Datasets:
Tasks:
Text Generation
Modalities:
Text
Sub-tasks:
language-modeling
Languages:
English
Size:
100K - 1M
License:
import Huber_ring.localization | |
import Spa.rational_open_data | |
/-! | |
# Extending continuous valuations on Huber rings | |
In this file, we extend continuous valuations on Huber rings R | |
to rational localizations R(T/s) and their completions. | |
This is an important step in the definition of the structure presheaf on the adic spectrum. | |
-/ | |
noncomputable theory | |
local attribute [instance] valued.subgroups_basis valued.uniform_space | |
local postfix `⁺` : 66 := λ A : Huber_pair, A.plus | |
variables {A : Huber_pair} | |
{Γ₀ : Type*} [linear_ordered_comm_group_with_zero Γ₀] {v : valuation A Γ₀} | |
{rd : spa.rational_open_data A} (hv : valuation.is_continuous v) | |
namespace Huber_pair | |
open valuation linear_ordered_structure | |
local attribute [instance] set.smul_set_action | |
local notation `A⟮T/s⟯` := spa.rational_open_data.localization rd | |
local notation `s` := rd.s | |
local notation `T` := rd.T | |
/-- An auxilliary definition that constructs s as unit in the valuation field | |
of a valuation v, under the assumption that v s ≠ 0.-/ | |
def unit_s (hs : v s ≠ 0) : units (valuation_field v) := | |
units.mk0 (valuation_field_mk v s) $ valuation_field_mk_ne_zero v s hs | |
example : (λ r, localization.of (valuation_ID_mk v r)) = valuation_field_mk v := rfl | |
set_option class.instance_max_depth 64 | |
/--The set T/s (for some rational open subset D(T,s)) considered as subset of the valuation field.-/ | |
def v_T_over_s (hs : v s ≠ 0) : set (valuation_field v) := | |
((unit_s hs)⁻¹ : v.valuation_field) • ((valuation_field_mk v) '' rd.T) | |
lemma v_T_over_s_le_one (hs : v s ≠ 0) (hT2 : ∀ t : A, t ∈ T → v t ≤ v s) : | |
v_T_over_s hs ⊆ {x : valuation_field v | valuation_field.canonical_valuation v x ≤ 1} := | |
begin | |
let v' := valuation_field.canonical_valuation v, | |
intros k Hk, | |
show v' k ≤ 1, | |
let u := unit_s hs, | |
have remember_this : valuation_field_mk v s = u.val := rfl, | |
unfold v_T_over_s at Hk, | |
rcases Hk with ⟨l, ⟨t, ht, rfl⟩, rfl⟩, | |
rw [smul_eq_mul, v'.map_mul], | |
change v' (↑(unit_s hs)⁻¹) * _ ≤ _, | |
rw mul_comm, | |
apply le_of_le_mul_right | |
(group_with_zero.unit_ne_zero $ units.map (v' : v.valuation_field →* (value_monoid v)) u), | |
show v' _ * v' _ * v' u ≤ _, | |
rw [mul_assoc, one_mul, ← v'.map_mul, units.inv_mul, v'.map_one, mul_one], | |
change canonical_valuation v t ≤ v' u.val, | |
rw ← remember_this, | |
change _ ≤ canonical_valuation v s, | |
rw canonical_valuation_is_equiv v, | |
exact hT2 _ ht, | |
end | |
lemma v_le_one_is_bounded {R : Type*} [comm_ring R] (v : valuation R Γ₀) : | |
is_bounded {x : valuation_field v | valuation_field.canonical_valuation v x ≤ 1} := | |
begin | |
let v' := valuation_field.canonical_valuation v, | |
intros U HU, | |
rcases subgroups_basis.mem_nhds_zero.mp HU with ⟨_, ⟨γ, rfl⟩, H⟩, | |
let V := {k : valuation_field v | v' k < ↑γ}, | |
use V, | |
existsi _, swap, | |
{ rw subgroups_basis.mem_nhds_zero, | |
use [V, set.mem_range_self _] }, | |
intros w Hw b Hb, | |
change V ⊆ U at H, | |
change v' w < γ at Hw, | |
change v' b ≤ 1 at Hb, | |
apply set.mem_of_mem_of_subset _ H, | |
change v' (w * b) < γ, | |
rw v'.map_mul, | |
exact actual_ordered_comm_monoid.mul_lt_of_lt_of_nongt_one' Hw Hb, | |
end | |
lemma v_le_one_is_power_bounded {R : Type*} [comm_ring R] (v : valuation R Γ₀) : | |
is_power_bounded_subset {x : valuation_field v | valuation_field.canonical_valuation v x ≤ 1} := | |
begin | |
let v' := valuation_field.canonical_valuation v, | |
refine is_bounded.subset _ (v_le_one_is_bounded v), | |
intros x hx, | |
induction hx with a ha a b ha' hb' ha hb, | |
{ assumption }, | |
{ show v' 1 ≤ 1, rw v'.map_one, }, | |
{ show v' (a * b) ≤ 1, rw v'.map_mul, | |
exact actual_ordered_comm_monoid.mul_nongt_one' ha hb, } | |
end | |
lemma v_T_over_s_is_power_bounded (hs : v s ≠ 0) (hT2 : ∀ t : A, t ∈ T → v t ≤ v s) : | |
is_power_bounded_subset (v_T_over_s hs) := | |
begin | |
apply power_bounded.subset (v_T_over_s_le_one hs hT2), | |
exact v_le_one_is_power_bounded v | |
end | |
/--The natural map from the localization A⟮T/s⟯ of a Huber pair A | |
at a rational open subset R(T/s) | |
to the valuation field of a valuation that does not have s in its support.-/ | |
noncomputable def to_valuation_field (hs : v s ≠ 0) : A⟮T/s⟯ → (valuation_field v) := | |
Huber_ring.away.lift T s (valuation_field_mk v) (unit_s hs) rfl | |
/-- The natural map from A⟮T/s⟯ to the valuation field is a ring homomorphism. -/ | |
instance (hs : v s ≠ 0) : is_ring_hom (to_valuation_field hs) := | |
by delta to_valuation_field; apply_instance | |
local attribute [instance] valued.subgroups_basis | |
theorem to_valuation_field_cts' (hs : v s ≠ 0)(hT2 : ∀ t : A, t ∈ T → v t ≤ v s) (hv : is_continuous v) : | |
continuous (to_valuation_field hs) := | |
Huber_ring.away.lift_continuous T s (by convert subgroups_basis.nonarchimedean) | |
(continuous_valuation_field_mk_of_continuous v hv) _ rfl (rd.Hopen) | |
(v_T_over_s_is_power_bounded hs hT2) | |
-- now we need that the triangles commute when we fix v but change s. | |
theorem to_valuation_field_commutes (r1 r2 : spa.rational_open_data A) (h : r1 ≤ r2) | |
(hs1 : v r1.s ≠ 0) (hs2 : v r2.s ≠ 0) : | |
to_valuation_field hs1 = (to_valuation_field hs2) ∘ (spa.rational_open_data.localization_map h) := | |
begin | |
refine localization.funext | |
(to_valuation_field hs1 : localization A (powers r1.s) → valuation_field v) | |
((to_valuation_field hs2) ∘ (spa.rational_open_data.localization_map h) : | |
localization A (powers r1.s) → valuation_field v) _, | |
intro r, | |
delta to_valuation_field spa.rational_open_data.localization_map function.comp, | |
erw Huber_ring.away.lift_of, | |
erw Huber_ring.away.lift_of, | |
change _ = Huber_ring.away.lift (r2.T) (r2.s) _ _ _ (localization.of r), | |
rw Huber_ring.away.lift_of, | |
end | |
namespace rational_open_data | |
lemma to_valuation_field_cts_aux {r : spa.rational_open_data A} {v : spa A} | |
(hv : v ∈ r.open_set) : (Spv.out v.1) (r.s) ≠ 0 := hv.2 | |
/-- The natural map from A(T/s) to the valuation field of a valuation v contained in | |
the rational open subset R(T/s). -/ | |
def to_valuation_field {r : spa.rational_open_data A} {v : spa A} (hv : v ∈ r.open_set) : | |
spa.rational_open_data.localization r → valuation_field (Spv.out (v.val)) := | |
(to_valuation_field $ to_valuation_field_cts_aux hv) | |
/-- The natural map from A(T/s) to the valuation field of a valuation v contained in | |
the rational open subset R(T/s) is a ring homomorphism. -/ | |
instance {r : spa.rational_open_data A} {v : spa A} (hv : v ∈ r.open_set) : | |
is_ring_hom (to_valuation_field hv) := by {delta to_valuation_field, apply_instance} | |
/-- If v : spa A is in D(T,s) then the map A(T/s) -> K_v is continuous -/ | |
theorem to_valuation_field_cts {r : spa.rational_open_data A} {v : spa A} | |
(hv : v ∈ r.open_set) : continuous (to_valuation_field hv) := | |
Huber_pair.to_valuation_field_cts' hv.2 hv.1 v.2.1 | |
-- Now we need to show that if r1 <= r2 then these to_valuation_field maps | |
-- are compatible. | |
theorem to_valuation_field_commutes {r1 r2 : spa.rational_open_data A} {v : spa A} | |
(hv1 : v ∈ r1.open_set) (hv2 : v ∈ r2.open_set) (h : r1 ≤ r2) : | |
(to_valuation_field hv1) = | |
(to_valuation_field hv2) ∘ (spa.rational_open_data.localization_map h) := | |
to_valuation_field_commutes r1 r2 h hv1.2 hv2.2 | |
end rational_open_data | |
end Huber_pair | |