Datasets:
Tasks:
Text Generation
Modalities:
Text
Sub-tasks:
language-modeling
Languages:
English
Size:
100K - 1M
License:
import system_of_complexes.double | |
import system_of_complexes.truncate | |
import normed_snake | |
import category_theory.concrete_category | |
import thm95.constants.spectral_constants | |
noncomputable theory | |
open_locale nnreal | |
open category_theory | |
universe variables u | |
namespace system_of_double_complexes | |
@[simps] | |
def truncate : system_of_double_complexes.{u} ⥤ system_of_double_complexes.{u} := | |
(whiskering_right _ _ _).obj $ | |
@functor.map_homological_complex _ _ _ _ _ _ _ _ SemiNormedGroup.truncate.additive.{u} _ | |
-- TODO: why do I need to give the instance manually? ↑ ↑ ↑ | |
namespace truncate | |
variables (M : system_of_double_complexes.{u}) | |
-- defeq abuse for the win!!! | |
lemma row (p : ℕ) : | |
(truncate.obj M).row p = system_of_complexes.truncate.obj (M.row p) := rfl | |
lemma col_pos (q : ℕ) : | |
(truncate.obj M).col (q+1) = M.col (q+1+1) := | |
rfl | |
@[simp] | |
lemma d'_zero_one (c : ℝ≥0) (p : ℕ) (x : M.X c p 1) : | |
(truncate.obj M).d' 0 1 (SemiNormedGroup.explicit_cokernel_π _ x) = M.d' 1 2 x := rfl | |
@[simp] | |
lemma d_π (c : ℝ≥0) (p p' : ℕ) (x : M.X c p 1) : | |
@d (truncate.obj M) _ p p' 0 (SemiNormedGroup.explicit_cokernel_π _ x) = | |
SemiNormedGroup.explicit_cokernel_π _ (M.d p p' x) := rfl | |
@[simp] | |
lemma res_π (c₁ c₂ : ℝ≥0) (p : ℕ) (h : fact (c₁ ≤ c₂)) (x : M.X c₂ p 1) : | |
@res (truncate.obj M) _ _ p 0 h (SemiNormedGroup.explicit_cokernel_π _ x) = | |
SemiNormedGroup.explicit_cokernel_π _ (M.res x) := rfl | |
def quotient_map : M.col 1 ⟶ (truncate.obj M).col 0 := | |
{ app := λ c, | |
{ f := λ p, SemiNormedGroup.explicit_cokernel_π _, | |
comm' := λ p p' _, by { ext, refl } }, | |
naturality' := by { intros, ext, refl } } | |
lemma admissible (hM : M.admissible) : (truncate.obj M).admissible := | |
{ d_norm_noninc' := λ c p' p q h, | |
begin | |
cases q, | |
{ apply SemiNormedGroup.explicit_cokernel_desc_norm_noninc, | |
exact (SemiNormedGroup.norm_noninc_explicit_cokernel_π _).comp (hM.d_norm_noninc _ _ _ _) }, | |
{ exact hM.d_norm_noninc c p' p _ } | |
end, | |
d'_norm_noninc' := λ c p, | |
((M.row p).truncate_admissible (hM.row p)).d_norm_noninc' c, | |
res_norm_noninc := λ c₁ c₂ p, | |
((M.row p).truncate_admissible (hM.row p)).res_norm_noninc c₁ c₂ } | |
end truncate | |
open opposite | |
structure normed_spectral_homotopy {row₀ row₁ : system_of_complexes.{u}} (d : row₀ ⟶ row₁) | |
(m : ℕ) (k' ε : ℝ≥0) [fact (1 ≤ k')] (c₀ H : ℝ≥0) [fact (0 < H)] := | |
(h : Π (q : ℕ) {q' : ℕ} {c}, row₀ (k' * c) q' ⟶ row₁ c q) | |
(norm_h_le : ∀ (q q' : ℕ) (hq : q ≤ m) (hq' : q+1 = q') (c) [fact (c₀ ≤ c)], | |
∥(h q : row₀ (k' * c) q' ⟶ row₁ c q)∥ ≤ H) | |
(δ : Π (c : ℝ≥0), row₀.obj (op $ c) ⟶ row₁.obj (op $ k' * c)) | |
(hδ : ∀ (c : ℝ≥0) [fact (c₀ ≤ c)] (q : ℕ) (hq : q ≤ m), | |
(system_of_complexes.res : row₀ (k' * (k' * c)) q ⟶ _) ≫ (δ c).f q = | |
d.apply ≫ system_of_complexes.res + row₀.d q (q+1) ≫ h q + h (q-1) ≫ row₁.d (q-1) q) | |
(norm_δ_le : ∀ (c : ℝ≥0) [fact (c₀ ≤ c)] (q : ℕ) (hq : q ≤ m), ∥(δ c).f q∥ ≤ ε) | |
. | |
lemma normed_spectral_homotopy.hδ_apply {row₀ row₁ : system_of_complexes.{u}} {d : row₀ ⟶ row₁} | |
{m : ℕ} {k' ε : ℝ≥0} [fact (1 ≤ k')] {c₀ H : ℝ≥0} [fact (0 < H)] | |
(NSH : normed_spectral_homotopy d m k' ε c₀ H) | |
(c : ℝ≥0) [fact (c₀ ≤ c)] (q : ℕ) (hq : q ≤ m) (x : row₀ (k' * (k' * c)) q) : | |
(NSH.δ c).f q (system_of_complexes.res x) = | |
system_of_complexes.res (d x) + NSH.h q (row₀.d q (q+1) x) + row₁.d (q-1) q (NSH.h (q-1) x) := | |
begin | |
show ((system_of_complexes.res : row₀ (k' * (k' * c)) q ⟶ _) ≫ (NSH.δ c).f q) x = _, | |
rw NSH.hδ c q hq, | |
dsimp, refl | |
end | |
def normed_spectral_homotopy.of_iso {row₀ row₁ : system_of_complexes.{u}} {d : row₀ ⟶ row₁} | |
{m : ℕ} {k' ε : ℝ≥0} [fact (1 ≤ k')] {c₀ H : ℝ≥0} [fact (0 < H)] | |
(NSH : normed_spectral_homotopy d m k' ε c₀ H) | |
(row'₀ row'₁ : system_of_complexes.{u}) (d' : row'₀ ⟶ row'₁) | |
(φ₀ : row₀ ≅ row'₀) (φ₁ : row₁ ≅ row'₁) | |
(hφ₀ : ∀ c i (x : row'₀ c i), ∥φ₀.inv x∥ = ∥x∥) | |
(hφ₁ : ∀ c i (x : row₁ c i), ∥φ₁.hom x∥ = ∥x∥) | |
(hcomm : d' = φ₀.inv ≫ d ≫ φ₁.hom) : | |
normed_spectral_homotopy d' m k' ε c₀ H := | |
{ h := λ q q' c, φ₀.inv.apply ≫ NSH.h q ≫ φ₁.hom.apply, | |
δ := λ c, φ₀.inv.app (op $ c) ≫ NSH.δ c ≫ φ₁.hom.app (op $ k' * c), | |
norm_h_le := | |
begin | |
introsI q q' hqm hq' c hc, | |
refine normed_add_group_hom.op_norm_le_bound _ (nnreal.coe_nonneg H) (λ x, _), | |
calc ∥φ₁.hom (NSH.h q (φ₀.inv x))∥ | |
= ∥NSH.h q (φ₀.inv x)∥ : hφ₁ _ _ _ | |
... ≤ ↑H * ∥φ₀.inv x∥ : | |
normed_add_group_hom.le_of_op_norm_le _ (NSH.norm_h_le _ _ hqm hq' _) (φ₀.inv x) | |
... = ↑H * ∥x∥ : congr_arg _ (hφ₀ _ _ _), | |
end, | |
hδ := | |
begin | |
introsI c hc q hq, | |
ext1 x, | |
have := congr_arg (λ x, φ₁.hom x) (NSH.hδ_apply c q hq (φ₀.inv x)), | |
simp only [coe_comp, hcomm, system_of_complexes.res_apply, system_of_complexes.d_apply] at this ⊢, | |
refine this.trans _, clear this, | |
calc φ₁.hom (d (φ₀.inv (system_of_complexes.res x)) + | |
(NSH.h q) (φ₀.inv (row'₀.d q (q+1) x)) + | |
(row₁.d (q - 1) q) (NSH.h (q - 1) (φ₀.inv x))) | |
= φ₁.hom (d (φ₀.inv (system_of_complexes.res x)) + | |
(NSH.h q) (φ₀.inv (row'₀.d q (q+1) x))) + | |
φ₁.hom ((row₁.d (q - 1) q) (NSH.h (q - 1) (φ₀.inv x))) : _ | |
... = _ : _, | |
{ apply normed_add_group_hom.map_add' }, | |
congr' 1, | |
{ refine (normed_add_group_hom.map_add' _ _ _).trans _, | |
simp only [← comp_apply, ← system_of_complexes.res_comp_apply], refl }, | |
{ erw [system_of_complexes.d_apply], refl } | |
end, | |
norm_δ_le := λ c hc q hq, | |
begin | |
resetI, | |
refine normed_add_group_hom.op_norm_le_bound _ (nnreal.coe_nonneg ε) _, | |
rintro (x : row'₀ c q), | |
calc ∥φ₁.hom ((NSH.δ c).f q (φ₀.inv x))∥ | |
= ∥(NSH.δ c).f q (φ₀.inv x)∥ : hφ₁ _ _ _ | |
... ≤ ↑ε * ∥φ₀.inv x∥ : normed_add_group_hom.le_of_op_norm_le _ (NSH.norm_δ_le _ _ hq) (φ₀.inv x) | |
... = ↑ε * ∥x∥ : congr_arg _ (hφ₀ _ _ _), | |
end } | |
/-- The assumptions on `M` in Proposition 9.6 bundled into a structure. -/ | |
structure normed_spectral_conditions (M : system_of_double_complexes.{u}) | |
(m : ℕ) (k K k' ε : ℝ≥0) [fact (1 ≤ k)] [fact (1 ≤ k')] (c₀ H : ℝ≥0) [fact (0 < H)] := | |
(row_exact : 0 < m → ∀ i ≤ m + 1, (M.row i).is_weak_bounded_exact k K (m-1) c₀) | |
(col_exact : ∀ j ≤ m, (M.col j).is_weak_bounded_exact k K m c₀) | |
(htpy : normed_spectral_homotopy (M.row_map 0 1) m k' ε c₀ H) | |
-- ergonomics: we bundle this assumption, instead of passing it around separately | |
(admissible : M.admissible) | |
. | |
namespace normed_spectral_conditions | |
variables {M : system_of_double_complexes.{u}} | |
variables {m : ℕ} {k K k' ε k₀ : ℝ≥0} | |
variables [fact (1 ≤ k)] [fact (1 ≤ k₀)] [fact (k₀ ≤ k')] [fact (1 ≤ k')] | |
variables {c₀ H : ℝ≥0} [fact (0 < H)] | |
lemma truncate_admissible (condM : M.normed_spectral_conditions m k K k' ε c₀ H) : | |
(truncate.obj M).admissible := | |
truncate.admissible _ condM.admissible | |
variables (condM : M.normed_spectral_conditions (m+1) k K k' ε c₀ H) | |
include condM | |
lemma col_zero_exact : | |
((truncate.obj M).col 0).is_weak_bounded_exact (k*k*k) (K*(K*K+1)) m c₀ := | |
begin | |
apply weak_normed_snake (M.col 0) (M.col 1) ((truncate.obj M).col 0) | |
(M.col_map 0 1) (truncate.quotient_map M) | |
(condM.col_exact 0 dec_trivial) (condM.col_exact 1 dec_trivial) | |
(condM.admissible.col 1), | |
{ intros c p, exact condM.admissible.d'_norm_noninc c p 0 1 }, | |
{ intros c hc i hi x, | |
apply le_of_forall_pos_le_add, | |
intros ε' hε', | |
-- should we factor out a dedicated `weak_bounded_in_degrees_le_zero` lemma? | |
simpa only [exists_prop, row_res, d'_self_apply, exists_eq_left, sub_zero, | |
exists_and_distrib_left, zero_add, row_d, exists_eq_left', exists_const] | |
using condM.row_exact (nat.zero_lt_succ _) i hi c hc 0 (nat.zero_le _) x ε' hε' }, | |
{ intros c i, apply quotient_add_group.ker_mk }, | |
{ intros c p, exact SemiNormedGroup.is_quotient_explicit_cokernel_π _ } | |
end | |
-- morally `q'` is `q + 1` | |
def h_truncate : Π (q : ℕ) {q' : ℕ} {c : ℝ≥0}, | |
(truncate.obj M).X (k' * c) 0 q' ⟶ (truncate.obj M).X c 1 q | |
| 0 1 c := condM.htpy.h 1 ≫ SemiNormedGroup.explicit_cokernel_π _ | |
| (q+1) (q'+1) c := condM.htpy.h (q+2) | |
| _ _ _ := 0 | |
@[simp] | |
lemma h_truncate_zero {c : ℝ≥0} (x : (truncate.obj M).X (k' * c) 0 1) : | |
condM.h_truncate 0 x = SemiNormedGroup.explicit_cokernel_π _ (condM.htpy.h 1 x) := rfl | |
lemma norm_h_truncate_le : ∀ (q q' : ℕ), q ≤ m → q+1 = q' → ∀ (c : ℝ≥0), fact (c₀ ≤ c) → | |
∥(condM.h_truncate q : (truncate.obj M).X (k' * c) 0 q' ⟶ _)∥ ≤ H | |
| (q+1) (q'+1) hq rfl := condM.htpy.norm_h_le _ _ (nat.succ_le_succ hq) | |
(by simp only [nat.add_def, add_zero]) | |
| 0 1 hq rfl := | |
begin | |
introsI c hc, | |
refine normed_add_group_hom.op_norm_le_bound _ (nnreal.coe_nonneg H) (λ x, _), | |
calc _ = ∥SemiNormedGroup.explicit_cokernel_π _ (condM.htpy.h 1 x)∥ : rfl | |
... ≤ ∥condM.htpy.h 1 x∥ : (SemiNormedGroup.is_quotient_explicit_cokernel_π _).norm_le _ | |
... ≤ H * ∥x∥ : normed_add_group_hom.le_of_op_norm_le _ (condM.htpy.norm_h_le 1 2 dec_trivial rfl c) x | |
end | |
def δ_truncate (c : ℝ≥0) : | |
((truncate.obj M).row 0).obj (op $ c) ⟶ ((truncate.obj M).row 1).obj (op $ k' * c) := | |
SemiNormedGroup.truncate.map (condM.htpy.δ c) | |
lemma hδ_truncate (c : ℝ≥0) [fact (c₀ ≤ c)] : ∀ (q : ℕ) (hq : q ≤ m), | |
(truncate.obj M).res ≫ (condM.δ_truncate c).f q = (d _ 0 1) ≫ (truncate.obj M).res + | |
(d' _ q (q+1)) ≫ condM.h_truncate q + (condM.h_truncate (q-1)) ≫ d' _ (q-1) q | |
| 1 h := condM.htpy.hδ _ _ (nat.succ_le_succ h) | |
| (q+2) h := condM.htpy.hδ _ _ (nat.succ_le_succ h) | |
| 0 h := | |
begin | |
ext x, dsimp, | |
let π := λ c p, SemiNormedGroup.explicit_cokernel_π (@d' M c p 0 1), | |
obtain ⟨y, hy⟩ : ∃ x', π _ _ x' = (SemiNormedGroup.explicit_cokernel_π _ x) := | |
SemiNormedGroup.explicit_cokernel_π_surjective (SemiNormedGroup.explicit_cokernel_π _ x), | |
transitivity π _ _ ((condM.htpy.δ c).f 1 (M.res x)), { refl }, | |
erw condM.htpy.hδ_apply _ _ (nat.succ_le_succ h) x, | |
simp only [nat.zero_sub, d'_self_apply, add_zero, row_d, | |
truncate.d_π, truncate.res_π, truncate.d'_zero_one, h_truncate_zero, | |
map_add, SemiNormedGroup.explicit_cokernel_π_apply_dom_eq_zero], | |
refl | |
end | |
lemma norm_δ_truncate_le (c : ℝ≥0) [fact (c₀ ≤ c)] : | |
∀ (q : ℕ) (hq : q ≤ m), ∥(condM.δ_truncate c).f q∥ ≤ ε | |
| (q+1) h := condM.htpy.norm_δ_le c (q+2) (nat.succ_le_succ h) | |
| 0 h := | |
begin | |
refine SemiNormedGroup.explicit_cokernel_desc_norm_le_of_norm_le _ _ | |
(normed_add_group_hom.op_norm_le_bound _ (nnreal.coe_nonneg ε) (λ x, _)), | |
refine (SemiNormedGroup.norm_noninc_explicit_cokernel_π _ _).trans _, | |
exact normed_add_group_hom.le_of_op_norm_le _ (condM.htpy.norm_δ_le c _ (nat.succ_le_succ h)) _ | |
end | |
def truncate : | |
(truncate.obj M).normed_spectral_conditions m (k*k*k) (K*(K*K+1)) k' ε c₀ H := | |
{ row_exact := | |
begin | |
intros hm i hi, | |
cases m, { exact (nat.not_lt_zero _ hm).elim }, | |
suffices : ((truncate.obj M).row i).is_weak_bounded_exact k K m c₀, | |
{ apply this.of_le (condM.truncate_admissible.row i) _ _ le_rfl ⟨le_rfl⟩; | |
apply_instance }, | |
rw truncate.row, | |
apply (M.row i).truncate_is_weak_bounded_exact, | |
{ refine condM.row_exact (nat.zero_lt_succ _) i (hi.trans (nat.le_succ _)), } | |
end, | |
col_exact := | |
begin | |
rintro (j|j) hj, | |
{ exact condM.col_zero_exact }, | |
{ rw truncate.col_pos, | |
refine (condM.col_exact (j+2) (nat.succ_le_succ hj)).of_le | |
(condM.admissible.col (j+2)) _ _ m.le_succ ⟨le_rfl⟩; | |
apply_instance } | |
end, | |
htpy := | |
{ h := condM.h_truncate, | |
norm_h_le := condM.norm_h_truncate_le, | |
δ := condM.δ_truncate, | |
hδ := condM.hδ_truncate, | |
norm_δ_le := condM.norm_δ_truncate_le }, | |
admissible := condM.truncate_admissible } | |
omit condM | |
variables {m_ : ℕ} {k_ K_ : ℝ≥0} [fact (1 ≤ k_)] | |
variables {ε_ : ℝ≥0} {k₀_ : ℝ≥0} [fact (1 ≤ k₀_)] | |
variables [fact (k₀_ ≤ k')] {c₀_ H_ : ℝ≥0} [fact (0 < H_)] | |
def of_le (cond : M.normed_spectral_conditions m k K k' ε c₀ H) | |
(hm : m_ ≤ m) (hk : fact (k ≤ k_)) (hK : fact (K ≤ K_)) (hε : ε ≤ ε_) | |
(hc₀ : fact (c₀ ≤ c₀_)) (hH : H ≤ H_) : | |
M.normed_spectral_conditions m_ k_ K_ k' ε_ c₀_ H_ := | |
{ col_exact := λ j hj, (cond.col_exact j (hj.trans hm)).of_le (cond.admissible.col j) hk hK hm hc₀, | |
row_exact := λ hm_ i hi, | |
(cond.row_exact (hm_.trans_le hm) i (hi.trans $ nat.succ_le_succ hm)).of_le | |
(cond.admissible.row i) hk hK (nat.pred_le_pred hm) hc₀, | |
htpy := | |
{ h := cond.htpy.h, | |
norm_h_le := λ q q' hq hq' c hc, have fact (c₀ ≤ c) := ⟨hc₀.out.trans hc.out⟩, by exactI | |
begin | |
refine normed_add_group_hom.op_norm_le_bound _ (nnreal.coe_nonneg H_) (λ x, _), | |
calc ∥cond.htpy.h q x∥ ≤ H * ∥x∥ : | |
normed_add_group_hom.le_of_op_norm_le _ (cond.htpy.norm_h_le q q' (hq.trans hm) hq' c) x | |
... ≤ H_ * ∥x∥ : mul_le_mul_of_nonneg_right hH (norm_nonneg x), | |
end, | |
δ := cond.htpy.δ, | |
hδ := λ c hc q hq, have fact (c₀ ≤ c) := ⟨hc₀.out.trans hc.out⟩, | |
by exactI cond.htpy.hδ c q (hq.trans hm), | |
norm_δ_le := λ c hc q hq, have fact (c₀ ≤ c) := ⟨hc₀.out.trans hc.out⟩, by exactI | |
begin | |
refine normed_add_group_hom.op_norm_le_bound _ (nnreal.coe_nonneg ε_) (λ x, _), | |
refine normed_add_group_hom.le_of_op_norm_le _ _ x, | |
exact le_trans (cond.htpy.norm_δ_le c q (hq.trans hm)) hε, | |
end }, | |
admissible := cond.admissible } | |
end normed_spectral_conditions | |
namespace normed_spectral | |
/-- Base case of the induction for Proposition 9.6. -/ | |
theorem base (c₀ H : ℝ≥0) [fact (0 < H)] (M : system_of_double_complexes.{u}) | |
(k K k' : ℝ≥0) [hk : fact (1 ≤ k)] [hK : fact (1 ≤ K)] [fact (k₀ 0 k ≤ k')] [fact (1 ≤ k')] | |
(cond : M.normed_spectral_conditions 0 k K k' (ε 0 K) c₀ H) : | |
(M.row 0).is_weak_bounded_exact (k' * k') (2 * K₀ 0 K * H) 0 c₀ := | |
begin | |
dsimp [k₀, K₀], | |
introsI c hc i hi, | |
interval_cases i, clear hi, | |
intros x ε' hε', | |
let φ : ℝ := ε' / 2, | |
have hφ : 0 < φ := div_pos hε' zero_lt_two, | |
have hδφ : ε' = φ + φ, { dsimp [φ], rw [← add_div, half_add_self] }, | |
haveI : fact (k' * (k' * c) ≤ k' * k' * c) := by { rw mul_assoc, exact ⟨le_rfl⟩ }, | |
have Hx1 := (cond.col_exact 0 le_rfl).of_le | |
(cond.admissible.col 0) ‹_› ⟨le_rfl⟩ le_rfl ⟨le_rfl⟩ c hc 0 le_rfl, | |
have Hx2 := normed_add_group_hom.le_of_op_norm_le _ (cond.htpy.norm_δ_le c 0 le_rfl) (M.res x), | |
have aux := cond.htpy.hδ_apply c 0 le_rfl (M.res x), | |
erw [res_res] at aux, | |
rw aux at Hx2, | |
simp only [row_d, col_d, d_self_apply, d'_self_apply, sub_zero, add_zero, smul_zero, | |
d_res, d'_res, res_res, one_div, row_res, units.coe_one, one_smul, row_map_apply] at Hx1 Hx2 ⊢, | |
refine ⟨0, 1, rfl, rfl, 0, _⟩, | |
obtain ⟨i, j, hi, hj, y1, hx1⟩ := Hx1 (M.res x) φ hφ, | |
simp [← eq_neg_iff_add_eq_zero] at hi hj, subst i, subst j, | |
simp only [d_self_apply, d'_self_apply, sub_zero, | |
nnreal.coe_mul, nnreal.coe_bit0, nnreal.coe_one, d_res] at hx1 ⊢, | |
erw [res_res] at hx1, | |
clear y1 Hx1, | |
replace Hx1 := mul_le_mul_of_nonneg_left hx1 (ε 0 K).coe_nonneg, | |
replace Hx2 := (norm_le_add_norm_add _ _).trans (add_le_add (Hx2.trans Hx1) le_rfl), | |
dsimp [ε] at Hx2, | |
have K0 : (K:ℝ) ≠ 0 := ne_of_gt (lt_of_lt_of_le zero_lt_one hK.out), | |
simp only [mul_add, add_assoc, mul_inv, mul_assoc, inv_mul_cancel_left₀ K0] at Hx2, | |
simp only [← div_eq_inv_mul, sub_half, ← sub_le_iff_le_add'] at Hx2, | |
simp only [sub_le_iff_le_add', div_le_iff' (zero_lt_two : (0:ℝ) < 2)] at Hx2, | |
replace Hx2 := mul_le_mul_of_nonneg_left Hx2 K.coe_nonneg, | |
simp only [mul_add, div_eq_inv_mul, add_comm φ, | |
mul_inv_cancel_left₀ (two_ne_zero : (2:ℝ) ≠ 0), mul_inv_cancel_left₀ K0] at Hx2, | |
refine hx1.trans _, | |
simp only [mul_comm (2:ℝ) K, mul_assoc, hδφ, ← add_assoc, ← mul_add, add_le_add_iff_right], | |
refine Hx2.trans _, | |
simp only [add_le_add_iff_right], | |
refine (mul_le_mul_of_nonneg_left _ K.coe_nonneg), | |
refine (mul_le_mul_of_nonneg_left _ zero_le_two), | |
refine le_trans (normed_add_group_hom.le_of_op_norm_le _ (cond.htpy.norm_h_le _ _ le_rfl rfl _) _) _, | |
refine mul_le_mul_of_nonneg_left (le_of_eq _) H.coe_nonneg, | |
apply norm_res_of_eq, | |
rw mul_assoc | |
end | |
. | |
end normed_spectral | |
open normed_spectral | |
/-- Proposition 9.6 in [Analytic] -/ | |
theorem normed_spectral {m : ℕ} {c₀ H : ℝ≥0} [fact (0 < H)] | |
{M : system_of_double_complexes.{u}} {k K k' : ℝ≥0} | |
[fact (1 ≤ k)] [hK : fact (1 ≤ K)] [fact (k₀ m k ≤ k')] [fact (1 ≤ k')] | |
(cond : M.normed_spectral_conditions m k K k' (ε m K) c₀ H) : | |
(M.row 0).is_weak_bounded_exact (k' * k') (2 * K₀ m K * H) m c₀ := | |
begin | |
unfreezingI { revert M k K k' }, | |
induction m with m IH, { exact base c₀ H }, | |
dsimp [ε, k₀, K₀], | |
introsI M k K k' _ _ _ _ cond, | |
rw ← system_of_complexes.truncate_is_weak_bounded_exact_iff, | |
{ exact IH cond.truncate }, | |
{ refine @IH M (k*k*k) (K*(K*K+1)) k' _ _ _ _ (cond.of_le (m.le_succ) _ _ le_rfl ⟨le_rfl⟩ le_rfl), | |
all_goals { apply_instance } } | |
end | |
end system_of_double_complexes | |