Datasets:

Modalities:
Text
Languages:
English
Libraries:
Datasets
License:
Zhangir Azerbayev
squashed?
4365a98
raw
history blame
20.7 kB
import ring_theory.localization
import tactic.tidy
import tactic.ring
import Huber_ring.basic
import for_mathlib.topological_rings
import for_mathlib.algebra
import for_mathlib.submodule
import for_mathlib.nonarchimedean.basic
/-!
# Localization of Huber rings
This file contains technical machinery that is needed for the
definition of the structure presheaf on Spa (the adic spectrum).
We start with a Huber ring A, a subset T ⊆ A, and an element s of A.
Our goal is to define a topology on (away s), which is the localization of A at s.
This topology will depend on T, and should not depend on the ring of definition.
In the literature, this ring is commonly denoted with A⟮T/s⟯ to indicate the
dependence on T. For the same reason, we start by defining a wrapper type that
includes T in its assumptions.
To realize this goal, we need to use several technical lemmas from the theory of topological rings.
This file ends with the universal property of A⟮T/s⟯.
We point out that this universal property is recorded in [Wedhorn, Prop & Def 5.51].
However, the running assumption of section 5.6 of [Wedhorn] is the conclusion
of [Wedhorn, Lem 6.20], which explains our “detour” through section 6 of [Wedhorn].
(We only need the case n=1 of [Wedhorn, Lem 6.20].)
# Notation
We make heavy use of the following notation (also used in [Wedhorn]):
- if S and T are two subset of a monoid A, then S * T denotes the set {s*t | s ∈ S, t ∈ T}.
- if x is an element of A, then x * T = {x*t | t ∈ T}
- if A is an A₀-algebra, x is an element of A, and M ⊆ A an A₀-submodule,
then x • M is the submodule {x • m | m ∈ M}.
- this generalizes to sets, for S ⊆ A, the notation S • M means the submodule generated by S * M.
- in particular, if N is another such submodule, then the submodule M * N is the submodule
generated by
the product of sets M * N.
-/
universes u v
local attribute [instance, priority 0] classical.prop_decidable
local attribute [instance] set.pointwise_mul_comm_semiring
local attribute [instance] set.smul_set_action
local attribute [instance] set.pointwise_mul_image_is_semiring_hom
namespace Huber_ring
open localization algebra topological_ring submodule set topological_add_group
variables {A : Type u} [comm_ring A] [topological_space A] [topological_ring A]
variables (T : set A) (s : A)
/--The localization of a topological ring at an element `s`,
endowed with a topology that depends on a set `T`-/
@[nolint] def away (T : set A) (s : A) := away s
local notation `A⟮T/s⟯` := away T s
namespace away
/-- The ring structure on A⟮T/s⟯. -/
instance : comm_ring A⟮T/s⟯ := by delta away; apply_instance
/-- The module structure on A⟮T/s⟯. -/
instance : module A A⟮T/s⟯ := by delta away; apply_instance
/-- The algebra structure on A⟮T/s⟯. -/
instance : algebra A A⟮T/s⟯ := by delta away; apply_instance
/-- The coercion from A to A⟮T/s⟯. -/
instance : has_coe A A⟮T/s⟯ := ⟨λ a, (of_id A A⟮T/s⟯ : A → A⟮T/s⟯) a⟩
set_option class.instance_max_depth 50
/--An auxiliary subring, used to define the topology on `away T s`-/
def D.aux : set A⟮T/s⟯ :=
let s_inv : A⟮T/s⟯ := ((to_units ⟨s, ⟨1, by simp⟩⟩)⁻¹ : units A⟮T/s⟯) in
ring.closure (s_inv • of_id A A⟮T/s⟯ '' T)
local notation `D` := D.aux T s
/-- The set D is a subring. -/
instance : is_subring D := by delta D.aux; apply_instance
local notation `Dspan` U := span D (of_id A A⟮T/s⟯ '' (U : set A))
/-
To put a topology on `away T s` we want to use the construction
`topology_of_submodules_comm` which needs a directed family of
submodules of `A⟮T/s⟯ = away T s` viewed as `D`-algebra.
This directed family has two satisfy two extra conditions.
Proving these two conditions takes up the beef of this file.
Initially we only assume that `A` is a nonarchimedean ring,
but towards the end we need to strengthen this assumption to Huber ring.
-/
set_option class.instance_max_depth 50
/--The submodules spanned by the open subgroups of `A` form a directed family-/
lemma directed (U₁ U₂ : open_add_subgroup A) :
∃ (U : open_add_subgroup A), (Dspan U) ≤ (Dspan U₁) ⊓ (Dspan U₂) :=
begin
use U₁ ⊓ U₂,
apply lattice.le_inf _ _;
rw span_le;
refine subset.trans (image_subset _ _) subset_span,
{ apply inter_subset_left },
{ apply inter_subset_right },
end
/--For every open subgroup `U` of `A` and every `a : A`,
there exists an open subgroup `V` of `A`,
such that `a • (span D V)` is contained in the `D`-span of `U`.-/
lemma left_mul_subset (h : nonarchimedean A) (U : open_add_subgroup A) (a : A) :
∃ V : open_add_subgroup A, (a : A⟮T/s⟯) • (Dspan V) ≤ (Dspan U) :=
begin
cases h _ _ with V hV,
use V,
work_on_goal 0 {
erw [smul_singleton, ← span_image, span_le, ← image_comp, ← algebra.map_lmul_left, image_comp],
refine subset.trans (image_subset (of_id A A⟮T/s⟯ : A → A⟮T/s⟯) _) subset_span,
rw image_subset_iff,
exact hV },
apply mem_nhds_sets (continuous_mul_left _ _ U.is_open),
rw [mem_preimage, mul_zero],
exact U.zero_mem
end
/--For every open subgroup `U` of `A`, there exists an open subgroup `V` of `A`,
such that the multiplication map sends the `D`-span of `V` into the `D`-span of `U`.-/
lemma mul_le (h : nonarchimedean A) (U : open_add_subgroup A) :
∃ (V : open_add_subgroup A), (Dspan V) * (Dspan V) ≤ (Dspan U) :=
begin
rcases nonarchimedean.mul_subset h U with ⟨V, hV⟩,
use V,
rw span_mul_span,
apply span_mono,
rw ← is_semiring_hom.map_mul (image (of_id A A⟮T/s⟯ : A → A⟮T/s⟯)),
exact image_subset _ hV,
end
/--A technical auxiliary lemma: for every finite set L contained in the ideal generated by T,
there exists a finite set K such that L is contained in the subgroup generated by the set T * K.
(Recall that T * K is the set of products of elements in T and in K.)-/
@[nolint]
lemma K.aux (L : finset A) (h : (↑L : set A) ⊆ ideal.span T) :
∃ (K : finset A), (↑L : set A) ⊆ (↑(span ℤ (T * ↑K)) : set A) :=
begin
delta ideal.span at h,
rw [← set.image_id T] at h,
erw finsupp.span_eq_map_total at h,
choose s hs using finset.subset_image_iff.mp h,
use s.bind (λ f, f.frange),
rcases hs with ⟨hs, rfl⟩,
intros l hl,
rcases finset.mem_image.mp hl with ⟨f, hf, rfl⟩,
refine is_add_submonoid.finset_sum_mem ↑(span _ _) _ _ _,
intros t ht,
refine subset_span ⟨t, _, _, _, mul_comm _ _⟩,
{ replace hf := hs hf,
erw finsupp.mem_supported A f at hf,
exact hf ht },
{ erw [linear_map.id_apply, finset.mem_bind],
use [f, hf],
erw finsupp.mem_support_iff at ht,
erw finsupp.mem_frange,
exact ⟨ht, ⟨t, rfl⟩⟩ }
end
end away
end Huber_ring
namespace Huber_ring
open localization algebra topological_ring submodule set topological_add_group
variables {A : Type u} [Huber_ring A]
variables (T : set A) (s : A)
namespace away
local notation `A⟮T/s⟯` := away T s
local notation `D` := D.aux T s
local notation `Dspan` U := span D (of_id A A⟮T/s⟯ '' (U : set A))
set_option class.instance_max_depth 80
/-- If T ⊆ A generates an open ideal, and U is an open subgroup of A,
then T • U generates an open subgroup.
(This lemma is the main part of case n = 1 of [Wedhorn, Lem 6.20].)-/
lemma mul_T_open (hT : is_open ((ideal.span T) : set A)) (U : open_add_subgroup A) :
is_open (↑(T • span ℤ (U : set A)) : set A) :=
begin
-- Choose an ideal of definition I ⊆ span T
rcases exists_pod_subset _ (mem_nhds_sets hT $ ideal.zero_mem $ ideal.span T)
with ⟨A₀, _, _, _, ⟨_, emb, I, fg, top⟩, hI⟩,
resetI, dsimp only at hI,
-- Choose a generating set L ⊆ I
cases fg with L hL,
rw ← hL at hI,
-- Observe L ⊆ span T
have Lsub : (↑(L.image (to_fun A)) : set A) ⊆ ↑(ideal.span T) :=
by { rw finset.coe_image, exact set.subset.trans (image_subset _ subset_span) hI },
-- Choose a finite set K such that L ⊆ span (T * K)
cases K.aux _ _ Lsub with K hK,
-- Choose V such that K * V ⊆ U
let nonarch := Huber_ring.nonarchimedean,
let V := K.inf (λ k : A, classical.some (nonarch.left_mul_subset U k)),
cases is_ideal_adic_iff.mp top with H₁ H₂,
have hV : ↑K * (V : set A) ⊆ U,
{ rintros _ ⟨k, hk, v, hv, rfl⟩,
apply classical.some_spec (nonarch.left_mul_subset U k),
refine ⟨v, _, rfl⟩,
apply (finset.inf_le hk : V ≤ _),
exact hv },
replace hV : span ℤ _ ≤ span ℤ _ := span_mono hV,
erw [← span_mul_span, ← submodule.smul_def] at hV,
haveI : is_ring_hom (to_fun A : A₀ → A) := algebra.is_ring_hom,
-- Choose m such that I^m ⊆ V
cases H₂ _ (mem_nhds_sets (emb.continuous _ V.is_open) _) with m hm,
work_on_goal 1 {
show to_fun A (0 : A₀) ∈ V,
convert V.zero_mem,
exact is_ring_hom.map_zero _ },
rw ← image_subset_iff at hm,
change to_fun A '' ↑(I ^ m) ⊆ ↑V at hm,
erw [← span_int_eq (V : set A), ← span_int_eq (↑(I^m) : set A₀)] at hm,
change (submodule.map (alg_hom_int $ to_fun A).to_linear_map _) ≤ _ at hm,
work_on_goal 1 {apply_instance},
-- It suffices to provide an open subgroup
apply @open_add_subgroup.is_open_of_open_add_subgroup A _ _ _ _
(submodule.submodule_is_add_subgroup _),
refine ⟨⟨to_fun A '' ↑(I^(m+1)), _, _⟩, _⟩,
work_on_goal 2 {assumption},
all_goals { try {apply_instance} },
{ exact emb.is_open_map _ (H₁ _) },
-- What remains is the following calculation: I^(m+1) ⊆ T • span U.
-- Unfortunately it seems to be hard to express in calc mode
-- First observe: I^(m+1) = L • I^m as A₀-ideal, but also as ℤ-submodule
erw [subtype.coe_mk, pow_succ, ← hL, ← submodule.smul_def, hL, smul_eq_smul_span_int],
change (submodule.map (alg_hom_int $ to_fun A).to_linear_map _) ≤ _,
work_on_goal 1 {apply_instance},
-- Now we map the above equality through the canonical map A₀ → A
erw [submodule.map_mul, ← span_image, ← submodule.smul_def],
erw [finset.coe_image] at hK,
-- Next observe: L • I^m ≤ (T * K) • V
refine le_trans (smul_le_smul hK hm) _,
-- Also observe: T • (K • V) ≤ T • U
refine (le_trans (le_of_eq _) (smul_le_smul (le_refl T) hV)),
change span _ _ * _ = _,
erw [span_span, ← mul_smul],
refl
end
-- The above lemma is what we really need, but the version below is here for comparison with
-- Wedhorn.
/-- If T ⊆ A generates an open ideal, and U is an open subgroup of A,
then T • U is a neighborhood of zero.
(This lemma is case n = 1 of [Wedhorn, Lem 6.20].)-/
lemma mul_T_nhds (hT : is_open ((ideal.span T) : set A)) (U : open_add_subgroup A) :
↑(T • span ℤ (U : set A)) ∈ nhds (0 : A) :=
mem_nhds_sets (mul_T_open _ hT _) (submodule.zero_mem (T • span ℤ (U : set A)))
set_option class.instance_max_depth 80
/-
Our next goal is the lemma mul_left,
which says that for every element a of A⟮T/s⟯ and
every open subgroup U of A, there exists an open subgroup V of A, such that a • Dspan V ≤ Dspan U.
We prove this statement using two helper lemmas.
The first proves the case where a = s⁻¹. The second considers arbitrary powers of s⁻¹.
-/
/--Helper lemma. A special case of mul_left, where the element a is s⁻¹.-/
lemma mul_left.aux₁ (hT : is_open (↑(ideal.span T) : set A)) (U : open_add_subgroup A) :
∃ (V : open_add_subgroup A),
(↑((to_units ⟨s, ⟨1, pow_one s⟩⟩)⁻¹ : units A⟮T/s⟯) : A⟮T/s⟯) • (Dspan ↑V) ≤ Dspan ↑U :=
begin
refine ⟨⟨_, mul_T_open _ hT U, by apply_instance⟩, _⟩,
erw [subtype.coe_mk (↑(T • span ℤ ↑U) : set A), @submodule.smul_def ℤ, span_mul_span],
change _ • span _ ↑(submodule.map (alg_hom_int $ (of_id A A⟮T/s⟯ : A → A⟮T/s⟯)).to_linear_map _) ≤ _,
erw [← span_image, span_span_int, submodule.smul_def, span_mul_span, span_le],
rintros _ ⟨s_inv, hs_inv, tu, htu, rfl⟩,
erw mem_image at htu,
rcases htu with ⟨_, ⟨t, ht, u, hu, rfl⟩, rfl⟩,
rw submodule.mem_coe,
convert (span _ _).smul_mem _ _ using 1,
work_on_goal 3 { exact subset_span ⟨u, hu, rfl⟩ },
work_on_goal 1 { constructor },
work_on_goal 0 {
change s_inv * (algebra_map _ _) = _ • (algebra_map _ _),
rw [algebra.map_mul, ← mul_assoc],
congr },
{ apply ring.mem_closure,
refine ⟨t, ⟨t, ht, rfl⟩, _⟩,
rw set.mem_singleton_iff at hs_inv,
rw hs_inv, refl }
end
/--Helper lemma. A special case of mul_left, where the element a is the inverse of a power of s.-/
lemma mul_left.aux₂ (hT : is_open (↑(ideal.span T) : set A))
(s' : powers s) (U : open_add_subgroup A) :
∃ (V : open_add_subgroup A),
(↑((to_units s')⁻¹ : units A⟮T/s⟯) : A⟮T/s⟯) • (Dspan (V : set A)) ≤ Dspan (U : set A) :=
begin
rcases s' with ⟨_, ⟨n, rfl⟩⟩,
induction n with k hk,
{ use U,
simp only [pow_zero],
change (1 : A⟮T/s⟯) • _ ≤ _,
rw one_smul,
exact le_refl _ },
cases hk with W hW,
cases mul_left.aux₁ T s hT W with V hV,
use V,
refine le_trans _ hW,
refine le_trans (le_of_eq _) (smul_le_smul (le_refl _) hV),
change _ = (_ : A⟮T/s⟯) • _,
rw ← mul_smul,
congr' 1,
change ⟦((1 : A), _)⟧ = ⟦(1 * 1, _)⟧,
simpa [pow_succ'],
end
/-- For every element a of A⟮T/s⟯ and every open subgroup U of A,
there exists an open subgroup V of A, such that a • Dspan V ≤ Dspan U. -/
lemma mul_left (hT : is_open (↑(ideal.span T) : set A)) (a : A⟮T/s⟯) (U : open_add_subgroup A) :
∃ (V : open_add_subgroup A), a • (Dspan (V : set A)) ≤ Dspan (U : set A) :=
begin
apply localization.induction_on a,
intros a' s',
clear a,
cases mul_left.aux₂ _ _ hT s' U with W hW,
cases left_mul_subset T s Huber_ring.nonarchimedean W a' with V hV,
use V,
erw [localization.mk_eq, mul_comm, mul_smul],
exact le_trans (smul_le_smul (le_refl _) hV) hW
end
/-
Now that we have the lemma mul_left in place, we can define the topology on A⟮T/s⟯.
We construct the topology using a basis of open subgroups.
-/
/-- The basis of open subgroups of the topology on A⟮T/s⟯.-/
def top_loc_basis (hT : is_open (↑(ideal.span T) : set A)) : subgroups_basis A⟮T/s⟯ :=
subgroups_basis.of_indexed_submodules_of_comm
(λ U : open_add_subgroup A, (span D (coe '' U.1)))
(directed T s) (mul_left T s hT) (mul_le T s Huber_ring.nonarchimedean)
/-- The topology on A⟮T/s⟯.-/
def top_space (hT : is_open (↑(ideal.span T) : set A)) : topological_space A⟮T/s⟯ :=
@subgroups_basis.topology A⟮T/s⟯ _ (top_loc_basis T s hT)
/-- The natural map A → A⟮T/s⟯ is continuous.-/
lemma of_continuous (hT : is_open (↑(ideal.span T) : set A)) :
@continuous _ _ _ (away.top_space T s hT) (of : A → A⟮T/s⟯) :=
begin
letI := away.top_loc_basis T s hT,
letI := away.top_space T s hT,
haveI : topological_add_group A⟮T/s⟯ := subgroups_basis.is_topological_add_group,
suffices : continuous_at (coe : A → A⟮T/s⟯) 0,
from topological_add_group.continuous_of_continuous_at_zero _ this,
unfold continuous_at,
rw subgroups_basis.tendsto_into,
rintros _ ⟨U, rfl⟩,
suffices : coe ⁻¹' (Dspan U.val).carrier ∈ nhds (0 : A),
{ simpa only [show ((0:A) : A⟮T/s⟯) = 0, from rfl, sub_zero] using this },
apply filter.mem_sets_of_superset (open_add_subgroup.mem_nhds_zero U),
rw ← image_subset_iff,
exact subset_span
end
section
variables {B : Type*} [comm_ring B] (f : A → B) [is_ring_hom f]
variables (fs : units B) (hs : f s = fs)
/-- The universal property of the localization of a Huber ring.
(Let A be a Huber ring, s an element of A and T ⊆ A a subset that generates an open ideal.
Let B be a ring, and f : A → B a ring homomorphism, such that f(s) is invertible.
The natural map A⟮T/s⟯ → B is simply defined using the universal property of ordinary localizations.
Under additional assumptions, this map is continuous. See lift_continuous.) -/
noncomputable def lift : A⟮T/s⟯ → B := localization.away.lift f (hs.symm ▸ is_unit_unit fs)
/-- The natural map from the localization of a Huber ring
to another topological ring (satisfying certain assumptions) is a ring homomorphism. -/
instance : is_ring_hom (lift T s f fs hs : A⟮T/s⟯ → B) :=
localization.away.lift.is_ring_hom f _
variable {f}
@[simp] lemma lift_of (a : A) :
lift T s f fs hs (of a) = f a := localization.away.lift_of _ _ _
@[simp] lemma lift_coe (a : A) :
lift T s f fs hs a = f a := localization.away.lift_of _ _ _
@[simp] lemma lift_comp_of :
lift T s f fs hs ∘ of = f := localization.lift'_comp_of _ _ _
end
section
variables {B : Type*} [comm_ring B] [topological_space B] [topological_ring B]
variables (hB : nonarchimedean B) {f : A → B} [is_ring_hom f] (hf : continuous f)
variables (fs : units B) (hs : f s = fs)
variables (hT : is_open (↑(ideal.span T) : set A))
variables (hTB : is_power_bounded_subset ((↑fs⁻¹ : B) • f '' T))
include hB hf hT hTB
/-- Let A be a Huber ring, s an element of A and T ⊆ A a subset that generates an open ideal.
Let B be a nonarchimedean ring, and f : A → B a continuous ring homomorphism, such that f(s) is
invertible. Suppose that f(s)⁻¹ * f(T) is a power bounded subset of B.
Then the natural map A⟮T/s⟯ → B is continuous. -/
lemma lift_continuous : @continuous _ _ (away.top_space T s hT) _ (lift T s f fs hs) :=
begin
letI := away.top_loc_basis T s hT,
letI := away.top_space T s hT,
haveI : topological_add_group A⟮T/s⟯ := subgroups_basis.is_topological_add_group,
apply continuous_of_continuous_at_zero _ _,
all_goals {try {apply_instance}},
intros U hU,
rw is_ring_hom.map_zero (lift T s f fs hs) at hU,
rw filter.mem_map_sets_iff,
let hF := power_bounded.ring.closure' hB _ hTB,
erw is_bounded_add_subgroup_iff hB at hF,
rcases hF U hU with ⟨V, hVF⟩,
let hV := V.mem_nhds_zero,
rw ← is_ring_hom.map_zero f at hV,
replace hV := hf.tendsto 0 hV,
rw filter.mem_map_sets_iff at hV,
rcases hV with ⟨W, hW, hWV⟩,
cases Huber_ring.nonarchimedean W hW with Y hY,
refine ⟨↑(Dspan Y), _, _⟩,
{ apply mem_nhds_sets,
{ exact subgroups_basis.is_op _ rfl (mem_range_self _) },
{ exact (Dspan ↑Y).zero_mem } },
{ refine set.subset.trans _ hVF,
rintros _ ⟨x, hx, rfl⟩,
apply span_induction hx,
{ rintros _ ⟨a, ha, rfl⟩,
erw [lift_of, ← mul_one (f a)],
refine mul_mem_mul (subset_span $ hWV $ ⟨a, hY ha, rfl⟩)
(subset_span $ is_submonoid.one_mem _) },
{ rw is_ring_hom.map_zero (lift T s f fs hs),
exact is_add_submonoid.zero_mem _ },
{ intros a b ha hb,
rw is_ring_hom.map_add (lift T s f fs hs),
exact is_add_submonoid.add_mem ha hb },
{ rw [submodule.smul_def, span_mul_span],
intros d a ha,
rw [smul_def'', is_ring_hom.map_mul (lift T s f fs hs), mul_comm],
rcases (finsupp.mem_span_iff_total ℤ).mp (by rw set.image_id; exact ha) with ⟨l, hl₁, hl₂⟩,
rw finsupp.mem_supported at hl₁,
rw [← hl₂, finsupp.total_apply] at ha ⊢,
rw finsupp.sum_mul,
refine is_add_submonoid.finset_sum_mem ↑(span _ _) _ _ _,
intros b hb',
apply subset_span,
--show (↑(_ : ℤ) * _) * _ ∈ _,
simp only [smul_def''],
rcases hl₁ hb' with ⟨v, hv, b, hb, rfl⟩,
refine ⟨↑(l (v * b)) * v, _, b * lift T s f fs hs ↑d, _, _⟩,
{ rw ← gsmul_eq_mul, exact is_add_subgroup.gsmul_mem hv },
{ refine is_submonoid.mul_mem hb _,
cases d with d hd,
rw subtype.coe_mk,
apply ring.in_closure.rec_on hd,
{ rw is_ring_hom.map_one (lift T s f fs hs), exact is_submonoid.one_mem _ },
{ rw [is_ring_hom.map_neg (lift T s f fs hs), is_ring_hom.map_one (lift T s f fs hs)],
exact is_add_subgroup.neg_mem (is_submonoid.one_mem _) },
{ rintros _ ⟨_, ⟨t, ht, rfl⟩, rfl⟩ b hb,
rw is_ring_hom.map_mul (lift T s f fs hs),
refine is_submonoid.mul_mem _ hb,
apply ring.mem_closure,
erw [smul_eq_mul, is_ring_hom.map_mul (lift T s f fs hs), lift_of],
refine ⟨_, ⟨t, ht, rfl⟩, _⟩,
congr' 1,
erw [← units.coe_map' (lift T s f fs hs), ← units.ext_iff, (units.map' _).map_inv,
inv_inj', units.ext_iff, ← hs],
{ exact lift_of T s fs hs s } },
{ intros a b ha hb,
rw is_ring_hom.map_add (lift T s f fs hs),
exact is_add_submonoid.add_mem ha hb } },
{ simpa [mul_assoc] } } }
end
end
end away
end Huber_ring