Datasets:

Modalities:
Text
Languages:
English
Libraries:
Datasets
License:
Zhangir Azerbayev
squashed?
4365a98
raw
history blame
12.9 kB
import data.padics
import ring_theory.noetherian
import for_mathlib.group_with_zero
import for_mathlib.ideal_operations
noncomputable theory
open_locale classical
variables {p : ℕ} [nat.prime p]
local attribute [-simp] padic.cast_eq_of_rat_of_nat
namespace padic_seq
def valuation (f : padic_seq p) : ℤ :=
if hf : f0 then 0 else padic_val_rat p (f (stationary_point hf))
lemma norm_eq_pow_val {f : padic_seq p} (hf : ¬ f0) :
f.norm = p^(-f.valuation : ℤ) :=
begin
delta norm valuation,
rw [dif_neg hf, dif_neg hf],
delta padic_norm,
rw if_neg,
assume H, apply cau_seq.not_lim_zero_of_not_congr_zero hf,
intros ε hε,
use (stationary_point hf),
intros n hn,
rw stationary_point_spec hf (le_refl _) hn,
simpa [H] using hε,
end
lemma val_eq_iff_norm_eq {f g : padic_seq p} (hf : ¬ f0) (hg : ¬ g0) :
f.valuation = g.valuation ↔ f.norm = g.norm :=
begin
rw [norm_eq_pow_val hf, norm_eq_pow_val hg, ← neg_inj', fpow_inj],
{ exact_mod_cast nat.prime.pos ‹_› },
{ exact_mod_cast nat.prime.ne_one ‹_› },
end
end padic_seq
@[simp] lemma real.supr_empty {α : Type*} (f : α → ℝ) :
(⨆ (a ∈ (∅:set α)), f a) = 0 :=
begin
suffices : lattice.Sup {x : ℝ | ∃ (y : α), 0 = x} = 0,
by simpa [lattice.supr, set.range, real.Sup_empty],
by_cases hα : nonempty α,
{ rcases hα with a,
apply le_antisymm,
{ apply (real.Sup_le _ _ _).mpr,
{ rintros r ⟨_, rfl⟩, refl },
{ use [0, ⟨a, rfl⟩], },
{ use 0, rintros r ⟨_, rfl⟩, refl } },
{ apply real.le_Sup,
{ use 0, rintros r ⟨_, rfl⟩, refl },
{ use ⟨a, rfl⟩ } } },
{ convert real.Sup_empty,
rw set.eq_empty_iff_forall_not_mem,
rintros r ⟨a, rfl⟩, exact hα ⟨a⟩ }
end
namespace padic
-- generalize to nonarchimedean fields
lemma norm_sum {α : Type*} (s : finset α) (f : α → ℚ_[p]) :
s.sum f∥ ≤ s.fold max 0 (λ a, ∥f a∥) :=
begin
apply finset.induction_on s, { simp, },
clear s,
intros a s ha IH,
rw [finset.sum_insert ha, finset.fold_insert ha],
refine le_trans (padic_norm_e.nonarchimedean _ _) (max_le _ _),
{ apply le_max_left, },
{ refine le_trans IH (le_max_right _ _), }
end
.
-- -- generalize to nonarchimedean fields
-- lemma norm_sum {α : Type*} (s : finset α) (f : α → ℚ_[p]) :
-- ∥s.sum f∥ ≤ ⨆ a∈s, ∥f a∥ :=
-- begin
-- apply finset.induction_on s,
-- { erw real.supr_empty, simp },
-- clear s,
-- intros a s ha IH,
-- rw [finset.sum_insert ha],
-- have := @lattice.supr_insert,
-- refine le_trans (padic_norm_e.nonarchimedean _ _) (max_le _ _),
-- { apply le_max_left, },
-- { refine le_trans IH (le_max_right _ _), }
-- end
@[simp] lemma norm_p : ∥(p : ℚ_[p])∥ = p⁻¹ :=
begin
have p₀ : p0 := nat.prime.ne_zero ‹_›,
have p₁ : p1 := nat.prime.ne_one ‹_›,
simp [p₀, p₁, norm, padic_norm, padic_val_rat, fpow_neg, padic.cast_eq_of_rat_of_nat],
end
open normed_field
@[simp] lemma norm_p_pow (n : ℤ) : ∥(p^n : ℚ_[p])∥ = p^-n :=
by rw [norm_fpow, norm_p, fpow_neg, one_div_eq_inv,
← fpow_inv, ← fpow_inv, ← fpow_mul, ← fpow_mul, mul_comm]
def valuation : ℚ_[p] → ℤ :=
quotient.lift (@padic_seq.valuation p _) (λ f g h,
begin
by_cases hf : f0,
{ have hg : g0, from setoid.trans (setoid.symm h) hf,
simp [hf, hg, padic_seq.valuation] },
{ have hg : ¬ g0, from (λ hg, hf (setoid.trans h hg)),
rw padic_seq.val_eq_iff_norm_eq hf hg,
exact padic_seq.norm_equiv h },
end)
@[simp] lemma valuation_zero : valuation (0 : ℚ_[p]) = 0 :=
dif_pos ((const_equiv p).2 rfl)
@[simp] lemma valuation_one : valuation (1 : ℚ_[p]) = 0 :=
begin
change dite (cau_seq.const (padic_norm p) 1 ≈ _) _ _ = _,
have h : ¬ cau_seq.const (padic_norm p) 10,
{ assume H, erw const_equiv p at H, exact one_ne_zero H },
rw dif_neg h,
simp,
end
lemma norm_eq_pow_val {x : ℚ_[p]} (hx : x0) :
x∥ = p^(-x.valuation) :=
begin
revert hx, apply quotient.induction_on' x, clear x,
intros f hf,
change (padic_seq.norm _ : ℝ) = (p : ℝ) ^ -padic_seq.valuation _,
rw padic_seq.norm_eq_pow_val,
change ↑((p : ℚ) ^ -padic_seq.valuation f) = (p : ℝ) ^ -padic_seq.valuation f,
{ rw cast_fpow,
congr' 1,
norm_cast },
{ apply cau_seq.not_lim_zero_of_not_congr_zero,
contrapose! hf, apply quotient.sound, simpa using hf, }
end
@[simp] lemma valuation_p : valuation (p : ℚ_[p]) = 1 :=
begin
have h : (1 : ℝ) < p := by exact_mod_cast nat.prime.one_lt ‹_›,
apply neg_inj,
apply (fpow_strict_mono h).injective,
dsimp only,
rw ← norm_eq_pow_val,
{ simp [fpow_inv], },
{ exact_mod_cast nat.prime.ne_zero ‹_›, }
end
end padic
namespace padic_int
open local_ring
lemma norm_mul (x y : ℤ_[p]) : ∥x*y∥ = ∥x∥*∥y∥ :=
by exact_mod_cast normed_field.norm_mul (x:ℚ_[p]) (y:ℚ_[p])
lemma norm_pow (x : ℤ_[p]) : ∀ (n : ℕ), ∥x^n∥ = ∥x∥^n
| 0 := by simp
| (n+1) := by simp
@[simp] lemma norm_p : ∥(p : ℤ_[p])∥ = p⁻¹ :=
show ∥((p : ℤ_[p]) : ℚ_[p])∥ = p⁻¹, by exact_mod_cast padic.norm_p
@[simp] lemma norm_p_pow (n : ℕ) : ∥(p : ℤ_[p])^n∥ = p^(-n:ℤ) :=
show ∥((p^n : ℤ_[p]) : ℚ_[p])∥ = p^(-n:ℤ),
by { convert padic.norm_p_pow n, simp, }
def valuation (x : ℤ_[p]) := padic.valuation (x : ℚ_[p])
lemma norm_eq_pow_val {x : ℤ_[p]} (hx : x0) :
x∥ = p^(-x.valuation) :=
begin
convert padic.norm_eq_pow_val _,
contrapose! hx,
exact subtype.val_injective hx
end
@[simp] lemma valuation_zero : valuation (0 : ℤ_[p]) = 0 :=
padic.valuation_zero
@[simp] lemma valuation_one : valuation (1 : ℤ_[p]) = 0 :=
padic.valuation_one
@[simp] lemma valuation_p : valuation (p : ℤ_[p]) = 1 :=
by { delta valuation, exact_mod_cast padic.valuation_p }
lemma valuation_nonneg (x : ℤ_[p]) : 0 ≤ x.valuation :=
begin
by_cases hx : x = 0,
{ simp [hx] },
have h : (1 : ℝ) < p := by exact_mod_cast nat.prime.one_lt ‹_›,
rw [← neg_nonpos, ← (fpow_strict_mono h).le_iff_le],
show ↑p ^ -valuation x ≤ ↑p ^ 0,
rw [← norm_eq_pow_val hx],
simpa using x.property,
end
lemma norm_le_pow_iff_norm_lt_pow_succ (x : ℤ_[p]) (n : ℤ) :
x∥ ≤ p^n ↔ ∥x∥ < p^(n+1) :=
begin
by_cases hx : x = 0,
{ have hp_pos : (0:ℝ) < p := by exact_mod_cast nat.prime.pos ‹_›,
have hp_nonneg : (0:ℝ) ≤ p := le_of_lt hp_pos,
simp [hx, fpow_pos_of_pos hp_pos, fpow_nonneg_of_nonneg hp_nonneg], },
have hp : (1:ℝ) < p, { exact_mod_cast nat.prime.one_lt ‹_› },
rw [norm_eq_pow_val hx, (fpow_strict_mono hp).le_iff_le,
(fpow_strict_mono hp).lt_iff_lt, int.lt_add_one_iff],
end
def mk_units {u : ℚ_[p]} (h : ∥u∥ = 1) : units ℤ_[p] :=
let z : ℤ_[p] := ⟨u, le_of_eq h⟩ in ⟨z, z.inv, mul_inv h, inv_mul h⟩
@[simp]
lemma mk_units_eq {u : ℚ_[p]} (h : ∥u∥ = 1) : ((mk_units h : ℤ_[p]) : ℚ_[p]) = u :=
rfl
lemma exists_repr {x : ℤ_[p]} (hx : x0) :
∃ (u : units ℤ_[p]) (n : ℕ), x = u*p^n :=
begin
let u : ℚ_[p] := x*p^(-x.valuation),
have repr : (x : ℚ_[p]) = u*p^x.valuation,
{ rw [mul_assoc, ← fpow_add],
{ simp },
{ exact_mod_cast nat.prime.ne_zero ‹_› } },
have hu : ∥u∥ = 1,
by simp [hx, nat.fpow_ne_zero_of_pos (by exact_mod_cast nat.prime.pos ‹_›) x.valuation,
norm_eq_pow_val, fpow_neg, inv_mul_cancel],
obtain ⟨n, hn⟩ : ∃ n : ℕ, valuation x = n,
from int.eq_coe_of_zero_le (valuation_nonneg x),
use [mk_units hu, n],
apply subtype.val_injective,
simp [hn, repr]
end
variable (p)
lemma span_p_is_maximal :
(ideal.span ({p} : set ℤ_[p])).is_maximal :=
begin
rw ideal.is_maximal_iff,
split,
{ rw ideal.mem_span_singleton', push_neg, intro x,
assume eq_one,
suffices : ∥x * p∥ < 1,
{ apply ne_of_lt this, simp [eq_one] },
have norm_p_lt_one : ∥(p:ℤ_[p])∥ < 1,
{ rw [norm_p], apply inv_lt_one, exact_mod_cast nat.prime.one_lt ‹_›, },
simpa using mul_lt_mul' x.property norm_p_lt_one (norm_nonneg _) zero_lt_one, },
{ intros I x hI hx_ne hx_mem,
rw ideal.mem_span_singleton' at hx_ne, push_neg at hx_ne,
have x_ne_zero : x0,
{ specialize hx_ne 0,
contrapose! hx_ne with x_eq_zero,
simpa using x_eq_zero.symm, },
rcases exists_repr x_ne_zero with ⟨u, n, rfl⟩,
cases n,
{ apply ideal.one_mem_of_unit_mem, simpa using hx_mem, },
{ exfalso,
apply hx_ne (u*p^n),
simp [pow_succ', mul_assoc] }, }
end
lemma nonunits_ideal_eq_span :
nonunits_ideal ℤ_[p] = ideal.span {p} :=
unique_of_exists_unique (max_ideal_unique ℤ_[p])
(nonunits_ideal.is_maximal _) (span_p_is_maximal p)
lemma nonunits_ideal_fg :
(nonunits_ideal ℤ_[p]).fg :=
by { rw nonunits_ideal_eq_span, exact ⟨{p}, rfl⟩, }
lemma power_nonunits_ideal_eq_norm_le_pow (n : ℕ) :
(↑((nonunits_ideal ℤ_[p])^n) : set ℤ_[p]) = {x | ∥x∥ ≤ p^-(n:ℤ) } :=
begin
rw nonunits_ideal_eq_span p,
rw ideal.span_singleton_pow,
ext x,
erw [ideal.mem_span_singleton', set.mem_set_of_eq],
split,
{ rintros ⟨y, rfl⟩,
rw [padic_int.norm_mul, norm_p_pow],
apply le_of_mul_le_mul_right _ (_ : (p : ℝ)^n > 0),
rw [mul_assoc, fpow_neg_mul_fpow_self, mul_one],
{ exact y.property },
{ exact_mod_cast ne_of_gt (nat.prime.pos ‹_›) },
{ exact nat.fpow_pos_of_pos (by exact_mod_cast nat.prime.pos ‹_›) (n : ℤ) } },
{ intro h,
by_cases hx : x = 0, { use 0, simp [hx] },
{ rcases exists_repr hx with ⟨u, n', rfl⟩,
suffices : n ≤ n',
{ use [u * p^(n' - n)],
rw [mul_assoc, ← pow_add, nat.sub_add_cancel this], },
have hp : (1:ℝ) < p, { exact_mod_cast nat.prime.one_lt ‹_› },
rw [padic_int.norm_mul, is_unit_iff.1 (is_unit_unit u), one_mul, padic_int.norm_pow,
norm_p, ← fpow_of_nat, ← fpow_inv, ← fpow_mul, (fpow_strict_mono hp).le_iff_le,
neg_one_mul, neg_le_neg_iff] at h,
exact_mod_cast h, } },
end
variable {p}
instance coe_is_ring_hom : is_ring_hom (coe : ℤ_[p] → ℚ_[p]) :=
{ map_one := rfl,
map_mul := coe_mul,
map_add := coe_add }
private lemma aux (p : ℚ) (n : ℤ) (hp : 1 ≤ p) (h : p ^ n < p) : p ^ n ≤ 1 :=
by simpa using fpow_le_of_le hp (le_of_not_lt $ λ h' : 0 < n, not_le_of_lt h $
by simpa using fpow_le_of_le hp (int.add_one_le_iff.2 h'))
lemma coe_open_embedding : open_embedding (coe : ℤ_[p] → ℚ_[p]) :=
{ induced := rfl, inj := subtype.val_injective, open_range :=
begin
show is_open (set.range subtype.val),
rw subtype.val_range,
rw show {x : ℚ_[p] | ∥x∥ ≤ 1} = {x : ℚ_[p] | ∥x∥ < p},
{ ext x, split; intro h ; rw set.mem_set_of_eq at h ⊢,
{ calc ∥x∥ ≤ 1 : h
... < _ : by exact_mod_cast (nat.prime.one_lt ‹_›) },
{ by_cases hx : x = 0,
{ simp [hx, zero_le_one] },
{ rcases padic_norm_e.image hx with ⟨n, hn⟩,
have hp : 1 < p, from nat.prime.one_lt ‹_›,
rw hn at h ⊢,
norm_cast at h ⊢,
apply aux, {exact_mod_cast le_of_lt hp}, {exact h} } } },
rw ← ball_0_eq,
exact metric.is_open_ball
end }
lemma continuous_coe : continuous (coe : ℤ_[p] → ℚ_[p]) :=
coe_open_embedding.to_embedding.continuous
end padic_int
lemma padic.exists_repr (x : ℚ_[p]) (hx : x0) :
∃ (u : units ℤ_[p]) (n : ℤ), x = (u : ℤ_[p])*p^n :=
begin
have : ∥x * (p : ℚ_[p])^(-x.valuation)∥ ≤ 1,
{ rw [normed_field.norm_mul, padic.norm_eq_pow_val hx, normed_field.norm_fpow, padic.norm_p,
← mul_fpow, mul_inv_cancel, one_fpow],
exact_mod_cast nat.prime.ne_zero ‹_› },
let y : ℤ_[p] := ⟨x * (p : ℚ_[p])^(-x.valuation), this⟩,
have y_ne_zero : y0,
{ contrapose! hx with hy,
rw subtype.coe_ext at hy,
rcases eq_zero_or_eq_zero_of_mul_eq_zero hy with h|h,
{ exact h },
{ exfalso, apply nat.prime.ne_zero ‹_›, exact_mod_cast fpow_eq_zero h } },
rcases padic_int.exists_repr y_ne_zero with ⟨u, n, hy⟩,
refine ⟨u, (n:ℤ) + x.valuation, _⟩,
rw [fpow_add, fpow_of_nat],
{ have hnz : (p:ℚ_[p])^(-x.valuation) ≠ 0,
{ assume h, exfalso, apply nat.prime.ne_zero ‹_›, exact_mod_cast fpow_eq_zero h },
apply group_with_zero.mul_right_cancel hnz,
rw subtype.coe_ext at hy,
rw [mul_assoc, mul_assoc, ← fpow_add, add_neg_self, fpow_zero, mul_one],
{ exact_mod_cast hy, },
{ exact_mod_cast nat.prime.ne_zero ‹_› } },
{ exact_mod_cast nat.prime.ne_zero ‹_› }
end
/-- The ring of p-adic integers has characteristic 0.-/
instance padic_int.char_zero : char_zero ℤ_[p] :=
⟨λ m n, by { rw subtype.coe_ext, norm_cast, apply char_zero.cast_injective }⟩