Datasets:
Tasks:
Text Generation
Modalities:
Text
Sub-tasks:
language-modeling
Languages:
English
Size:
100K - 1M
License:
import ring_theory.localization | |
import ring_theory.subring | |
import for_mathlib.nonarchimedean.basic | |
import for_mathlib.topological_rings | |
import sheaves.presheaf_of_topological_rings | |
import Spa.rational_open_data | |
/-! | |
# The structure presheaf on the adic spectrum of a Huber pair | |
The purpose of this file is to endow the adic spectrum `spa A` of a Huber pair | |
with a presheaf of topological rings: the structure presheaf. | |
Sections of this presheaf will be thought of as functions on the adic spectrum. | |
## Implementation details | |
Because the library for categorical limits was not yet very stable at the time of writing, | |
we implement the sections of the presheaf by manually taking a limit: | |
-- The underlying type of 𝒪_X(U), the structure presheaf on X = Spa(A) | |
def presheaf_value (U : opens (spa A)) := | |
{f : Π (rd : rational_open_data_subsets U), rat_open_data_completion rd.1 // | |
∀ (rd1 rd2 : rational_open_data_subsets U) (h : rd1.1 ≤ rd2.1), | |
rat_open_data_completion.restriction h (f rd1) = (f rd2)} -- agrees on overlaps | |
-/ | |
universes u₁ u₂ u₃ | |
open_locale classical | |
open set function Spv valuation | |
local postfix `⁺` : 66 := λ A : Huber_pair, A.plus | |
namespace spa | |
variable {A : Huber_pair} | |
section | |
open topological_space | |
/-- The set of all rational open subsets contained in the open set U. -/ | |
def rational_open_data_subsets (U : opens (spa A)) := | |
{ r : rational_open_data A // r.open_set ⊆ U} | |
/-- The natural inclusion map of rational open subsets contained in the open set U | |
into those contained in some larger open set V (that contains U).-/ | |
def rational_open_data_subsets.map {U V : opens (spa A)} (hUV : U ≤ V) | |
(rd : rational_open_data_subsets U) : | |
rational_open_data_subsets V := | |
⟨rd.val, set.subset.trans rd.property hUV⟩ | |
/--The intersection of two rational open subsets contained in some open set U | |
is a rational open subset contained in U.-/ | |
noncomputable def rational_open_data_subsets_inter {U : opens (spa A)} | |
(r1 r2 : rational_open_data_subsets U) : | |
rational_open_data_subsets U := | |
⟨rational_open_data.inter r1.1 r2.1, begin | |
rw rational_open_data.inter_open_set, | |
refine set.subset.trans (inter_subset_left r1.1.open_set r2.1.open_set) _, | |
exact r1.2 | |
end⟩ | |
lemma rational_open_data_subsets_symm {U : opens (spa A)} | |
(r1 r2 : rational_open_data_subsets U) : | |
rational_open_data_subsets_inter r1 r2 = rational_open_data_subsets_inter r2 r1 := | |
begin | |
rw subtype.ext, | |
exact rational_open_data.inter_symm r1.1 r2.1 | |
end | |
end -- section | |
open uniform_space | |
-- rat_open_data is short for "rational open data". KB needs to think more clearly | |
-- about namespaces etc. | |
/-- A<T/s>, the functions on D(T,s). A topological ring -/ | |
def rat_open_data_completion (r : rational_open_data A) := | |
completion (rational_open_data.localization r) | |
namespace rat_open_data_completion | |
open topological_space | |
/-- The ring structure on A<T/s>. -/ | |
noncomputable instance (r : rational_open_data A) : comm_ring (rat_open_data_completion r) := | |
by dunfold rat_open_data_completion; apply_instance | |
/-- The uniform structure on A<T/s>. -/ | |
instance uniform_space (r : rational_open_data A) : uniform_space (rat_open_data_completion r) := | |
by dunfold rat_open_data_completion; apply_instance | |
/-- A<T/s> is a topological ring. -/ | |
instance (r : rational_open_data A) : topological_ring (rat_open_data_completion r) := | |
by dunfold rat_open_data_completion; apply_instance | |
/-- The natural map A<T₁/s₁> → A<T₂/s₂> for two rational open subsets r1 and r2 with r1 ≤ r2.-/ | |
noncomputable def restriction {r1 r2 : rational_open_data A} (h : r1 ≤ r2) : | |
rat_open_data_completion r1 → rat_open_data_completion r2 := | |
completion.map (rational_open_data.localization_map h) | |
/-- The natural map A<T₁/s₁> → A<T₂/s₂> is a ring homomorphism.-/ | |
instance restriction_is_ring_hom {r1 r2 : rational_open_data A} (h : r1 ≤ r2) : | |
is_ring_hom (restriction h) := | |
completion.is_ring_hom_map (rational_open_data.localization_map_is_cts h) | |
lemma restriction_is_uniform_continuous {r1 r2 : rational_open_data A} (h : r1 ≤ r2) : | |
uniform_continuous (rat_open_data_completion.restriction h) := | |
completion.uniform_continuous_map | |
end rat_open_data_completion -- namespace | |
open topological_space | |
/-- The underlying type of 𝒪_X(U), the structure presheaf on X = Spa(A) -/ | |
def presheaf_value (U : opens (spa A)) := | |
{f : Π (rd : rational_open_data_subsets U), rat_open_data_completion rd.1 // | |
∀ (rd1 rd2 : rational_open_data_subsets U) (h : rd1.1 ≤ rd2.1), | |
rat_open_data_completion.restriction h (f rd1) = (f rd2)} -- agrees on overlaps | |
/-- An auxilliary definition: | |
The underlying type of 𝒪_X(U), the structure presheaf on X = Spa(A), | |
but given as a subset, rather than a subtype. | |
This definition is used for the definition of the ring structure on 𝒪_X(U) -/ | |
def presheaf_value_set (U : opens (spa A)) := | |
{f : Π (rd : rational_open_data_subsets U), rat_open_data_completion rd.1 | | |
∀ (rd1 rd2 : rational_open_data_subsets U) (h : rd1.1 ≤ rd2.1), | |
rat_open_data_completion.restriction h (f rd1) = (f rd2)} | |
-- We need to check it's a ring | |
/-- The value of the structure presheaf on an open set U | |
is a subring of the big Pi-type in its definiton.-/ | |
lemma presheaf_subring (U : opens (spa A)) : is_subring (presheaf_value_set U) := | |
{ zero_mem := λ _ _ _, is_ring_hom.map_zero _, | |
one_mem := λ _ _ _, is_ring_hom.map_one _, | |
add_mem := λ a b ha hb rd₁ rd₂ h, | |
begin | |
change rat_open_data_completion.restriction h (a rd₁ + b rd₁) = a rd₂ + b rd₂, | |
rw is_ring_hom.map_add (rat_open_data_completion.restriction h), | |
rw [ha _ _ h, hb _ _ h], | |
end, | |
neg_mem := λ a ha rd₁ rd₂ h, | |
begin | |
change rat_open_data_completion.restriction h (-(a rd₁)) = -(a rd₂), | |
rw is_ring_hom.map_neg (rat_open_data_completion.restriction h), | |
rw ha _ _ h, | |
end, | |
mul_mem := λ a b ha hb rd₁ rd₂ h, | |
begin | |
change rat_open_data_completion.restriction h (a rd₁ * b rd₁) = a rd₂ * b rd₂, | |
rw is_ring_hom.map_mul (rat_open_data_completion.restriction h), | |
rw [ha _ _ h, hb _ _ h] | |
end } | |
/-- The ring structure on the value of the structure presheaf on an open set U.-/ | |
noncomputable instance presheaf_comm_ring (U : opens (spa A)) : comm_ring (presheaf_value U) := | |
@subset.comm_ring _ pi.comm_ring _ (spa.presheaf_subring U) | |
/-- The topology on the value of the structure presheaf on an open set U.-/ | |
instance presheaf_top_space (U : opens (spa A)) : topological_space (presheaf_value U) := | |
by unfold presheaf_value; apply_instance | |
/-- The value of the structure presheaf on an open set U is a topological ring.-/ | |
instance presheaf_top_ring (U : opens (spa A)) : topological_ring (presheaf_value U) := | |
begin | |
haveI := spa.presheaf_subring U, | |
letI : topological_ring (Π (rd : rational_open_data_subsets U), rat_open_data_completion (rd.1)) := | |
by apply_instance, | |
apply topological_subring (presheaf_value_set U), | |
end | |
/-- The restriction map for the structure presheaf on the adic spectrum of a Huber pair. -/ | |
def presheaf_map {U V : opens (spa A)} (hUV : U ≤ V) : | |
presheaf_value V → presheaf_value U := | |
λ f, ⟨_, λ rd1 rd2 h, | |
(f.2 (rational_open_data_subsets.map hUV rd1) | |
(rational_open_data_subsets.map hUV rd2) h : _)⟩ | |
-- Note the (X : _) trick at the end of the preceding definition, | |
-- which tells Lean "don't try and elaborate X assuming it has the type you know it has, | |
-- elaborate it independently, figure out the type, and then unify". | |
-- Thanks to Mario Carneiro for this trick which | |
-- hugely speeds up elaboration time of this definition. | |
@[simp] lemma presheaf_map_id (U : opens (spa A)) : | |
presheaf_map (le_refl U) = id := | |
by { delta presheaf_map, tidy } | |
lemma presheaf_map_comp {U V W : opens (spa A)} (hUV : U ≤ V) (hVW : V ≤ W) : | |
presheaf_map hUV ∘ presheaf_map hVW = presheaf_map (le_trans hUV hVW) := | |
by { delta presheaf_map, tidy } | |
/-- The restriction maps of the structure presheaf are ring homomorphisms. -/ | |
instance presheaf_map_is_ring_hom {U V : opens (spa A)} (hUV : U ≤ V) : | |
is_ring_hom (presheaf_map hUV) := | |
{ map_one := rfl, | |
map_mul := λ _ _, rfl, | |
map_add := λ _ _, rfl } | |
lemma presheaf_map_cts {U V : opens (spa A)} (hUV : U ≤ V) : | |
continuous (presheaf_map hUV) := | |
continuous_subtype_mk _ (continuous_pi (λ i, ((continuous_apply _).comp continuous_subtype_val))) | |
variable (A) | |
/-- The structure presheaf on the adic spectrum of a Huber pair. -/ | |
noncomputable def presheaf_of_topological_rings : presheaf_of_topological_rings (spa A) := | |
{ F := presheaf_value, | |
res := λ U V, presheaf_map, | |
Hid := presheaf_map_id, | |
Hcomp := λ U V W, presheaf_map_comp, | |
Fring := spa.presheaf_comm_ring, | |
res_is_ring_hom := λ U V, spa.presheaf_map_is_ring_hom, | |
Ftop := spa.presheaf_top_space, | |
Ftop_ring := spa.presheaf_top_ring, | |
res_continuous := λ U V, presheaf_map_cts } | |
end spa -- namespace | |
-- notes | |
-- KB idle comment: I guess we never make A<T/s> a Huber pair if A is a Huber pair? | |
-- We would need integral closure for this and I don't think we have it in mathlib. | |
-- We see mid way through p75 that the definition of the presheaf | |
-- on V is proj lim of O_X(U) as U runs through rationals opens in V. This gets | |
-- the projective limit topology and then we have a presheaf (hopefully this is | |
-- straightforward) of complete topological rings (need proj lim of complete is complete) | |