Datasets:
Tasks:
Text Generation
Modalities:
Text
Sub-tasks:
language-modeling
Languages:
English
Size:
100K - 1M
License:
import algebra.group_power | |
import ring_theory.ideal_operations | |
import ring_theory.subring | |
import for_mathlib.rings | |
import for_mathlib.equiv | |
import valuation.linear_ordered_comm_group_with_zero | |
/-! | |
# The basics of valuation theory. | |
The basic theory of valuations (non-archimedean norms) on a commutative ring, | |
following T. Wedhorn's unpublished notes “Adic Spaces” ([Wedhorn]) | |
The definition of a valuation we use here is Definition 1.22 of [Wedhorn]. `valuation R Γ₀` | |
is the type of valuations R → Γ₀, with a coercion to the underlying | |
function. If v is a valuation from R to Γ₀ then the induced group | |
homomorphism units(R) → Γ₀ is called `unit_map v`. | |
The equivalence "relation" `is_equiv v₁ v₂ : Prop` defined in [Wedhorn; 1.27] is not strictly | |
speaking a relation, because v₁ : valuation R Γ₁ and v₂ : valuation R Γ₂ might | |
not have the same type. This corresponds in ZFC to the set-theoretic difficulty | |
that the class of all valuations (as Γ₀ varies) on a ring R is not a set. | |
The "relation" is however reflexive, symmetric and transitive in the obvious | |
sense. Note that we use 1.27(iii) as the definition of equivalence. | |
The trivial valuation associated to a prime ideal P of R is `trivial P : valuation R Γ₀`. | |
The support of a valuation v : valuation R Γ₀ is `supp v`. If J is an ideal of R | |
with `h : J ⊆ supp v` then the induced valuation | |
on R / J = `ideal.quotient J` is `on_quot v h`. | |
-/ | |
local attribute [instance] classical.prop_decidable | |
noncomputable theory | |
local attribute [instance, priority 0] classical.DLO | |
open function ideal linear_ordered_structure | |
universes u u₀ u₁ u₂ -- v is used for valuations | |
variables {R : Type u₀} -- This will be a ring, assumed commutative in some sections | |
variables {Γ₀ : Type u} [linear_ordered_comm_group_with_zero Γ₀] | |
variables {Γ'₀ : Type u₁} [linear_ordered_comm_group_with_zero Γ'₀] | |
variables {Γ''₀ : Type u₂} [linear_ordered_comm_group_with_zero Γ''₀] | |
set_option old_structure_cmd true | |
section | |
variables (R) (Γ₀) [ring R] | |
/-- The type of Γ₀-valued valuations on R. -/ | |
structure valuation extends R →* Γ₀ := | |
(map_zero' : to_fun 0 = 0) | |
(map_add' : ∀ x y, to_fun (x + y) ≤ max (to_fun x) (to_fun y)) | |
end | |
namespace valuation | |
section basic | |
variables (R) (Γ₀) [ring R] | |
/-- A valuation is coerced to the underlying function R → Γ₀. -/ | |
instance : has_coe_to_fun (valuation R Γ₀) := { F := λ _, R → Γ₀, coe := valuation.to_fun } | |
/-- A valuation is coerced to a monoid morphism R → Γ₀. -/ | |
instance : has_coe (valuation R Γ₀) (R →* Γ₀) := ⟨valuation.to_monoid_hom⟩ | |
variables {R} {Γ₀} (v : valuation R Γ₀) {x y z : R} | |
@[squash_cast, simp] lemma coe_coe : ((v : R →* Γ₀) : R → Γ₀) = v := rfl | |
@[simp] lemma map_zero : v 0 = 0 := v.map_zero' | |
@[simp] lemma map_one : v 1 = 1 := v.map_one' | |
@[simp] lemma map_mul : ∀ x y, v (x * y) = v x * v y := v.map_mul' | |
@[simp] lemma map_add : ∀ x y, v (x + y) ≤ max (v x) (v y) := v.map_add' | |
@[simp] lemma map_pow : ∀ x (n:ℕ), v (x^n) = (v x)^n := | |
@is_monoid_hom.map_pow _ _ _ _ v (monoid_hom.is_monoid_hom v.to_monoid_hom) | |
@[ext] lemma ext {v₁ v₂ : valuation R Γ₀} (h : ∀ r, v₁ r = v₂ r) : v₁ = v₂ := | |
by { cases v₁, cases v₂, congr, funext r, exact h r } | |
lemma ext_iff {v₁ v₂ : valuation R Γ₀} : v₁ = v₂ ↔ ∀ r, v₁ r = v₂ r := | |
⟨λ h r, congr_arg _ h, ext⟩ | |
-- The following definition is not an instance, because we have more than one v on a given R. | |
/-- A valuation gives a preorder on the underlying ring. -/ | |
def to_preorder : preorder R := preorder.lift v (by apply_instance) | |
/-- If v is a valuation on a division ring then v(x) = 0 iff x = 0. -/ | |
lemma zero_iff {K : Type u₀} [division_ring K] | |
(v : valuation K Γ₀) {x : K} : v x = 0 ↔ x = 0 := | |
begin | |
split ; intro h, | |
{ contrapose! h, | |
exact group_with_zero.unit_ne_zero (units.map (v : K →* Γ₀) $ units.mk0 _ h) }, | |
{ exact h.symm ▸ v.map_zero }, | |
end | |
lemma ne_zero_iff {K : Type u₀} [division_ring K] | |
(v : valuation K Γ₀) {x : K} : v x ≠ 0 ↔ x ≠ 0 := | |
not_iff_not_of_iff v.zero_iff | |
@[simp] lemma map_inv' {K : Type u₀} [division_ring K] | |
(v : valuation K Γ₀) {x : K} (h : x ≠ 0) : v x⁻¹ = (v x)⁻¹ := | |
begin | |
apply eq_inv_of_mul_right_eq_one', | |
rw [← v.map_mul, mul_inv_cancel h, v.map_one] | |
end | |
@[simp] lemma map_inv {K : Type u₀} [discrete_field K] | |
(v : valuation K Γ₀) {x : K} : v x⁻¹ = (v x)⁻¹ := | |
begin | |
by_cases h : x = 0, | |
{ rw [h, inv_zero, map_zero, inv_zero'] }, | |
{ exact v.map_inv' h } | |
end | |
lemma map_units_inv (x : units R) : v (x⁻¹ : units R) = (v x)⁻¹ := | |
eq_inv_of_mul_right_eq_one' _ _ $ by rw [← v.map_mul, units.mul_inv, v.map_one] | |
@[simp] theorem unit_map_eq (u : units R) : | |
(units.map (v : R →* Γ₀) u : Γ₀) = v u := rfl | |
@[simp] theorem map_neg_one : v (-1) = 1 := | |
begin | |
show (units.map (v : R →* Γ₀) (-1 : units R) : Γ₀) = (1 : units Γ₀), | |
rw ← units.ext_iff, | |
apply linear_ordered_structure.eq_one_of_pow_eq_one (nat.succ_ne_zero _) (_ : _ ^ 2 = _), | |
rw [pow_two, ← monoid_hom.map_mul, units.ext_iff], | |
show v ((-1) * (-1)) = 1, | |
rw [neg_one_mul, neg_neg, v.map_one] | |
end | |
@[simp] lemma map_neg (x : R) : v (-x) = v x := | |
calc v (-x) = v (-1 * x) : by simp | |
... = v (-1) * v x : map_mul _ _ _ | |
... = v x : by simp | |
lemma map_sub_swap (x y : R) : v (x - y) = v (y - x) := | |
calc v (x - y) = v (-(y - x)) : by rw show x - y = -(y-x), by abel | |
... = _ : map_neg _ _ | |
lemma map_sub_le_max (x y : R) : v (x - y) ≤ max (v x) (v y) := | |
calc v (x-y) = v (x + -y) : by simp | |
... ≤ max (v x) (v $ -y) : v.map_add _ _ | |
... = max (v x) (v y) : by rw map_neg | |
lemma map_add_of_distinct_val (h : v x ≠ v y) : v (x + y) = max (v x) (v y) := | |
begin | |
suffices : ¬v (x + y) < max (v x) (v y), | |
from or_iff_not_imp_right.1 (le_iff_eq_or_lt.1 (v.map_add x y)) this, | |
intro h', | |
wlog vyx : v y < v x using x y, | |
{ apply lt_or_gt_of_ne h.symm }, | |
{ rw max_eq_left_of_lt vyx at h', | |
apply lt_irrefl (v x), | |
calc v x = v ((x+y) - y) : by simp | |
... ≤ max (v $ x + y) (v y) : map_sub_le_max _ _ _ | |
... < v x : max_lt h' vyx }, | |
{ apply this h.symm, | |
rwa [add_comm, max_comm] at h' } | |
end | |
lemma map_eq_of_sub_lt (h : v (y - x) < v x) : v y = v x := | |
begin | |
have := valuation.map_add_of_distinct_val v (ne_of_gt h).symm, | |
rw max_eq_right (le_of_lt h) at this, | |
simpa using this | |
end | |
/-- A ring homomorphism S → R induces a map valuation R Γ₀ → valuation S Γ₀ -/ | |
def comap {S : Type u₁} [ring S] (f : S → R) [is_ring_hom f] (v : valuation R Γ₀) : | |
valuation S Γ₀ := | |
by refine_struct { to_fun := v ∘ f, .. }; intros; | |
simp [is_ring_hom.map_zero f, is_ring_hom.map_one f, is_ring_hom.map_mul f, is_ring_hom.map_add f] | |
@[simp] lemma comap_id : v.comap (id : R → R) = v := ext $ λ r, rfl | |
lemma comap_comp {S₁ : Type u₁} [ring S₁] {S₂ : Type u₂} [ring S₂] | |
(f : S₁ → S₂) [is_ring_hom f] (g : S₂ → R) [is_ring_hom g] : | |
v.comap (g ∘ f) = (v.comap g).comap f := | |
ext $ λ r, rfl | |
/-- A ≤-preserving group homomorphism Γ₀ → Γ'₀ induces a map valuation R Γ₀ → valuation R Γ'₀. -/ | |
def map (f : Γ₀ →* Γ'₀) (h₀ : f 0 = 0) (hf : monotone f) (v : valuation R Γ₀) : valuation R Γ'₀ := | |
{ to_fun := f ∘ v, | |
map_zero' := show f (v 0) = 0, by rw [v.map_zero, h₀], | |
map_add' := λ r s, | |
calc f (v (r + s)) ≤ f (max (v r) (v s)) : hf (v.map_add r s) | |
... = max (f (v r)) (f (v s)) : hf.map_max, | |
.. monoid_hom.comp f (v : R →* Γ₀) } | |
/-- Two valuations on R are defined to be equivalent if they induce the same preorder on R. -/ | |
def is_equiv (v₁ : valuation R Γ₀) (v₂ : valuation R Γ'₀) : Prop := | |
∀ r s, v₁ r ≤ v₁ s ↔ v₂ r ≤ v₂ s | |
end basic -- end of section | |
namespace is_equiv | |
variables [ring R] | |
variables {v : valuation R Γ₀} | |
variables {v₁ : valuation R Γ₀} {v₂ : valuation R Γ'₀} {v₃ : valuation R Γ''₀} | |
@[refl] lemma refl : v.is_equiv v := | |
λ _ _, iff.refl _ | |
@[symm] lemma symm (h : v₁.is_equiv v₂) : v₂.is_equiv v₁ := | |
λ _ _, iff.symm (h _ _) | |
@[trans] lemma trans (h₁₂ : v₁.is_equiv v₂) (h₂₃ : v₂.is_equiv v₃) : v₁.is_equiv v₃ := | |
λ _ _, iff.trans (h₁₂ _ _) (h₂₃ _ _) | |
lemma of_eq {v' : valuation R Γ₀} (h : v = v') : v.is_equiv v' := | |
by subst h; refl | |
lemma map {v' : valuation R Γ₀} (f : Γ₀ →* Γ'₀) (h₀ : f 0 = 0) (hf : monotone f) (inf : injective f) | |
(h : v.is_equiv v') : | |
(v.map f h₀ hf).is_equiv (v'.map f h₀ hf) := | |
λ r s, | |
calc f (v r) ≤ f (v s) ↔ v r ≤ v s : by rw linear_order_le_iff_of_monotone_injective inf hf | |
... ↔ v' r ≤ v' s : h r s | |
... ↔ f (v' r) ≤ f (v' s) : by rw linear_order_le_iff_of_monotone_injective inf hf | |
/-- `comap` preserves equivalence. -/ | |
lemma comap {S : Type u₂} [ring S] (f : S → R) [is_ring_hom f] (h : v₁.is_equiv v₂) : | |
(v₁.comap f).is_equiv (v₂.comap f) := | |
λ r s, h (f r) (f s) | |
lemma val_eq (h : v₁.is_equiv v₂) {r s : R} : | |
v₁ r = v₁ s ↔ v₂ r = v₂ s := | |
⟨λ H, le_antisymm ((h _ _).1 (le_of_eq H)) ((h _ _).1 (le_of_eq H.symm)), | |
λ H, le_antisymm ((h.symm _ _).1 (le_of_eq H)) ((h.symm _ _).1 (le_of_eq H.symm)) ⟩ | |
lemma ne_zero (h : v₁.is_equiv v₂) {r : R} : | |
v₁ r ≠ 0 ↔ v₂ r ≠ 0 := | |
begin | |
have : v₁ r ≠ v₁ 0 ↔ v₂ r ≠ v₂ 0 := not_iff_not_of_iff h.val_eq, | |
rwa [v₁.map_zero, v₂.map_zero] at this, | |
end | |
end is_equiv -- end of namespace | |
lemma is_equiv_of_map_strict_mono [ring R] {v : valuation R Γ₀} | |
(f : Γ₀ →* Γ'₀) (h₀ : f 0 = 0) (H : strict_mono f) : | |
is_equiv (v.map f h₀ (H.monotone)) v := | |
λ x y, ⟨H.le_iff_le.mp, λ h, H.monotone h⟩ | |
lemma is_equiv_of_val_le_one {K : Type*} [division_ring K] | |
(v : valuation K Γ₀) (v' : valuation K Γ'₀) (h : ∀ {x:K}, v x ≤ 1 ↔ v' x ≤ 1) : | |
v.is_equiv v' := | |
begin | |
intros x y, | |
by_cases hy : y = 0, { simp [hy, zero_iff], }, | |
rw show y = 1 * y, by rw one_mul, | |
rw show x = (x * y⁻¹) * y, { rw [mul_assoc, inv_mul_cancel hy, mul_one], }, | |
iterate 2 {rw [v.map_mul _ y, v'.map_mul _ y]}, | |
rw [v.map_one, v'.map_one], | |
split; intro H, | |
{ apply actual_ordered_comm_monoid.mul_le_mul_right', | |
replace hy := v.ne_zero_iff.mpr hy, | |
replace H := linear_ordered_structure.le_of_le_mul_right hy H, | |
rwa h at H, }, | |
{ apply actual_ordered_comm_monoid.mul_le_mul_right', | |
replace hy := v'.ne_zero_iff.mpr hy, | |
replace H := linear_ordered_structure.le_of_le_mul_right hy H, | |
rwa h, }, | |
end | |
/-- A valuation is trivial if it maps everything to 0 or 1.-/ | |
def is_trivial [ring R] (v : valuation R Γ₀) : Prop := | |
∀ r:R, v r = 0 ∨ v r = 1 | |
section trivial -- the trivial valuation | |
variable [comm_ring R] | |
variables (I : ideal R) [prime : I.is_prime] | |
/-- The trivial Γ₀-valued valuation associated to a prime ideal S of R. -/ | |
def trivial : valuation R (with_zero punit) := | |
{ to_fun := λ x, if x ∈ I then 0 else 1, | |
map_zero' := if_pos I.zero_mem, | |
map_one' := if_neg (assume h, prime.1 (I.eq_top_iff_one.2 h)), | |
map_mul' := λ x y, | |
if hx : x ∈ I then by rw [if_pos hx, zero_mul, if_pos (I.mul_mem_right hx)] | |
else if hy : y ∈ I then by rw [if_pos hy, mul_zero, if_pos (I.mul_mem_left hy)] | |
else have hxy : x * y ∉ I, | |
by { assume hxy, replace hxy := prime.mem_or_mem hxy, tauto }, | |
by rw [if_neg hx, if_neg hy, if_neg hxy, mul_one], | |
map_add' := λ x y, begin | |
split_ifs with hxy hx hy _ hx hy; | |
try {simp}; try {exact le_refl _}, | |
{ exact hxy (I.add_mem hx hy) } | |
end } | |
lemma trivial_is_trivial (I : ideal R) [hI : I.is_prime] : | |
(trivial I).is_trivial := | |
begin | |
intro r, generalize : (trivial I) r = x, | |
cases x; [left, {right, cases x}]; refl | |
end | |
lemma is_trivial_iff_val_le_one {K : Type*} [division_ring K] {v : valuation K Γ₀} : | |
v.is_trivial ↔ ∀ x:K, v x ≤ 1 := | |
begin | |
split; intros h x, | |
{ cases h x; simp *, }, | |
{ contrapose! h, cases h with h₁ h₂, | |
by_cases hx : v x ≤ 1, | |
{ refine ⟨x⁻¹, _⟩, | |
rw [v.map_inv', ← linear_ordered_structure.inv_lt_inv _ _, | |
inv_inv'', inv_one'], | |
{ exact lt_of_le_of_ne hx h₂ }, | |
{ exact inv_ne_zero' _ h₁ }, | |
{ exact one_ne_zero }, | |
{ rwa v.ne_zero_iff at h₁, } }, | |
{ push_neg at hx, exact ⟨_, hx⟩ } } | |
end | |
end trivial -- end of section | |
section supp | |
variables [comm_ring R] | |
variables (v : valuation R Γ₀) | |
/-- The support of a valuation v : R → Γ₀ is the ideal of R where v vanishes. -/ | |
def supp : ideal R := | |
{ carrier := {x | v x = 0}, | |
zero := map_zero v, | |
add := λ x y hx hy, le_zero_iff.mp $ | |
calc v (x + y) ≤ max (v x) (v y) : v.map_add x y | |
... ≤ 0 : max_le (le_zero_iff.mpr hx) (le_zero_iff.mpr hy), | |
smul := λ c x hx, calc v (c * x) | |
= v c * v x : map_mul v c x | |
... = v c * 0 : congr_arg _ hx | |
... = 0 : mul_zero _ } | |
@[simp] lemma mem_supp_iff (x : R) : x ∈ supp v ↔ v x = 0 := iff.rfl | |
-- @[simp] lemma mem_supp_iff' (x : R) : x ∈ (supp v : set R) ↔ v x = 0 := iff.rfl | |
/-- The support of a valuation is a prime ideal. -/ | |
instance : ideal.is_prime (supp v) := | |
⟨λ (h : v.supp = ⊤), one_ne_zero $ show (1 : Γ₀) = 0, | |
from calc 1 = v 1 : v.map_one.symm | |
... = 0 : show (1:R) ∈ supp v, by rw h; trivial, | |
λ x y hxy, begin | |
show v x = 0 ∨ v y = 0, | |
change v (x * y) = 0 at hxy, | |
rw [v.map_mul x y] at hxy, | |
exact group_with_zero.mul_eq_zero _ _ hxy | |
end⟩ | |
/-- v(a)=v(a+s) if s ∈ supp(v). -/ | |
lemma val_add_supp (a s : R) (h : s ∈ supp v) : v (a + s) = v a := | |
begin | |
have aux : ∀ a s, v s = 0 → v (a + s) ≤ v a, | |
{ intros a' s' h', refine le_trans (v.map_add a' s') (max_le (le_refl _) _), simp [h'], }, | |
apply le_antisymm (aux a s h), | |
calc v a = v (a + s + -s) : by simp | |
... ≤ v (a + s) : aux (a + s) (-s) (by rwa ←ideal.neg_mem_iff at h) | |
end | |
/-- If `hJ : J ⊆ supp v` then `on_quot_val hJ` is the induced function on R/J as a function. | |
Note: it's just the function; the valuation is `on_quot hJ`. -/ | |
definition on_quot_val {J : ideal R} (hJ : J ≤ supp v) : | |
J.quotient → Γ₀ := | |
λ q, quotient.lift_on' q v $ λ a b h, | |
calc v a = v (b + (a - b)) : by simp | |
... = v b : v.val_add_supp b (a - b) (hJ h) | |
/-- The extension of valuation v on R to valuation on R/J if J ⊆ supp v -/ | |
definition on_quot {J : ideal R} (hJ : J ≤ supp v) : | |
valuation J.quotient Γ₀ := | |
{ to_fun := v.on_quot_val hJ, | |
map_zero' := v.map_zero, | |
map_one' := v.map_one, | |
map_mul' := λ xbar ybar, quotient.ind₂' v.map_mul xbar ybar, | |
map_add' := λ xbar ybar, quotient.ind₂' v.map_add xbar ybar } | |
@[simp] lemma on_quot_comap_eq {J : ideal R} (hJ : J ≤ supp v) : | |
(v.on_quot hJ).comap (ideal.quotient.mk J) = v := | |
ext $ λ r, | |
begin | |
refine @quotient.lift_on_beta _ _ (J.quotient_rel) v (λ a b h, _) _, | |
calc v a = v (b + (a - b)) : by simp | |
... = v b : v.val_add_supp b (a - b) (hJ h) | |
end | |
end supp -- end of section | |
section supp_comm | |
variable [comm_ring R] | |
variables (v : valuation R Γ₀) | |
lemma comap_supp {S : Type u₁} [comm_ring S] (f : S → R) [is_ring_hom f] : | |
supp (v.comap f) = ideal.comap f v.supp := | |
ideal.ext $ λ x, | |
begin | |
rw [mem_supp_iff, ideal.mem_comap, mem_supp_iff], | |
refl, | |
end | |
lemma self_le_supp_comap (J : ideal R) (v : valuation (quotient J) Γ₀) : | |
J ≤ (v.comap (ideal.quotient.mk J)).supp := | |
by rw [comap_supp, ← ideal.map_le_iff_le_comap]; simp | |
@[simp] lemma comap_on_quot_eq (J : ideal R) (v : valuation J.quotient Γ₀) : | |
(v.comap (ideal.quotient.mk J)).on_quot (v.self_le_supp_comap J) = v := | |
ext $ by { rintro ⟨x⟩, refl } | |
/-- The quotient valuation on R/J has support supp(v)/J if J ⊆ supp v. -/ | |
lemma supp_quot {J : ideal R} (hJ : J ≤ supp v) : | |
supp (v.on_quot hJ) = (supp v).map (ideal.quotient.mk J) := | |
begin | |
apply le_antisymm, | |
{ rintro ⟨x⟩ hx, | |
apply ideal.subset_span, | |
exact ⟨x, hx, rfl⟩ }, | |
{ rw ideal.map_le_iff_le_comap, | |
intros x hx, exact hx } | |
end | |
lemma supp_quot_supp : supp (v.on_quot (le_refl _)) = 0 := | |
by rw supp_quot; exact ideal.map_quotient_self _ | |
lemma quot_preorder_comap {J : ideal R} (hJ : J ≤ supp v) : | |
preorder.lift (ideal.quotient.mk J) (v.on_quot hJ).to_preorder = v.to_preorder := | |
preorder.ext $ λ x y, iff.rfl | |
end supp_comm -- end of section | |
end valuation | |