism units(R) → Γ₀ is called `unit_map v`.
The equivalence "relation" `is_equiv v₁ v₂ : Prop` defined in [Wedhorn; 1.27] is not strictly
speaking a relation, because v₁ : valuation R Γ₁ and v₂ : valuation R Γ₂ might
not have the same type. This corresponds in ZFC to the set-theoretic difficulty
that the class of all valuations (as Γ₀ varies) on a ring R is not a set.
The "relation" is however reflexive, symmetric and transitive in the obvious
sense. Note that we use 1.27(iii) as the definition of equivalence.
The trivial valuation associated to a prime ideal P of R is `trivial P : valuation R Γ₀`.
The support of a valuation v : valuation R Γ₀ is `supp v`. If J is an ideal of R
with `h : J ⊆ supp v` then the induced valuation
on R / J = `ideal.quotient J` is `on_quot v h`.
-/
local attribute [instance] classical.prop_decidable
noncomputable theory
local attribute [instance, priority 0] classical.DLO
open function ideal linear_ordered_structure
universes u u₀ u₁ u₂ -- v is used for valuations
variables {R : Type u₀} -- This will be a ring, assumed commutative in some sections
variables {Γ₀ : Type u} [linear_ordered_comm_group_with_zero Γ₀]
variables {Γ'₀ : Type u₁} [linear_ordered_comm_group_with_zero Γ'₀]
variables {Γ''₀ : Type u₂} [linear_ordered_comm_group_with_zero Γ''₀]
set_option old_structure_cmd true
section
variables (R) (Γ₀) [ring R]
/-- The type of Γ₀-valued valuations on R. -/
structure valuation extends R →* Γ₀ :=
(map_zero' : to_fun 0 = 0)
(map_add' : ∀ x y, to_fun (x + y) ≤ max (to_fun x) (to_fun y))
end
namespace valuation
section basic
variables (R) (Γ₀) [ring R]
/-- A valuation is coerced to the underlying function R → Γ₀. -/
instance : has_coe_to_fun (valuation R Γ₀) := { F := λ _, R → Γ₀, coe := valuation.to_fun }
/-- A valuation is coerced to a monoid morphism R → Γ₀. -/
instance : has_coe (valuation R Γ₀) (R →* Γ₀) := ⟨valuation.to_monoid_hom⟩
variables {R} {Γ₀} (v : valuation R Γ₀) {x y z : R}
@[squash_cast, simp] lemma coe_coe : ((v : R →* Γ₀) : R → Γ₀) = v := rfl
@[simp] lemma map_zero : v 0 = 0 := v.map_zero'
@[simp] lemma map_one : v 1 = 1 := v.map_one'
@[simp] lemma map_mul : ∀ x y, v (x * y) = v x * v y := v.map_mul'
@[simp] lemma map_add : ∀ x y, v (x + y) ≤ max (v x) (v y) := v.map_add'
@[simp] lemma map_pow : ∀ x (n:ℕ), v (x^n) = (v x)^n :=
@is_monoid_hom.map_pow _ _ _ _ v (monoid_hom.is_monoid_hom v.to_monoid_hom)
@[ext] lemma ext {v₁ v₂ : valuation R Γ₀} (h : ∀ r, v₁ r = v₂ r) : v₁ = v₂ :=
by { cases v₁, cases v₂, congr, funext r, exact h r }
lemma ext_iff {v₁ v₂ : valuation R Γ₀} : v₁ = v₂ ↔ ∀ r, v₁ r = v₂ r :=
⟨λ h r, congr_arg _ h, ext⟩
-- The following definition is not an instance, because we have more than one v on a given R.
/-- A valuation gives a preorder on the underlying ring. -/
def to_preorder : preorder R := preorder.lift v (by apply_instance)
/-- If v is a valuation on a division ring then v(x) = 0 iff x = 0. -/
lemma zero_iff {K : Type u₀} [division_ring K]
(v : valuation K Γ₀) {x : K} : v x = 0 ↔ x = 0 :=
begin
split ; intro h,
{ contrapose! h,
exact group_with_zero.unit_ne_zero (units.map (v : K →* Γ₀) $ units.mk0 _ h) },
{ exact h.symm ▸ v.map_zero },
end
lemma ne_zero_iff {K : Type u₀} [division_ring K]
(v : valuation K Γ₀) {x : K} : v x ≠ 0 ↔ x ≠ 0 :=
not_iff_not_of_iff v.zero_iff
@[simp] lemma map_inv' {K : Type u₀} [division_ring K]
(v : valuation K Γ₀) {x : K} (h : x0) : v x⁻¹ = (v x)⁻¹ :=
begin
apply eq_inv_of_mul_right_eq_one',
rw [← v.map_mul, mul_inv_cancel h, v.map_one]
end
@[simp] lemma map_inv {K : Type u₀} [discrete_field K]
(v : valuation K Γ₀) {x : K} : v x⁻¹ = (v x)⁻¹ :=
begin
by_cases h : x = 0,
{ rw [h, inv_zero, map_zero, inv_zero'] },
{ exact v.map_inv' h }
end
lemma map_units_inv (x : units R) : v (x⁻¹ : units R) = (v x)⁻¹ :=
eq_inv_of_mul_right_eq_one' _ _ $ by rw [← v.map_mul, units.mul_inv, v.map_one]
@[simp] theorem unit_map_eq (u : units R) :
(units.map (v : R →* Γ₀) u : Γ₀) = v u := rfl
@[simp] theorem map_neg_one : v (-1) = 1 :=
begin
show (units.map (v : R →* Γ₀) (-1 : units R) : Γ₀) = (1 : units Γ₀),
rw ← units.ext_iff,
apply linear_ordered_structure.eq_one_of_pow_eq_one (nat.succ_ne_zero _) (_ : _ ^ 2 = _),
rw [pow_two, ← monoid_hom.map_mul, units.ext_iff],
show v ((-1) * (-1)) = 1,
rw [neg_one_mul, neg_neg, v.map_one]
end
@[simp] lemma map_neg (x : R) : v (-x) = v x :=
calc v (-x) = v (-1 * x) : by simp
... = v (-1) * v x : map_mul _ _ _
... = v x : by simp
lemma map_sub_swap (x y : R) : v (x - y) = v (y - x) :=
calc v (x - y) = v (-(y - x)) : by rw show x - y = -(y-x), by abel
... = _ : map_neg _ _
lemma map_sub_le_max (x y : R) : v (x - y) ≤ max (v x) (v y) :=
calc v (x-y) = v (x + -y) : by simp
... ≤ max (v x) (v $ -y) : v.map_add _ _
... = max (v x) (v y) : by rw map_neg
lemma map_add_of_distinct_val (h : v x ≠ v y) : v (x + y) = max (v x) (v y) :=
begin
suffices : ¬v (x + y) < max (v x) (v y),
from or_iff_not_imp_right.1 (le_iff_eq_or_lt.1 (v.map_add x y)) this,
intro h',
wlog vyx : v y < v x using x y,
{ apply lt_or_gt_of_ne h.symm },
{ rw max_eq_left_of_lt vyx at h',
apply lt_irrefl (v x),
calc v x = v ((x+y) - y) : by simp
... ≤ max (v $ x + y) (v y) : map_sub_le_max _ _ _
... < v x : max_lt h' vyx },
{ apply this h.symm,
rwa [add_comm, max_comm] at h' }
end
lemma map_eq_of_sub_lt (h : v (y - x) < v x) : v y = v x :=
begin
have := valuation.map_add_of_distinct_val v (ne_of_gt h).symm,
rw max_eq_right (le_of_lt h) at this,
simpa using this
end
/-- A ring homomorphism S → R induces a map valuation R Γ₀ → valuation S Γ₀ -/
def comap {S : Type u₁} [ring S] (f : S → R) [is_ring_hom f] (v : valuation R Γ₀) :
valuation S Γ₀ :=
by refine_struct { to_fun := v ∘ f, .. }; intros;
simp [is_ring_hom.map_zero f, is_ring_hom.map_one f, is_ring_hom.map_mul f, is_ring_hom.map_add f]
@[simp] lemma comap_id : v.comap (id : R → R) = v := ext $ λ r, rfl
lemma comap_comp {S₁ : Type u₁} [ring S₁] {S₂ : Type u₂} [ring S₂]
(f : S₁ → S₂) [is_ring_hom f] (g : S₂ → R) [is_ring_hom g] :
v.comap (g ∘ f) = (v.comap g).comap f :=
ext $ λ r, rfl
/-- A ≤-preserving group homomorphism Γ₀ → Γ'₀ induces a map valuation R Γ₀ → valuation R Γ'₀. -/
def map (f : Γ₀ →* Γ'₀) (h₀ : f 0 = 0) (hf : monotone f) (v : valuation R Γ₀) : valuation R Γ'₀ :=
{ to_fun := f ∘ v,
map_zero' := show f (v 0) = 0, by rw [v.map_zero, h₀],
map_add' := λ r s,
calc f (v (r + s)) ≤ f (max (v r) (v s)) : hf (v.map_add r s)
... = max (f (v r)) (f (v s)) : hf.map_max,
.. monoid_hom.comp f (v : R →* Γ₀) }
/-- Two valuations on R are defined to be equivalent if they induce the same preorder on R. -/
def is_equiv (v₁ : valuation R Γ₀) (v₂ : valuation R Γ'₀) : Prop :=
∀ r s, v₁ r ≤ v₁ s ↔ v₂ r ≤ v₂ s
end basic -- end of section
namespace is_equiv
variables [ring R]
variables {v : valuation R Γ₀}
variables {v₁ : valuation R Γ₀} {v₂ : valuation R Γ'₀} {v₃ : valuation R Γ''₀}
@[refl] lemma refl : v.is_equiv v :=
λ _ _, iff.refl _
@[symm] lemma symm (h : v₁.is_equiv v₂) : v₂.is_equiv v₁ :=
λ _ _, iff.symm (h _ _)
@[trans] lemma trans (h₁₂ : v₁.is_equiv v₂) (h₂₃ : v₂.is_equiv v₃) : v₁.is_equiv v₃ :=
λ _ _, iff.trans (h₁₂ _ _) (h₂₃ _ _)
lemma of_eq {v' : valuation R Γ₀} (h : v = v') : v.is_equiv v' :=
by subst h; refl
lemma map {v' : valuation R Γ₀} (f : Γ₀ →* Γ'₀) (h₀ : f 0 = 0) (hf : monotone f) (inf : injective f)
(h : v.is_equiv v') :
(v.map f h₀ hf).is_equiv (v'.map f h₀ hf) :=
λ r s,
calc f (v r) ≤ f (v s) ↔ v r ≤ v s : by rw linear_order_le_iff_of_monotone_injective inf hf
... ↔ v' r ≤ v' s : h r s
... ↔ f (v' r) ≤ f (v' s) : by rw linear_order_le_iff_of_monotone_injective inf hf
/-- `comap` preserves equivalence. -/
lemma comap {S : Type u₂} [ring S] (f : S → R) [is_ring_hom f] (h : v₁.is_equiv v₂) :
(v₁.comap f).is_equiv (v₂.comap f) :=
λ r s, h (f r) (f s)
lemma val_eq (h : v₁.is_equiv v₂) {r s : R} :
v₁ r = v₁ s ↔ v₂ r = v₂ s :=
⟨λ H, le_antisymm ((h _ _).1 (le_of_eq H)) ((h _ _).1 (le_of_eq H.symm)),
λ H, le_antisymm ((h.symm _ _).1 (le_of_eq H)) ((h.symm _ _).1 (le_of_eq H.symm)) ⟩
lemma ne_zero (h : v₁.is_equiv v₂) {r : R} :
v₁ r ≠ 0 ↔ v₂ r ≠ 0 :=
begin
have : v₁ r ≠ v₁ 0 ↔ v₂ r ≠ v₂ 0 := not_iff_not_of_iff h.val_eq,
rwa [v₁.map_zero, v₂.map_zero] at this,
end
end is_equiv -- end of namespace
lemma is_equiv_of_map_strict_mono [ring R] {v : valuation R Γ₀}
(f : Γ₀ →* Γ'₀) (h₀ : f 0 = 0) (H : strict_mono f) :
is_equiv (v.map f h₀ (H.monotone)) v :=
λ x y, ⟨H.le_iff_le.mp, λ h, H.monotone h⟩
lemma is_equiv_of_val_le_one {K : Type*} [division_ring K]
(v : valuation K Γ₀) (v' : valuation K Γ'₀) (h : ∀ {x:K}, v x ≤ 1 ↔ v' x ≤ 1) :
v.is_equiv v' :=
begin
intros x y,
by_cases hy : y = 0, { simp [hy, zero_iff], },
rw show y = 1 * y, by rw one_mul,
rw show x = (x * y⁻¹) * y, { rw [mul_assoc, inv_mul_cancel hy, mul_one], },
iterate 2 {rw [v.map_mul _ y, v'.map_mul _ y]},
rw [v.map_one, v'.map_one],
split; intro H,
{ apply actual_ordered_comm_monoid.mul_le_mul_right',
replace hy := v.ne_zero_iff.mpr hy,
replace H := linear_ordered_structure.le_of_le_mul_right hy H,
rwa h at H, },
{ apply actual_ordered_comm_monoid.mul_le_mul_right',
replace hy := v'.ne_zero_iff.mpr hy,
replace H := linear_ordered_structure.le_of_le_mul_right hy H,
rwa h, },
end
/-- A valuation is trivial if it maps everything to 0 or 1.-/
def is_trivial [ring R] (v : valuation R Γ₀) : Prop :=
∀ r:R, v r = 0 ∨ v r = 1
section trivial -- the trivial valuation
variable [comm_ring R]
variables (I : ideal R) [prime : I.is_prime]
/-- The trivial Γ₀-valued valuation associated to a prime ideal S of R. -/
def trivial : valuation R (with_zero punit) :=
{ to_fun := λ x, if x ∈ I then 0 else 1,
map_zero' := if_pos I.zero_mem,
map_one' := if_neg (assume h, prime.1 (I.eq_top_iff_one.2 h)),
map_mul' := λ x y,
if hx : x ∈ I then by rw [if_pos hx, zero_mul, if_pos (I.mul_mem_right hx)]
else if hy : y ∈ I then by rw [if_pos hy, mul_zero, if_pos (I.mul_mem_left hy)]
else have hxy : x * y ∉ I,
by { assume hxy, replace hxy := prime.mem_or_mem hxy, tauto },
by rw [if_neg hx, if_neg hy, if_neg hxy, mul_one],
map_add' := λ x y, begin
split_ifs with hxy hx hy _ hx hy;
try {simp}; try {exact le_refl _},
{ exact hxy (I.add_mem hx hy) }
end }
lemma trivial_is_trivial (I : ideal R) [hI : I.is_prime] :
(trivial I).is_trivial :=
begin
intro r, generalize : (trivial I) r = x,
cases x; [left, {right, cases x}]; refl
end
lemma is_trivial_iff_val_le_one {K : Type*} [division_ring K] {v : valuation K Γ₀} :
v.is_trivial ↔ ∀ x:K, v x ≤ 1 :=
begin
split; intros h x,
{ cases h x; simp *, },
{ contrapose! h, cases h with h₁ h₂,
by_cases hx : v x ≤ 1,
{ refine ⟨x⁻¹, _⟩,
rw [v.map_inv', ← linear_ordered_structure.inv_lt_inv _ _,
inv_inv'', inv_one'],
{ exact lt_of_le_of_ne hx h₂ },
{ exact inv_ne_zero' _ h₁ },
{ exact one_ne_zero },
{ rwa v.ne_zero_iff at h₁, } },
{ push_neg at hx, exact ⟨_, hx⟩ } }
end
end trivial -- end of section
section supp
variables [comm_ring R]
variables (v : valuation R Γ₀)
/-- The support of a valuation v : R → Γ₀ is the ideal of R where v vanishes. -/
def supp : ideal R :=
{ carrier := {x | v x = 0},
zero := map_zero v,
add := λ x y hx hy, le_zero_iff.mp $
calc v (x + y) ≤ max (v x) (v y) : v.map_add x y
... ≤ 0 : max_le (le_zero_iff.mpr hx) (le_zero_iff.mpr hy),
smul := λ c x hx, calc v (c * x)
= v c * v x : map_mul v c x
... = v c * 0 : congr_arg _ hx
... = 0 : mul_zero _ }
@[simp] lemma mem_supp_iff (x : R) : x ∈ supp v ↔ v x = 0 := iff.rfl
-- @[simp] lemma mem_supp_iff' (x : R) : x ∈ (supp v : set R) ↔ v x = 0 := iff.rfl
/-- The support of a valuation is a prime ideal. -/
instance : ideal.is_prime (supp v) :=
⟨λ (h : v.supp = ⊤), one_ne_zero $ show (1 : Γ₀) = 0,
from calc 1 = v 1 : v.map_one.symm
... = 0 : show (1:R) ∈ supp v, by rw h; trivial,
λ x y hxy, begin
show v x = 0 ∨ v y = 0,
change v (x * y) = 0 at hxy,
rw [v.map_mul x y] at hxy,
exact group_with_zero.mul_eq_zero _ _ hxy
end
/-- v(a)=v(a+s) if s ∈ supp(v). -/
lemma val_add_supp (a s : R) (h : s ∈ supp v) : v (a + s) = v a :=
begin
have aux : ∀ a s, v s = 0 → v (a + s) ≤ v a,
{ intros a' s' h', refine le_trans (v.map_add a' s') (max_le (le_refl _) _), simp [h'], },
apply le_antisymm (aux a s h),
calc v a = v (a + s + -s) : by simp
... ≤ v (a + s) : aux (a + s) (-s) (by rwa ←ideal.neg_mem_iff at h)
end
/-- If `hJ : J ⊆ supp v` then `on_quot_val hJ` is the induced function on R/J as a function.
Note: it's just the function; the valuation is `on_quot hJ`. -/
definition on_quot_val {J : ideal R} (hJ : J ≤ supp v) :
J.quotient → Γ₀ :=
λ q, quotient.lift_on' q v $ λ a b h,
calc v a = v (b + (a - b)) : by simp
... = v b : v.val_add_supp b (a - b) (hJ h)
/-- The extension of valuation v on R to valuation on R/J if J ⊆ supp v -/
definition on_quot {J : ideal R} (hJ : J ≤ supp v) :
valuation J.quotient Γ₀ :=
{ to_fun := v.on_quot_val hJ,
map_zero' := v.map_zero,
map_one' := v.map_one,
map_mul' := λ xbar ybar, quotient.ind₂' v.map_mul xbar ybar,
map_add' := λ xbar ybar, quotient.ind₂' v.map_add xbar ybar }
@[simp] lemma on_quot_comap_eq {J : ideal R} (hJ : J ≤ supp v) :
(v.on_quot hJ).comap (ideal.quotient.mk J) = v :=
ext $ λ r,
begin
refine @quotient.lift_on_beta _ _ (J.quotient_rel) v (λ a b h, _) _,
calc v a = v (b + (a - b)) : by simp
... = v b : v.val_add_supp b (a - b) (hJ h)
end
end supp -- end of section
section supp_comm
variable [comm_ring R]
variables (v : valuation R Γ₀)
lemma comap_supp {S : Type u₁} [comm_ring S] (f : S → R) [is_ring_hom f] :
supp (v.comap f) = ideal.comap f v.supp :=
ideal.ext $ λ x,
begin
rw [mem_supp_iff, ideal.mem_comap, mem_supp_iff],
refl,
end
lemma self_le_supp_comap (J : ideal R) (v : valuation (quotient J) Γ₀) :
J ≤ (v.comap (ideal.quotient.mk J)).supp :=
by rw [comap_supp, ← ideal.map_le_iff_le_comap]; simp
@[simp] lemma comap_on_quot_eq (J : ideal R) (v : valuation J.quotient Γ₀) :
(v.comap (ideal.quotient.mk J)).on_quot (v.self_le_supp_comap J) = v :=
ext $ by { rintro ⟨x⟩, refl }
/-- The quotient valuation on R/J has support supp(v)/J if J ⊆ supp v. -/
lemma supp_quot {J : ideal R} (hJ : J ≤ supp v) :
supp (v.on_quot hJ) = (supp v).map (ideal.quotient.mk J) :=
begin
apply le_antisymm,
{ rintro ⟨x⟩ hx,
apply ideal.subset_span,
exact ⟨x, hx, rfl⟩ },
{ rw ideal.map_le_iff_le_comap,
intros x hx, exact hx }
end
lemma supp_quot_supp : supp (v.on_quot (le_refl _)) = 0 :=
by rw supp_quot; exact ideal.map_quotient_self _
lemma quot_preorder_comap {J : ideal R} (hJ : J ≤ supp v) :
preorder.lift (ideal.quotient.mk J) (v.on_quot hJ).to_preorder = v.to_preorder :=
preorder.ext $ λ x y, iff.rfl
end supp_comm -- end of section
end valuation