Datasets:
Tasks:
Text Generation
Modalities:
Text
Sub-tasks:
language-modeling
Languages:
English
Size:
100K - 1M
License:
import algebra.homology.homological_complex | |
import topology.category.Profinite.cofiltered_limit | |
import for_mathlib.Cech.split | |
import for_mathlib.Profinite.arrow_limit | |
import for_mathlib.Profinite.clopen_limit | |
import for_mathlib.simplicial.complex | |
import locally_constant.Vhat | |
import prop819.completion | |
--import prop819.locally_constant | |
open_locale nnreal | |
noncomputable theory | |
open category_theory opposite | |
open SemiNormedGroup | |
universes u v | |
-- We have a surjective morphism of profinite sets. | |
variables (F : arrow Profinite.{u}) (surj : function.surjective F.hom) | |
variables (M : SemiNormedGroup.{v}) | |
/-- The cochain complex built out of the cosimplicial object obtained by applying | |
`LocallyConstant.obj M` to the augmented Cech nerve of `F`. -/ | |
abbreviation FL : cochain_complex SemiNormedGroup ℕ := | |
(((cosimplicial_object.augmented.whiskering _ _).obj (LocallyConstant.obj M)).obj | |
F.augmented_cech_nerve.right_op).to_cocomplex | |
/-- The cochain complex built out of the cosimplicial object obtained by applying | |
`LCC.obj M` to the augmented Cech nerve of `F`. -/ | |
abbreviation FLC : cochain_complex SemiNormedGroup ℕ := | |
(((cosimplicial_object.augmented.whiskering _ _).obj (LCC.obj M)).obj | |
F.augmented_cech_nerve.right_op).to_cocomplex | |
--def Rop : (simplicial_object.augmented Profinite)ᵒᵖ ⥤ cosimplicial_object.augmented Profiniteᵒᵖ := | |
--{ obj := λ X, X.unop.right_op, | |
-- map := λ X Y f, | |
-- { left := quiver.hom.op (comma_morphism.right f.unop), | |
-- right := nat_trans.right_op (comma_morphism.left f.unop), | |
-- w' := by { ext, exact congr_arg (λ η, (nat_trans.app η (op x)).op) f.unop.w.symm, } } } | |
/-- A functorial version of `FL`. -/ | |
def FL_functor : (arrow Profinite.{u})ᵒᵖ ⥤ cochain_complex SemiNormedGroup ℕ := | |
simplicial_object.augmented_cech_nerve.op ⋙ | |
simplicial_to_cosimplicial_augmented _ ⋙ | |
(cosimplicial_object.augmented.whiskering _ _).obj (LocallyConstant.obj M) ⋙ | |
cosimplicial_object.augmented.cocomplex | |
/-- The functor sending an augmented cosimplicial object `X` to | |
the cochain complex associated to the composition of `X` with `LCC.obj M`. -/ | |
@[simps obj map] | |
def FLC_functor' : (simplicial_object.augmented Profinite.{u})ᵒᵖ ⥤ cochain_complex SemiNormedGroup ℕ := | |
simplicial_to_cosimplicial_augmented _ ⋙ | |
(cosimplicial_object.augmented.whiskering _ _).obj (SemiNormedGroup.LCC.obj M) ⋙ | |
cosimplicial_object.augmented.cocomplex | |
/-- A functorial version of `FLC`. -/ | |
def FLC_functor : (arrow Profinite.{u})ᵒᵖ ⥤ cochain_complex SemiNormedGroup ℕ := | |
simplicial_object.augmented_cech_nerve.op ⋙ FLC_functor' M | |
-- Sanity checks | |
example : FL F M = (FL_functor M).obj (op F) := rfl | |
example : FLC F M = (FLC_functor M).obj (op F) := rfl | |
lemma _root_.cosimplicial_object.augmented.cocomplex_map_norm_noninc | |
{C₁ C₂ : cosimplicial_object.augmented SemiNormedGroup} (f : C₁ ⟶ C₂) | |
(hf1 : f.left.norm_noninc) (hf2 : ∀ n, (f.right.app n).norm_noninc) (i : ℕ) : | |
((cosimplicial_object.augmented.cocomplex.map f).f i).norm_noninc := | |
begin | |
cases i, | |
{ exact hf1 }, | |
{ exact hf2 _ }, | |
end | |
lemma FLC_functor_map_norm_noninc {f g : (arrow Profinite.{u})ᵒᵖ} (α : f ⟶ g) (i : ℕ) : | |
(((FLC_functor M).map α).f i).norm_noninc := | |
begin | |
refine cosimplicial_object.augmented.cocomplex_map_norm_noninc _ _ _ _, | |
{ exact SemiNormedGroup.LCC_obj_map_norm_noninc _ _ }, | |
{ intro n, | |
exact SemiNormedGroup.LCC_obj_map_norm_noninc _ _ }, | |
end | |
--⊢ cosimplicial_object.δ | |
-- (functor.right_op F.cech_nerve ⋙ (curry.obj (uncurry.obj LocallyConstant ⋙ Completion)).obj M) | |
-- k = | |
-- Completion.map (cosimplicial_object.δ (functor.right_op F.cech_nerve ⋙ LocallyConstant.obj M) k) | |
lemma FLC_iso_helper {x y : simplex_category} (f : x ⟶ y) : | |
(F.cech_nerve.right_op ⋙ LCC.obj M).map f = | |
Completion.map ((F.cech_nerve.right_op ⋙ LocallyConstant.obj M).map f) := | |
begin | |
change Completion.map _ = _, | |
congr' 1, | |
dsimp [uncurry], | |
erw locally_constant.map_hom_id, | |
change 𝟙 _ ≫ _ = _, | |
rw category.id_comp, | |
end | |
/-- | |
This is a strict (i.e. norm-preserving) isomorphism between `FLC F M` and | |
the cochain complex obtained by mapping `FL F M` along the `Completion` functor. | |
-/ | |
def FLC_iso : strict_iso ((Completion.map_homological_complex _).obj (FL F M)) (FLC F M) := | |
{ iso := homological_complex.hom.iso_of_components | |
(λ i, nat.rec_on i (eq_to_iso rfl) (λ _ _, eq_to_iso rfl)) | |
begin | |
rintro (_|i) (_|j) (_|⟨i,w⟩); ext, | |
{ dsimp only [], | |
delta FLC FL, | |
dsimp only [ | |
cosimplicial_object.augmented.whiskering, | |
cosimplicial_object.augmented.whiskering_obj, | |
cosimplicial_object.augmented.to_cocomplex, | |
cosimplicial_object.augmented.to_cocomplex_obj, | |
cochain_complex.of, | |
functor.map_homological_complex ], | |
rw dif_pos rfl, | |
rw dif_pos rfl, | |
erw [category.id_comp, category.comp_id, category.comp_id, category.comp_id], | |
dsimp only [cosimplicial_object.augmented.to_cocomplex_d, | |
cosimplicial_object.augmented.drop, comma.snd, cosimplicial_object.whiskering, | |
whiskering_right, cosimplicial_object.coboundary, functor.const_comp, LCC], | |
simp only [quiver.hom.unop_op, arrow.augmented_cech_nerve_hom_app, | |
whisker_right_app, nat_trans.comp_app, curry.obj_obj_map, category.id_comp, | |
nat_trans.right_op_app, uncurry.obj_map, nat_trans.id_app, | |
simplicial_object.augmented.right_op_hom, | |
category_theory.functor.map_id, category_theory.functor.comp_map, | |
SemiNormedGroup.LocallyConstant_obj_map, SemiNormedGroup.Completion_map], | |
erw category.id_comp }, | |
{ dsimp only [], | |
delta FLC FL, | |
dsimp only [ | |
cosimplicial_object.augmented.whiskering, | |
cosimplicial_object.augmented.whiskering_obj, | |
cosimplicial_object.augmented.to_cocomplex, | |
cosimplicial_object.augmented.to_cocomplex_obj, | |
cochain_complex.of, | |
functor.map_homological_complex ], | |
rw dif_pos rfl, | |
rw dif_pos rfl, | |
erw [category.id_comp, category.comp_id, category.comp_id, category.comp_id], | |
dsimp only [ | |
cosimplicial_object.augmented.to_cocomplex_d, | |
cosimplicial_object.augmented.drop, | |
comma.snd, | |
cosimplicial_object.whiskering, | |
whiskering_right, | |
cosimplicial_object.coboundary, | |
LCC ], | |
rw [Completion.map_sum], | |
congr, | |
funext k, | |
rw [Completion.map_zsmul], | |
congr' 1, | |
apply FLC_iso_helper } | |
end, | |
is_strict := λ i, { strict_hom' := λ a, by { cases i; refl } } }. | |
open_locale simplicial | |
-- TODO: Move this to mathlib (also relax the has_limits condition). | |
/-- the isomorphism between the 0-th term of the Cech nerve and F.left-/ | |
@[simps] | |
def cech_iso_zero {C : Type*} [category C] (F : arrow C) [limits.has_limits C] | |
: F.cech_nerve _[0] ≅ F.left := | |
{ hom := limits.wide_pullback.π _ 0, | |
inv := limits.wide_pullback.lift F.hom (λ _, 𝟙 _) (by simp), | |
hom_inv_id' := begin | |
apply limits.wide_pullback.hom_ext, | |
{ intro i, | |
simp only [limits.wide_pullback.lift_π, category.id_comp, category.comp_id, category.assoc], | |
congr, | |
tidy }, | |
{ simp } | |
end } | |
lemma augmentation_zero {C : Type*} [category C] (F : arrow C) [limits.has_limits C] : | |
(cech_iso_zero F).inv ≫ F.augmented_cech_nerve.hom.app _ = F.hom := by tidy | |
lemma locally_constant_norm_empty (X : Profinite) [is_empty X] | |
(g : (LocallyConstant.obj M).obj (op X)) : ∥g∥ = 0 := | |
begin | |
rw locally_constant.norm_def, | |
dsimp [supr], | |
suffices : set.range (λ x : ↥X, ∥ g.to_fun x ∥) = ∅, | |
{ erw [this, real.Sup_empty], }, | |
simp only [set.range_eq_empty], | |
end | |
lemma Profinite.coe_comp_apply {X Y Z : Profinite} (f : X ⟶ Y) (g : Y ⟶ Z) (x : X) : | |
(f ≫ g) x = g (f x) := rfl | |
lemma locally_constant_to_fun_eq {X : Profinite} (f : locally_constant X M) : | |
f.to_fun = f := rfl | |
lemma locally_constant_eq {X : Profinite} (f g : locally_constant X M) : | |
f.to_fun = g.to_fun ↔ f = g := | |
begin | |
split, | |
{ intro h, ext, change f.to_fun _ = _, rw h, refl, }, | |
{ intro h, rw h } | |
end | |
lemma locally_constant_eq_zero {X : Profinite} (f : locally_constant X M) : | |
f = 0 ↔ set.range f.to_fun ⊆ {0} := | |
begin | |
split, | |
{ intro h, rw h, simp, }, | |
{ intro h, ext x, | |
dsimp, | |
apply h, | |
use x, | |
refl } | |
end | |
include surj | |
lemma prop819_degree_zero_helper : | |
function.surjective (limits.wide_pullback.base (λ i : (fin 1), F.hom)) := | |
begin | |
intro x, | |
obtain ⟨x,rfl⟩ := surj x, | |
dsimp at *, | |
refine ⟨(cech_iso_zero F).inv x, _⟩, | |
dsimp, | |
change (limits.wide_pullback.lift F.hom _ _ ≫ limits.wide_pullback.base _) _ = _, | |
simp, | |
end | |
lemma prop819_zero_norm_le (g : (LocallyConstant.obj M).obj (op F.right)) : ∥ g ∥ ≤ | |
∥(LocallyConstant.obj M).map (limits.wide_pullback.base (λ i : (fin 1), F.hom)).op g∥ := | |
begin | |
casesI is_empty_or_nonempty F.right, | |
{ simp only [locally_constant_norm_empty, norm_nonneg] }, | |
{ apply cSup_le, | |
{ inhabit ↥(F.right), | |
dsimp only [unop_op], | |
refine ⟨∥g.to_fun _∥, default, rfl⟩, }, | |
{ rintros z ⟨z,rfl⟩, | |
obtain ⟨z,rfl⟩ := (prop819_degree_zero_helper _ surj) z, | |
change ∥g.to_fun _∥ ≤ _, | |
erw ← LocallyConstant_map_apply M _ F.right (limits.wide_pullback.base (λ i, F.hom)) g z, | |
apply locally_constant.norm_apply_le } }, | |
end | |
open_locale zero_object | |
theorem prop819_degree_zero (f : (FLC F M).X 0) (hf : (FLC F M).d 0 1 f = 0) : | |
f = 0 := | |
begin | |
apply injective_of_strict_iso _ _ (FLC_iso F M) _ _ hf, | |
intros f hf, | |
have := @controlled_exactness ((FL F M).X 0) (0 : SemiNormedGroup) ((FL F M).X 1) _ _ _ 0 1 | |
zero_lt_one 1 ((FL F M).d _ _) _ _ 1 zero_lt_one f _, | |
{ rcases this with ⟨g,h1,h2⟩, | |
rw ← h1, | |
simp }, | |
{ intros g hg, | |
refine ⟨0,_, by simp⟩, | |
change (FL F M).d 0 1 g = 0 at hg, | |
dsimp, | |
symmetry, | |
delta FL at hg, | |
dsimp only [cosimplicial_object.augmented.whiskering, | |
cosimplicial_object.augmented.whiskering_obj, | |
cosimplicial_object.augmented.to_cocomplex, | |
cochain_complex.of] at hg, | |
rw dif_pos at hg, | |
swap, {simp}, | |
dsimp [cosimplicial_object.augmented.to_cocomplex_d] at hg, | |
ext x, | |
obtain ⟨x,rfl⟩ := (prop819_degree_zero_helper F surj) x, | |
apply_fun (λ e, e x) at hg, | |
rw locally_constant.coe_comap at hg, | |
swap, { continuity }, | |
exact hg }, | |
{ rintro g ⟨g,rfl⟩, | |
refine ⟨g,rfl,_⟩, | |
dsimp [cosimplicial_object.augmented.to_cocomplex_d], | |
simp only [locally_constant.comap_hom_apply, one_mul, | |
if_true, eq_self_iff_true, category.id_comp, category.comp_id], | |
apply prop819_zero_norm_le _ surj }, | |
{ exact hf } | |
end | |
. | |
/-- Any discrete quotient `S` of `F.left` yields a cochain complex, as follows. | |
First, let `T` be the maximal quotient of `F.right` such that `F.hom : F.left ⟶ F.right` | |
descends to `S → T`. Next construct the augmented Cech nerve of `S → T`, and finally | |
apply `FL_functor M` to this augmented Cech nerve. | |
-/ | |
def FLF : (discrete_quotient F.left)ᵒᵖ ⥤ cochain_complex SemiNormedGroup ℕ := | |
(Profinite.arrow_diagram F surj).op ⋙ FL_functor M | |
/-- | |
The diagram of cochain complexes given by `FLF F surj` fits together into a cocone | |
whose cocone point is defeq to `FL F M`. This is precisely this cocone. | |
-/ | |
def FLF_cocone : limits.cocone (FLF F surj M) := | |
(FL_functor M).map_cocone $ (Profinite.arrow_cone F surj).op | |
open Profinite | |
lemma exists_locally_constant_FLF (n : ℕ) (f : (FL F M).X (n+1)) : | |
∃ (S : discrete_quotient F.left) (g : ((FLF F surj M).obj (op S)).X (n+1)), | |
((FLF_cocone F surj M).ι.app (op S)).f _ g = f := | |
begin | |
have hC := Cech_cone_is_limit F surj n, | |
obtain ⟨i,g,hg⟩ := Profinite.exists_locally_constant _ hC f, | |
use [i, g], | |
exact hg.symm, | |
end | |
lemma FLF_cocone_app_coe_eq (n : ℕ) (S : discrete_quotient F.left) | |
(g : ((FLF F surj M).obj (op S)).X (n+1)) : | |
(((FLF_cocone F surj M).ι.app (op S)).f _ g).to_fun = | |
g.to_fun ∘ ((Cech_cone F surj n).π.app _) := | |
begin | |
ext x, | |
change locally_constant.comap _ _ _ = _, | |
rw locally_constant.coe_comap, | |
swap, { continuity }, | |
refl, | |
end | |
lemma FLF_map_coe_eq (n : ℕ) (S T : discrete_quotient F.left) (hh : T ≤ S) | |
(g : ((FLF F surj M).obj (op S)).X (n+1)) : | |
(((FLF F surj M).map (hom_of_le hh).op).f _ g).to_fun = | |
g.to_fun ∘ ((Cech_cone_diagram F surj n).map (hom_of_le hh)) := | |
begin | |
ext x, | |
change locally_constant.comap _ _ _ = _, | |
rw locally_constant.coe_comap, | |
swap, { continuity }, | |
refl, | |
end | |
lemma eq_zero_FLF (n : ℕ) (S : discrete_quotient F.left) | |
(g : ((FLF F surj M).obj (op S)).X (n+1)) | |
(hg : ((FLF_cocone F surj M).ι.app (op S)).f _ g = 0) : | |
∃ (T : discrete_quotient F.left) (hT : T ≤ S), | |
((FLF F surj M).map (hom_of_le hT).op).f _ g = 0 := | |
begin | |
have := exists_image (Cech_cone_diagram F surj n) | |
(Cech_cone F surj n) (Cech_cone_is_limit F surj n) S, | |
obtain ⟨T,hT,hh⟩ := this, | |
use T, use hT, | |
rw [locally_constant_eq_zero, FLF_map_coe_eq], | |
rw [locally_constant_eq_zero, FLF_cocone_app_coe_eq] at hg, | |
rintro x ⟨x,rfl⟩, | |
apply hg, | |
let P : (Cech_cone F surj n).X ⟶ (Cech_cone_diagram F surj n).obj S := | |
(Cech_cone F surj n).π.app _, | |
let p : (Cech_cone_diagram F surj n).obj T ⟶ (Cech_cone_diagram F surj n).obj S := | |
(Cech_cone_diagram F surj n).map (hom_of_le hT), | |
change ↥((Cech_cone_diagram F surj n).obj T) at x, | |
have : p x ∈ set.range p, use x, | |
erw ← hh at this, | |
obtain ⟨y,hy⟩ := this, | |
dsimp only [p] at hy, | |
use y, | |
dsimp only [function.comp_apply], | |
erw hy, | |
end | |
. | |
lemma d_eq_zero_FLF (n : ℕ) (S : discrete_quotient F.left) | |
(g : ((FLF F surj M).obj (op S)).X (n+1)) | |
(hg : (FL F M).d (n+1) (n+2) | |
(((FLF_cocone F surj M).ι.app (op S)).f _ g) = 0) : | |
∃ (T : discrete_quotient F.left) (hT : T ≤ S), | |
((FLF F surj M).obj (op T)).d (n+1) (n+2) | |
(((FLF F surj M).map $ (hom_of_le hT).op).f _ g) = 0 := | |
begin | |
have := ((FLF_cocone F surj M).ι.app (op S)).comm (n+1) (n+2), | |
apply_fun (λ e, e g) at this, | |
erw this at hg, | |
dsimp only [SemiNormedGroup.coe_comp] at hg, | |
have := eq_zero_FLF F surj M (n+1) S _ hg, | |
obtain ⟨T,hT,h⟩ := this, | |
use T, use hT, | |
have hh := ((FLF F surj M).map (hom_of_le hT).op).comm (n+1) (n+2), | |
apply_fun (λ e, e g) at hh, | |
erw ← hh at h, | |
exact h, | |
end | |
lemma norm_eq_FLF (n : ℕ) (S : discrete_quotient F.left) | |
(g : ((FLF F surj M).obj (op S)).X (n+1)) : | |
∃ (T : discrete_quotient F.left) (hT : T ≤ S), | |
∥((FLF_cocone F surj M).ι.app (op S)).f _ g∥₊ = | |
∥(((FLF F surj M)).map (hom_of_le hT).op).f _ g∥₊ := | |
begin | |
have := exists_image (Cech_cone_diagram F surj n) | |
(Cech_cone F surj n) (Cech_cone_is_limit F surj n) S, | |
obtain ⟨T,hT,hh⟩ := this, | |
use T, use hT, | |
ext, | |
dsimp, | |
change Sup _ = Sup _, | |
congr' 1, | |
ext r, | |
split, | |
{ rintros ⟨x,rfl⟩, | |
dsimp only, | |
change ↥(Cech_cone F surj n).X at x, | |
use (Cech_cone F surj n).π.app T x, | |
dsimp only, | |
rw [← locally_constant_to_fun_eq, FLF_map_coe_eq, | |
function.comp_apply, ← Profinite.coe_comp_apply, | |
(Cech_cone F surj n).w, ← locally_constant_to_fun_eq, | |
FLF_cocone_app_coe_eq], | |
refl }, | |
{ rintros ⟨x,rfl⟩, | |
dsimp only, | |
change ↥((Cech_cone_diagram F surj n).obj T) at x, | |
have : (Cech_cone_diagram F surj n).map (hom_of_le hT) x ∈ | |
set.range ((Cech_cone_diagram F surj n).map (hom_of_le hT)), use x, | |
rw ← hh at this, | |
obtain ⟨y,hy⟩ := this, | |
change ↥(Cech_cone F surj n).X at y, | |
use y, | |
dsimp only, | |
simp_rw ← locally_constant_to_fun_eq, | |
rw [FLF_map_coe_eq, FLF_cocone_app_coe_eq], | |
dsimp only [function.comp_apply], | |
erw hy } | |
end | |
lemma exists_locally_constant (n : ℕ) (f : (FL F M).X (n+1)) | |
(hf : (FL F M).d _ (n+2) f = 0) : | |
-- TODO: ∃ ..., true looks a bit fuuny | |
∃ (S : discrete_quotient F.left) | |
(g : ((FLF F surj M).obj (op S)).X (n+1)) | |
(hgf : ((FLF_cocone F surj M).ι.app (op S)).f _ g = f) | |
(hgd : (((FLF F surj M).obj (op S)).d _ (n+2) g = 0)) | |
(hgnorm : ∥f∥₊ = ∥g∥₊), true := | |
begin | |
obtain ⟨S,f,rfl⟩ := exists_locally_constant_FLF F surj M n f, | |
obtain ⟨T1,hT1,h1⟩ := d_eq_zero_FLF F surj M n S f hf, | |
obtain ⟨T2,hT2,h2⟩ := norm_eq_FLF F surj M n S f, | |
let T := T1 ⊓ T2, | |
have hT : T ≤ S := le_trans inf_le_left hT1, | |
have hhT1 : T ≤ T1 := inf_le_left, | |
have hhT2 : T ≤ T2 := inf_le_right, | |
let g := ((FLF F surj M).map (hom_of_le hT).op).f _ f, | |
let g1 := ((FLF F surj M).map (hom_of_le hT1).op).f _ f, | |
let g2 := ((FLF F surj M).map (hom_of_le hT2).op).f _ f, | |
have hg1 : ((FLF F surj M).map (hom_of_le hhT1).op).f _ g1 = g, | |
{ dsimp only [g, g1], | |
have : (hom_of_le hT).op = (hom_of_le hT1).op ≫ (hom_of_le hhT1).op, refl, | |
rw [this, functor.map_comp], | |
refl }, | |
have hg2 : ((FLF F surj M).map (hom_of_le hhT2).op).f _ g2 = g, | |
{ dsimp only [g, g2], | |
have : (hom_of_le hT).op = (hom_of_le hT2).op ≫ (hom_of_le hhT2).op, refl, | |
rw [this, functor.map_comp], | |
refl }, | |
refine ⟨T, g, _, _, _, trivial⟩, | |
{ rw ← (FLF_cocone F surj M).w (hom_of_le hT).op, | |
refl }, | |
{ rw ← hg1, | |
have := ((FLF F surj M).map (hom_of_le hhT1).op).comm (n+1) (n+2), | |
apply_fun (λ e, e g1) at this, | |
erw this, clear this, | |
dsimp only [g1, SemiNormedGroup.coe_comp, function.comp_app], | |
rw [h1, map_zero] }, | |
{ apply le_antisymm, | |
{ dsimp only [g], | |
have := (FLF_cocone F surj M).w (hom_of_le hT).op, | |
rw ← this, clear this, | |
apply LocallyConstant_obj_map_norm_noninc }, | |
{ rw [← hg2, h2], | |
apply LocallyConstant_obj_map_norm_noninc } } | |
end | |
lemma FLF_norm_noninc (n : ℕ) (S : discrete_quotient F.left) | |
(f : ((FLF F surj M).obj (op S)).X n) : | |
∥((FLF_cocone F surj M).ι.app (op S)).f _ f∥₊ ≤ ∥f∥₊ := | |
begin | |
cases n, | |
apply LocallyConstant_obj_map_norm_noninc, | |
apply LocallyConstant_obj_map_norm_noninc, | |
end | |
theorem prop819 {m : ℕ} (ε : ℝ≥0) (hε : 0 < ε) | |
(f : (FLC F M).X (m+1)) (hf : (FLC F M).d (m+1) (m+2) f = 0) : | |
∃ g : (FLC F M).X m, (FLC F M).d m (m+1) g = f ∧ ∥g∥₊ ≤ (1 + ε) * ∥f∥₊ := | |
begin | |
apply exact_of_strict_iso _ _ (FLC_iso F M) ε hε _ _ _ hf, | |
apply cmpl_exact_of_exact _ _ hε, | |
clear hf f m hε ε, | |
intros n f hf, | |
-- We've reduced to the non-completed case. | |
have := exists_locally_constant F surj M _ f hf, | |
rcases this with ⟨S,g,rfl,h2,h3,-⟩, | |
--let gg := ((FLF_cocone F surj M).ι.app (op S)).f _ g, | |
let CC : Π (n : ℕ), ((FLF F surj M).obj (op S)).X (n+1) ⟶ | |
((FLF F surj M).obj (op S)).X n := | |
((Profinite.arrow_diagram F surj).obj S).contracting_homotopy | |
(LocallyConstant.obj M), | |
let gc := CC _ g, | |
let GG := ((FLF_cocone F surj M).ι.app (op S)).f _ gc, | |
refine ⟨GG,_,_⟩, | |
{ dsimp only [GG], | |
have := ((FLF_cocone F surj M).ι.app (op S)).comm n (n+1), | |
apply_fun (λ e, e gc) at this, | |
erw this, clear this, | |
change ((FLF_cocone F surj M).ι.app (op S)).f (n + 1) _ = _, | |
congr' 1, | |
change (CC n ≫ _) g = g, | |
cases n, | |
{ have hh := arrow.is_contracting_homotopy_one (LocallyConstant.obj M) | |
((Profinite.arrow_diagram F surj).obj S), | |
apply_fun (λ e, e g) at hh, | |
change CC 1 (_) + _ = g at hh, | |
conv at hh { | |
congr, | |
congr, | |
erw h2 }, | |
rw [map_zero, zero_add] at hh, | |
exact hh }, | |
{ have hh := arrow.is_contracting_homotopy (LocallyConstant.obj M) | |
((Profinite.arrow_diagram F surj).obj S) _, | |
apply_fun (λ e, e g) at hh, | |
change CC _ (_) + _ = g at hh, | |
conv at hh { | |
congr, | |
congr, | |
erw h2 }, | |
rw [map_zero, zero_add] at hh, | |
exact hh } }, | |
{ rw h3, | |
suffices : ∥GG∥₊ ≤ ∥gc∥₊, | |
{ apply le_trans this _, | |
cases n, | |
apply LocallyConstant_obj_map_norm_noninc, | |
apply LocallyConstant_obj_map_norm_noninc }, | |
apply FLF_norm_noninc } | |
end | |