Datasets:
Tasks:
Text Generation
Modalities:
Text
Sub-tasks:
language-modeling
Languages:
English
Size:
100K - 1M
License:
import ring_theory.ideal_operations -- PRs mostly go there | |
-- PR directly to ring_theory.ideals | |
lemma ideal.one_mem_of_unit_mem {R : Type*} [comm_ring R] {I : ideal R} {u : units R} (h : (u : R) β I) : | |
(1 : R) β I := | |
begin | |
have : (u : R)*(uβ»ΒΉ : units R) β I, from I.mul_mem_right h, | |
rwa u.mul_inv at this | |
end | |
lemma ideal.span_singleton_mul {R : Type*} [comm_ring R] (x y : R) : | |
(ideal.span ({x} : set R)) * (ideal.span {y}) = ideal.span {x*y} := | |
by simp [ideal.span_mul_span] | |
lemma ideal.span_singleton_pow {R : Type*} [comm_ring R] (x : R) (n : β) : | |
(ideal.span ({x} : set R))^n = ideal.span {x^n} := | |
begin | |
induction n with n ih, | |
{ simp }, | |
{ rw [pow_succ, ih, ideal.span_singleton_mul, pow_succ] } | |
end | |
lemma ideal.eq_bot_iff_zero {R : Type*} [comm_ring R] {I : ideal R} : I = β₯ β (I : set R) = {0} := | |
begin | |
split ; intro h, | |
{ simp [h] }, | |
{ ext, | |
change x β (I : set R) β _, | |
simp [h] }, | |
end | |
@[simp] lemma ideal.span_empty {R : Type*} [comm_ring R] : ideal.span (β : set R) = β₯ := | |
ideal.span_eq_bot.mpr (Ξ» x h, false.elim h) | |
@[simp] lemma ideal.span_zero {R : Type*} [comm_ring R] : ideal.span ({0} : set R) = β₯ := | |
ideal.span_eq_bot.mpr $ Ξ» x, set.mem_singleton_iff.mp | |