Datasets:

Modalities:
Text
Languages:
English
Libraries:
Datasets
License:
Zhangir Azerbayev
squashed?
4365a98
raw
history blame
1.22 kB
import ring_theory.ideal_operations -- PRs mostly go there
-- PR directly to ring_theory.ideals
lemma ideal.one_mem_of_unit_mem {R : Type*} [comm_ring R] {I : ideal R} {u : units R} (h : (u : R) ∈ I) :
(1 : R) ∈ I :=
begin
have : (u : R)*(u⁻¹ : units R) ∈ I, from I.mul_mem_right h,
rwa u.mul_inv at this
end
lemma ideal.span_singleton_mul {R : Type*} [comm_ring R] (x y : R) :
(ideal.span ({x} : set R)) * (ideal.span {y}) = ideal.span {x*y} :=
by simp [ideal.span_mul_span]
lemma ideal.span_singleton_pow {R : Type*} [comm_ring R] (x : R) (n : β„•) :
(ideal.span ({x} : set R))^n = ideal.span {x^n} :=
begin
induction n with n ih,
{ simp },
{ rw [pow_succ, ih, ideal.span_singleton_mul, pow_succ] }
end
lemma ideal.eq_bot_iff_zero {R : Type*} [comm_ring R] {I : ideal R} : I = βŠ₯ ↔ (I : set R) = {0} :=
begin
split ; intro h,
{ simp [h] },
{ ext,
change x ∈ (I : set R) ↔ _,
simp [h] },
end
@[simp] lemma ideal.span_empty {R : Type*} [comm_ring R] : ideal.span (βˆ… : set R) = βŠ₯ :=
ideal.span_eq_bot.mpr (Ξ» x h, false.elim h)
@[simp] lemma ideal.span_zero {R : Type*} [comm_ring R] : ideal.span ({0} : set R) = βŠ₯ :=
ideal.span_eq_bot.mpr $ Ξ» x, set.mem_singleton_iff.mp