Datasets:

Modalities:
Text
Languages:
English
Libraries:
Datasets
License:
proof-pile / formal /lean /perfectoid /Spa /localization_Huber.lean
Zhangir Azerbayev
squashed?
4365a98
raw
history blame
7.24 kB
import Huber_ring.localization
import Spa.rational_open_data
/-!
# Extending continuous valuations on Huber rings
In this file, we extend continuous valuations on Huber rings R
to rational localizations R(T/s) and their completions.
This is an important step in the definition of the structure presheaf on the adic spectrum.
-/
noncomputable theory
local attribute [instance] valued.subgroups_basis valued.uniform_space
local postfix `⁺` : 66 := λ A : Huber_pair, A.plus
variables {A : Huber_pair}
{Γ₀ : Type*} [linear_ordered_comm_group_with_zero Γ₀] {v : valuation A Γ₀}
{rd : spa.rational_open_data A} (hv : valuation.is_continuous v)
namespace Huber_pair
open valuation linear_ordered_structure
local attribute [instance] set.smul_set_action
local notation `A⟮T/s⟯` := spa.rational_open_data.localization rd
local notation `s` := rd.s
local notation `T` := rd.T
/-- An auxilliary definition that constructs s as unit in the valuation field
of a valuation v, under the assumption that v s ≠ 0.-/
def unit_s (hs : v s ≠ 0) : units (valuation_field v) :=
units.mk0 (valuation_field_mk v s) $ valuation_field_mk_ne_zero v s hs
example : (λ r, localization.of (valuation_ID_mk v r)) = valuation_field_mk v := rfl
set_option class.instance_max_depth 64
/--The set T/s (for some rational open subset D(T,s)) considered as subset of the valuation field.-/
def v_T_over_s (hs : v s ≠ 0) : set (valuation_field v) :=
((unit_s hs)⁻¹ : v.valuation_field) • ((valuation_field_mk v) '' rd.T)
lemma v_T_over_s_le_one (hs : v s ≠ 0) (hT2 : ∀ t : A, t ∈ T → v t ≤ v s) :
v_T_over_s hs ⊆ {x : valuation_field v | valuation_field.canonical_valuation v x ≤ 1} :=
begin
let v' := valuation_field.canonical_valuation v,
intros k Hk,
show v' k ≤ 1,
let u := unit_s hs,
have remember_this : valuation_field_mk v s = u.val := rfl,
unfold v_T_over_s at Hk,
rcases Hk with ⟨l, ⟨t, ht, rfl⟩, rfl⟩,
rw [smul_eq_mul, v'.map_mul],
change v' (↑(unit_s hs)⁻¹) * _ ≤ _,
rw mul_comm,
apply le_of_le_mul_right
(group_with_zero.unit_ne_zero $ units.map (v' : v.valuation_field →* (value_monoid v)) u),
show v' _ * v' _ * v' u ≤ _,
rw [mul_assoc, one_mul, ← v'.map_mul, units.inv_mul, v'.map_one, mul_one],
change canonical_valuation v t ≤ v' u.val,
rw ← remember_this,
change _ ≤ canonical_valuation v s,
rw canonical_valuation_is_equiv v,
exact hT2 _ ht,
end
lemma v_le_one_is_bounded {R : Type*} [comm_ring R] (v : valuation R Γ₀) :
is_bounded {x : valuation_field v | valuation_field.canonical_valuation v x ≤ 1} :=
begin
let v' := valuation_field.canonical_valuation v,
intros U HU,
rcases subgroups_basis.mem_nhds_zero.mp HU with ⟨_, ⟨γ, rfl⟩, H⟩,
let V := {k : valuation_field v | v' k < ↑γ},
use V,
existsi _, swap,
{ rw subgroups_basis.mem_nhds_zero,
use [V, set.mem_range_self _] },
intros w Hw b Hb,
change V ⊆ U at H,
change v' w < γ at Hw,
change v' b ≤ 1 at Hb,
apply set.mem_of_mem_of_subset _ H,
change v' (w * b) < γ,
rw v'.map_mul,
exact actual_ordered_comm_monoid.mul_lt_of_lt_of_nongt_one' Hw Hb,
end
lemma v_le_one_is_power_bounded {R : Type*} [comm_ring R] (v : valuation R Γ₀) :
is_power_bounded_subset {x : valuation_field v | valuation_field.canonical_valuation v x ≤ 1} :=
begin
let v' := valuation_field.canonical_valuation v,
refine is_bounded.subset _ (v_le_one_is_bounded v),
intros x hx,
induction hx with a ha a b ha' hb' ha hb,
{ assumption },
{ show v' 11, rw v'.map_one, },
{ show v' (a * b) ≤ 1, rw v'.map_mul,
exact actual_ordered_comm_monoid.mul_nongt_one' ha hb, }
end
lemma v_T_over_s_is_power_bounded (hs : v s ≠ 0) (hT2 : ∀ t : A, t ∈ T → v t ≤ v s) :
is_power_bounded_subset (v_T_over_s hs) :=
begin
apply power_bounded.subset (v_T_over_s_le_one hs hT2),
exact v_le_one_is_power_bounded v
end
/--The natural map from the localization A⟮T/s⟯ of a Huber pair A
at a rational open subset R(T/s)
to the valuation field of a valuation that does not have s in its support.-/
noncomputable def to_valuation_field (hs : v s ≠ 0) : A⟮T/s⟯ → (valuation_field v) :=
Huber_ring.away.lift T s (valuation_field_mk v) (unit_s hs) rfl
/-- The natural map from A⟮T/s⟯ to the valuation field is a ring homomorphism. -/
instance (hs : v s ≠ 0) : is_ring_hom (to_valuation_field hs) :=
by delta to_valuation_field; apply_instance
local attribute [instance] valued.subgroups_basis
theorem to_valuation_field_cts' (hs : v s ≠ 0)(hT2 : ∀ t : A, t ∈ T → v t ≤ v s) (hv : is_continuous v) :
continuous (to_valuation_field hs) :=
Huber_ring.away.lift_continuous T s (by convert subgroups_basis.nonarchimedean)
(continuous_valuation_field_mk_of_continuous v hv) _ rfl (rd.Hopen)
(v_T_over_s_is_power_bounded hs hT2)
-- now we need that the triangles commute when we fix v but change s.
theorem to_valuation_field_commutes (r1 r2 : spa.rational_open_data A) (h : r1 ≤ r2)
(hs1 : v r1.s ≠ 0) (hs2 : v r2.s ≠ 0) :
to_valuation_field hs1 = (to_valuation_field hs2) ∘ (spa.rational_open_data.localization_map h) :=
begin
refine localization.funext
(to_valuation_field hs1 : localization A (powers r1.s) → valuation_field v)
((to_valuation_field hs2) ∘ (spa.rational_open_data.localization_map h) :
localization A (powers r1.s) → valuation_field v) _,
intro r,
delta to_valuation_field spa.rational_open_data.localization_map function.comp,
erw Huber_ring.away.lift_of,
erw Huber_ring.away.lift_of,
change _ = Huber_ring.away.lift (r2.T) (r2.s) _ _ _ (localization.of r),
rw Huber_ring.away.lift_of,
end
namespace rational_open_data
lemma to_valuation_field_cts_aux {r : spa.rational_open_data A} {v : spa A}
(hv : v ∈ r.open_set) : (Spv.out v.1) (r.s) ≠ 0 := hv.2
/-- The natural map from A(T/s) to the valuation field of a valuation v contained in
the rational open subset R(T/s). -/
def to_valuation_field {r : spa.rational_open_data A} {v : spa A} (hv : v ∈ r.open_set) :
spa.rational_open_data.localization r → valuation_field (Spv.out (v.val)) :=
(to_valuation_field $ to_valuation_field_cts_aux hv)
/-- The natural map from A(T/s) to the valuation field of a valuation v contained in
the rational open subset R(T/s) is a ring homomorphism. -/
instance {r : spa.rational_open_data A} {v : spa A} (hv : v ∈ r.open_set) :
is_ring_hom (to_valuation_field hv) := by {delta to_valuation_field, apply_instance}
/-- If v : spa A is in D(T,s) then the map A(T/s) -> K_v is continuous -/
theorem to_valuation_field_cts {r : spa.rational_open_data A} {v : spa A}
(hv : v ∈ r.open_set) : continuous (to_valuation_field hv) :=
Huber_pair.to_valuation_field_cts' hv.2 hv.1 v.2.1
-- Now we need to show that if r1 <= r2 then these to_valuation_field maps
-- are compatible.
theorem to_valuation_field_commutes {r1 r2 : spa.rational_open_data A} {v : spa A}
(hv1 : v ∈ r1.open_set) (hv2 : v ∈ r2.open_set) (h : r1 ≤ r2) :
(to_valuation_field hv1) =
(to_valuation_field hv2) ∘ (spa.rational_open_data.localization_map h) :=
to_valuation_field_commutes r1 r2 h hv1.2 hv2.2
end rational_open_data
end Huber_pair