Datasets:
Tasks:
Text Generation
Modalities:
Text
Sub-tasks:
language-modeling
Languages:
English
Size:
100K - 1M
License:
import data.padics | |
import ring_theory.noetherian | |
import for_mathlib.group_with_zero | |
import for_mathlib.ideal_operations | |
noncomputable theory | |
open_locale classical | |
variables {p : ℕ} [nat.prime p] | |
local attribute [-simp] padic.cast_eq_of_rat_of_nat | |
namespace padic_seq | |
def valuation (f : padic_seq p) : ℤ := | |
if hf : f ≈ 0 then 0 else padic_val_rat p (f (stationary_point hf)) | |
lemma norm_eq_pow_val {f : padic_seq p} (hf : ¬ f ≈ 0) : | |
f.norm = p^(-f.valuation : ℤ) := | |
begin | |
delta norm valuation, | |
rw [dif_neg hf, dif_neg hf], | |
delta padic_norm, | |
rw if_neg, | |
assume H, apply cau_seq.not_lim_zero_of_not_congr_zero hf, | |
intros ε hε, | |
use (stationary_point hf), | |
intros n hn, | |
rw stationary_point_spec hf (le_refl _) hn, | |
simpa [H] using hε, | |
end | |
lemma val_eq_iff_norm_eq {f g : padic_seq p} (hf : ¬ f ≈ 0) (hg : ¬ g ≈ 0) : | |
f.valuation = g.valuation ↔ f.norm = g.norm := | |
begin | |
rw [norm_eq_pow_val hf, norm_eq_pow_val hg, ← neg_inj', fpow_inj], | |
{ exact_mod_cast nat.prime.pos ‹_› }, | |
{ exact_mod_cast nat.prime.ne_one ‹_› }, | |
end | |
end padic_seq | |
@[simp] lemma real.supr_empty {α : Type*} (f : α → ℝ) : | |
(⨆ (a ∈ (∅:set α)), f a) = 0 := | |
begin | |
suffices : lattice.Sup {x : ℝ | ∃ (y : α), 0 = x} = 0, | |
by simpa [lattice.supr, set.range, real.Sup_empty], | |
by_cases hα : nonempty α, | |
{ rcases hα with a, | |
apply le_antisymm, | |
{ apply (real.Sup_le _ _ _).mpr, | |
{ rintros r ⟨_, rfl⟩, refl }, | |
{ use [0, ⟨a, rfl⟩], }, | |
{ use 0, rintros r ⟨_, rfl⟩, refl } }, | |
{ apply real.le_Sup, | |
{ use 0, rintros r ⟨_, rfl⟩, refl }, | |
{ use ⟨a, rfl⟩ } } }, | |
{ convert real.Sup_empty, | |
rw set.eq_empty_iff_forall_not_mem, | |
rintros r ⟨a, rfl⟩, exact hα ⟨a⟩ } | |
end | |
namespace padic | |
-- generalize to nonarchimedean fields | |
lemma norm_sum {α : Type*} (s : finset α) (f : α → ℚ_[p]) : | |
∥s.sum f∥ ≤ s.fold max 0 (λ a, ∥f a∥) := | |
begin | |
apply finset.induction_on s, { simp, }, | |
clear s, | |
intros a s ha IH, | |
rw [finset.sum_insert ha, finset.fold_insert ha], | |
refine le_trans (padic_norm_e.nonarchimedean _ _) (max_le _ _), | |
{ apply le_max_left, }, | |
{ refine le_trans IH (le_max_right _ _), } | |
end | |
. | |
-- -- generalize to nonarchimedean fields | |
-- lemma norm_sum {α : Type*} (s : finset α) (f : α → ℚ_[p]) : | |
-- ∥s.sum f∥ ≤ ⨆ a∈s, ∥f a∥ := | |
-- begin | |
-- apply finset.induction_on s, | |
-- { erw real.supr_empty, simp }, | |
-- clear s, | |
-- intros a s ha IH, | |
-- rw [finset.sum_insert ha], | |
-- have := @lattice.supr_insert, | |
-- refine le_trans (padic_norm_e.nonarchimedean _ _) (max_le _ _), | |
-- { apply le_max_left, }, | |
-- { refine le_trans IH (le_max_right _ _), } | |
-- end | |
@[simp] lemma norm_p : ∥(p : ℚ_[p])∥ = p⁻¹ := | |
begin | |
have p₀ : p ≠ 0 := nat.prime.ne_zero ‹_›, | |
have p₁ : p ≠ 1 := nat.prime.ne_one ‹_›, | |
simp [p₀, p₁, norm, padic_norm, padic_val_rat, fpow_neg, padic.cast_eq_of_rat_of_nat], | |
end | |
open normed_field | |
@[simp] lemma norm_p_pow (n : ℤ) : ∥(p^n : ℚ_[p])∥ = p^-n := | |
by rw [norm_fpow, norm_p, fpow_neg, one_div_eq_inv, | |
← fpow_inv, ← fpow_inv, ← fpow_mul, ← fpow_mul, mul_comm] | |
def valuation : ℚ_[p] → ℤ := | |
quotient.lift (@padic_seq.valuation p _) (λ f g h, | |
begin | |
by_cases hf : f ≈ 0, | |
{ have hg : g ≈ 0, from setoid.trans (setoid.symm h) hf, | |
simp [hf, hg, padic_seq.valuation] }, | |
{ have hg : ¬ g ≈ 0, from (λ hg, hf (setoid.trans h hg)), | |
rw padic_seq.val_eq_iff_norm_eq hf hg, | |
exact padic_seq.norm_equiv h }, | |
end) | |
@[simp] lemma valuation_zero : valuation (0 : ℚ_[p]) = 0 := | |
dif_pos ((const_equiv p).2 rfl) | |
@[simp] lemma valuation_one : valuation (1 : ℚ_[p]) = 0 := | |
begin | |
change dite (cau_seq.const (padic_norm p) 1 ≈ _) _ _ = _, | |
have h : ¬ cau_seq.const (padic_norm p) 1 ≈ 0, | |
{ assume H, erw const_equiv p at H, exact one_ne_zero H }, | |
rw dif_neg h, | |
simp, | |
end | |
lemma norm_eq_pow_val {x : ℚ_[p]} (hx : x ≠ 0) : | |
∥x∥ = p^(-x.valuation) := | |
begin | |
revert hx, apply quotient.induction_on' x, clear x, | |
intros f hf, | |
change (padic_seq.norm _ : ℝ) = (p : ℝ) ^ -padic_seq.valuation _, | |
rw padic_seq.norm_eq_pow_val, | |
change ↑((p : ℚ) ^ -padic_seq.valuation f) = (p : ℝ) ^ -padic_seq.valuation f, | |
{ rw cast_fpow, | |
congr' 1, | |
norm_cast }, | |
{ apply cau_seq.not_lim_zero_of_not_congr_zero, | |
contrapose! hf, apply quotient.sound, simpa using hf, } | |
end | |
@[simp] lemma valuation_p : valuation (p : ℚ_[p]) = 1 := | |
begin | |
have h : (1 : ℝ) < p := by exact_mod_cast nat.prime.one_lt ‹_›, | |
apply neg_inj, | |
apply (fpow_strict_mono h).injective, | |
dsimp only, | |
rw ← norm_eq_pow_val, | |
{ simp [fpow_inv], }, | |
{ exact_mod_cast nat.prime.ne_zero ‹_›, } | |
end | |
end padic | |
namespace padic_int | |
open local_ring | |
lemma norm_mul (x y : ℤ_[p]) : ∥x*y∥ = ∥x∥*∥y∥ := | |
by exact_mod_cast normed_field.norm_mul (x:ℚ_[p]) (y:ℚ_[p]) | |
lemma norm_pow (x : ℤ_[p]) : ∀ (n : ℕ), ∥x^n∥ = ∥x∥^n | |
| 0 := by simp | |
| (n+1) := by simp | |
@[simp] lemma norm_p : ∥(p : ℤ_[p])∥ = p⁻¹ := | |
show ∥((p : ℤ_[p]) : ℚ_[p])∥ = p⁻¹, by exact_mod_cast padic.norm_p | |
@[simp] lemma norm_p_pow (n : ℕ) : ∥(p : ℤ_[p])^n∥ = p^(-n:ℤ) := | |
show ∥((p^n : ℤ_[p]) : ℚ_[p])∥ = p^(-n:ℤ), | |
by { convert padic.norm_p_pow n, simp, } | |
def valuation (x : ℤ_[p]) := padic.valuation (x : ℚ_[p]) | |
lemma norm_eq_pow_val {x : ℤ_[p]} (hx : x ≠ 0) : | |
∥x∥ = p^(-x.valuation) := | |
begin | |
convert padic.norm_eq_pow_val _, | |
contrapose! hx, | |
exact subtype.val_injective hx | |
end | |
@[simp] lemma valuation_zero : valuation (0 : ℤ_[p]) = 0 := | |
padic.valuation_zero | |
@[simp] lemma valuation_one : valuation (1 : ℤ_[p]) = 0 := | |
padic.valuation_one | |
@[simp] lemma valuation_p : valuation (p : ℤ_[p]) = 1 := | |
by { delta valuation, exact_mod_cast padic.valuation_p } | |
lemma valuation_nonneg (x : ℤ_[p]) : 0 ≤ x.valuation := | |
begin | |
by_cases hx : x = 0, | |
{ simp [hx] }, | |
have h : (1 : ℝ) < p := by exact_mod_cast nat.prime.one_lt ‹_›, | |
rw [← neg_nonpos, ← (fpow_strict_mono h).le_iff_le], | |
show ↑p ^ -valuation x ≤ ↑p ^ 0, | |
rw [← norm_eq_pow_val hx], | |
simpa using x.property, | |
end | |
lemma norm_le_pow_iff_norm_lt_pow_succ (x : ℤ_[p]) (n : ℤ) : | |
∥x∥ ≤ p^n ↔ ∥x∥ < p^(n+1) := | |
begin | |
by_cases hx : x = 0, | |
{ have hp_pos : (0:ℝ) < p := by exact_mod_cast nat.prime.pos ‹_›, | |
have hp_nonneg : (0:ℝ) ≤ p := le_of_lt hp_pos, | |
simp [hx, fpow_pos_of_pos hp_pos, fpow_nonneg_of_nonneg hp_nonneg], }, | |
have hp : (1:ℝ) < p, { exact_mod_cast nat.prime.one_lt ‹_› }, | |
rw [norm_eq_pow_val hx, (fpow_strict_mono hp).le_iff_le, | |
(fpow_strict_mono hp).lt_iff_lt, int.lt_add_one_iff], | |
end | |
def mk_units {u : ℚ_[p]} (h : ∥u∥ = 1) : units ℤ_[p] := | |
let z : ℤ_[p] := ⟨u, le_of_eq h⟩ in ⟨z, z.inv, mul_inv h, inv_mul h⟩ | |
@[simp] | |
lemma mk_units_eq {u : ℚ_[p]} (h : ∥u∥ = 1) : ((mk_units h : ℤ_[p]) : ℚ_[p]) = u := | |
rfl | |
lemma exists_repr {x : ℤ_[p]} (hx : x ≠ 0) : | |
∃ (u : units ℤ_[p]) (n : ℕ), x = u*p^n := | |
begin | |
let u : ℚ_[p] := x*p^(-x.valuation), | |
have repr : (x : ℚ_[p]) = u*p^x.valuation, | |
{ rw [mul_assoc, ← fpow_add], | |
{ simp }, | |
{ exact_mod_cast nat.prime.ne_zero ‹_› } }, | |
have hu : ∥u∥ = 1, | |
by simp [hx, nat.fpow_ne_zero_of_pos (by exact_mod_cast nat.prime.pos ‹_›) x.valuation, | |
norm_eq_pow_val, fpow_neg, inv_mul_cancel], | |
obtain ⟨n, hn⟩ : ∃ n : ℕ, valuation x = n, | |
from int.eq_coe_of_zero_le (valuation_nonneg x), | |
use [mk_units hu, n], | |
apply subtype.val_injective, | |
simp [hn, repr] | |
end | |
variable (p) | |
lemma span_p_is_maximal : | |
(ideal.span ({p} : set ℤ_[p])).is_maximal := | |
begin | |
rw ideal.is_maximal_iff, | |
split, | |
{ rw ideal.mem_span_singleton', push_neg, intro x, | |
assume eq_one, | |
suffices : ∥x * p∥ < 1, | |
{ apply ne_of_lt this, simp [eq_one] }, | |
have norm_p_lt_one : ∥(p:ℤ_[p])∥ < 1, | |
{ rw [norm_p], apply inv_lt_one, exact_mod_cast nat.prime.one_lt ‹_›, }, | |
simpa using mul_lt_mul' x.property norm_p_lt_one (norm_nonneg _) zero_lt_one, }, | |
{ intros I x hI hx_ne hx_mem, | |
rw ideal.mem_span_singleton' at hx_ne, push_neg at hx_ne, | |
have x_ne_zero : x ≠ 0, | |
{ specialize hx_ne 0, | |
contrapose! hx_ne with x_eq_zero, | |
simpa using x_eq_zero.symm, }, | |
rcases exists_repr x_ne_zero with ⟨u, n, rfl⟩, | |
cases n, | |
{ apply ideal.one_mem_of_unit_mem, simpa using hx_mem, }, | |
{ exfalso, | |
apply hx_ne (u*p^n), | |
simp [pow_succ', mul_assoc] }, } | |
end | |
lemma nonunits_ideal_eq_span : | |
nonunits_ideal ℤ_[p] = ideal.span {p} := | |
unique_of_exists_unique (max_ideal_unique ℤ_[p]) | |
(nonunits_ideal.is_maximal _) (span_p_is_maximal p) | |
lemma nonunits_ideal_fg : | |
(nonunits_ideal ℤ_[p]).fg := | |
by { rw nonunits_ideal_eq_span, exact ⟨{p}, rfl⟩, } | |
lemma power_nonunits_ideal_eq_norm_le_pow (n : ℕ) : | |
(↑((nonunits_ideal ℤ_[p])^n) : set ℤ_[p]) = {x | ∥x∥ ≤ p^-(n:ℤ) } := | |
begin | |
rw nonunits_ideal_eq_span p, | |
rw ideal.span_singleton_pow, | |
ext x, | |
erw [ideal.mem_span_singleton', set.mem_set_of_eq], | |
split, | |
{ rintros ⟨y, rfl⟩, | |
rw [padic_int.norm_mul, norm_p_pow], | |
apply le_of_mul_le_mul_right _ (_ : (p : ℝ)^n > 0), | |
rw [mul_assoc, fpow_neg_mul_fpow_self, mul_one], | |
{ exact y.property }, | |
{ exact_mod_cast ne_of_gt (nat.prime.pos ‹_›) }, | |
{ exact nat.fpow_pos_of_pos (by exact_mod_cast nat.prime.pos ‹_›) (n : ℤ) } }, | |
{ intro h, | |
by_cases hx : x = 0, { use 0, simp [hx] }, | |
{ rcases exists_repr hx with ⟨u, n', rfl⟩, | |
suffices : n ≤ n', | |
{ use [u * p^(n' - n)], | |
rw [mul_assoc, ← pow_add, nat.sub_add_cancel this], }, | |
have hp : (1:ℝ) < p, { exact_mod_cast nat.prime.one_lt ‹_› }, | |
rw [padic_int.norm_mul, is_unit_iff.1 (is_unit_unit u), one_mul, padic_int.norm_pow, | |
norm_p, ← fpow_of_nat, ← fpow_inv, ← fpow_mul, (fpow_strict_mono hp).le_iff_le, | |
neg_one_mul, neg_le_neg_iff] at h, | |
exact_mod_cast h, } }, | |
end | |
variable {p} | |
instance coe_is_ring_hom : is_ring_hom (coe : ℤ_[p] → ℚ_[p]) := | |
{ map_one := rfl, | |
map_mul := coe_mul, | |
map_add := coe_add } | |
private lemma aux (p : ℚ) (n : ℤ) (hp : 1 ≤ p) (h : p ^ n < p) : p ^ n ≤ 1 := | |
by simpa using fpow_le_of_le hp (le_of_not_lt $ λ h' : 0 < n, not_le_of_lt h $ | |
by simpa using fpow_le_of_le hp (int.add_one_le_iff.2 h')) | |
lemma coe_open_embedding : open_embedding (coe : ℤ_[p] → ℚ_[p]) := | |
{ induced := rfl, inj := subtype.val_injective, open_range := | |
begin | |
show is_open (set.range subtype.val), | |
rw subtype.val_range, | |
rw show {x : ℚ_[p] | ∥x∥ ≤ 1} = {x : ℚ_[p] | ∥x∥ < p}, | |
{ ext x, split; intro h ; rw set.mem_set_of_eq at h ⊢, | |
{ calc ∥x∥ ≤ 1 : h | |
... < _ : by exact_mod_cast (nat.prime.one_lt ‹_›) }, | |
{ by_cases hx : x = 0, | |
{ simp [hx, zero_le_one] }, | |
{ rcases padic_norm_e.image hx with ⟨n, hn⟩, | |
have hp : 1 < p, from nat.prime.one_lt ‹_›, | |
rw hn at h ⊢, | |
norm_cast at h ⊢, | |
apply aux, {exact_mod_cast le_of_lt hp}, {exact h} } } }, | |
rw ← ball_0_eq, | |
exact metric.is_open_ball | |
end } | |
lemma continuous_coe : continuous (coe : ℤ_[p] → ℚ_[p]) := | |
coe_open_embedding.to_embedding.continuous | |
end padic_int | |
lemma padic.exists_repr (x : ℚ_[p]) (hx : x ≠ 0) : | |
∃ (u : units ℤ_[p]) (n : ℤ), x = (u : ℤ_[p])*p^n := | |
begin | |
have : ∥x * (p : ℚ_[p])^(-x.valuation)∥ ≤ 1, | |
{ rw [normed_field.norm_mul, padic.norm_eq_pow_val hx, normed_field.norm_fpow, padic.norm_p, | |
← mul_fpow, mul_inv_cancel, one_fpow], | |
exact_mod_cast nat.prime.ne_zero ‹_› }, | |
let y : ℤ_[p] := ⟨x * (p : ℚ_[p])^(-x.valuation), this⟩, | |
have y_ne_zero : y ≠ 0, | |
{ contrapose! hx with hy, | |
rw subtype.coe_ext at hy, | |
rcases eq_zero_or_eq_zero_of_mul_eq_zero hy with h|h, | |
{ exact h }, | |
{ exfalso, apply nat.prime.ne_zero ‹_›, exact_mod_cast fpow_eq_zero h } }, | |
rcases padic_int.exists_repr y_ne_zero with ⟨u, n, hy⟩, | |
refine ⟨u, (n:ℤ) + x.valuation, _⟩, | |
rw [fpow_add, fpow_of_nat], | |
{ have hnz : (p:ℚ_[p])^(-x.valuation) ≠ 0, | |
{ assume h, exfalso, apply nat.prime.ne_zero ‹_›, exact_mod_cast fpow_eq_zero h }, | |
apply group_with_zero.mul_right_cancel hnz, | |
rw subtype.coe_ext at hy, | |
rw [mul_assoc, mul_assoc, ← fpow_add, add_neg_self, fpow_zero, mul_one], | |
{ exact_mod_cast hy, }, | |
{ exact_mod_cast nat.prime.ne_zero ‹_› } }, | |
{ exact_mod_cast nat.prime.ne_zero ‹_› } | |
end | |
/-- The ring of p-adic integers has characteristic 0.-/ | |
instance padic_int.char_zero : char_zero ℤ_[p] := | |
⟨λ m n, by { rw subtype.coe_ext, norm_cast, apply char_zero.cast_injective }⟩ | |