Datasets:
Tasks:
Text Generation
Modalities:
Text
Sub-tasks:
language-modeling
Languages:
English
Size:
100K - 1M
License:
(* miscellaneous useful stuff that doesn't fit in anywhere else *) | |
let pair_map f (x,y) = (f x,f y) | |
(* module for maps keyed on terms *) | |
module Termmap = Map.Make (struct type t = term let compare = Pervasives.compare end) | |
module Litset = Set.Make (struct type t = bool * int let compare = Pervasives.compare end) | |
let tm_listItems m = List.rev (Termmap.fold (fun k v l -> (k,v)::l) m []) | |
let print_term t = print_string (string_of_term t) | |
let print_type ty = print_string (string_of_type ty) | |
(*FIXME: inefficient to read chars one by one; 1024 can be improved upon*) | |
let input_all in_ch = | |
let rec loop b = | |
match | |
(try Some (input_char in_ch) | |
with End_of_file -> None) | |
with | |
Some c -> (Buffer.add_char b c; loop b) | |
| None -> () in | |
let b = Buffer.create 1024 in | |
let _ = loop b in | |
Buffer.contents b | |
let QUANT_CONV conv = RAND_CONV(ABS_CONV conv) | |
let BINDER_CONV conv = ABS_CONV conv ORELSEC QUANT_CONV conv | |
let rec LAST_FORALL_CONV c tm = | |
if is_forall (snd (dest_forall tm)) | |
then | |
BINDER_CONV (LAST_FORALL_CONV c) tm | |
else c tm | |
let FORALL_IMP_CONV tm = | |
let (bvar,bbody) = dest_forall tm in | |
let (ant,conseq) = dest_imp bbody in | |
let fant = free_in bvar ant in | |
let fconseq = free_in bvar conseq in | |
let ant_thm = ASSUME ant in | |
let tm_thm = ASSUME tm in | |
if (fant && fconseq) | |
then failwith("FORALL_IMP_CONV"^ | |
("`"^(fst(dest_var bvar))^"` free on both sides of `==>`")) | |
else | |
if fant | |
then | |
let asm = mk_exists(bvar,ant) in | |
let th1 = CHOOSE(bvar,ASSUME asm) (UNDISCH(SPEC bvar tm_thm)) in | |
let imp1 = DISCH tm (DISCH asm th1) in | |
let cncl = rand(concl imp1) in | |
let th2 = MP (ASSUME cncl) (EXISTS (asm,bvar) ant_thm) in | |
let imp2 = DISCH cncl (GEN bvar (DISCH ant th2)) in | |
IMP_ANTISYM_RULE imp1 imp2 | |
else | |
if fconseq | |
then | |
let imp1 = DISCH ant(GEN bvar(UNDISCH(SPEC bvar tm_thm))) in | |
let cncl = concl imp1 in | |
let imp2 = GEN bvar(DISCH ant(SPEC bvar(UNDISCH(ASSUME cncl)))) in | |
IMP_ANTISYM_RULE (DISCH tm imp1) (DISCH cncl imp2) | |
else | |
let asm = mk_exists(bvar,ant) in | |
let tmp = UNDISCH (SPEC bvar tm_thm) in | |
let th1 = GEN bvar (CHOOSE(bvar,ASSUME asm) tmp) in | |
let imp1 = DISCH tm (DISCH asm th1) in | |
let cncl = rand(concl imp1) in | |
let th2 = SPEC bvar (MP(ASSUME cncl) (EXISTS (asm,bvar) ant_thm)) in | |
let imp2 = DISCH cncl (GEN bvar (DISCH ant th2)) in | |
IMP_ANTISYM_RULE imp1 imp2 | |
let LEFT_IMP_EXISTS_CONV tm = | |
let ant, _ = dest_imp tm in | |
let bvar,bdy = dest_exists ant in | |
let x' = variant (frees tm) bvar in | |
let t' = subst [x',bvar] bdy in | |
let th1 = GEN x' (DISCH t'(MP(ASSUME tm)(EXISTS(ant,x')(ASSUME t')))) in | |
let rtm = concl th1 in | |
let th2 = CHOOSE (x',ASSUME ant) (UNDISCH(SPEC x'(ASSUME rtm))) in | |
IMP_ANTISYM_RULE (DISCH tm th1) (DISCH rtm (DISCH ant th2)) | |
(*********** terms **************) | |
let lrand x = rand (rator x) | |
let t_tm = `T`;; | |
let f_tm = `F`;; | |
let is_T tm = (tm = t_tm) | |
let is_F tm = (tm = f_tm) | |
(************ HOL **************) | |
let rec ERC lt tm = | |
if is_comb lt | |
then | |
let ((ltl,ltr),(tml,tmr)) = | |
pair_map dest_comb (lt,tm) in | |
(ERC ltl tml)@(ERC ltr tmr) | |
else | |
if is_var lt | |
then [(tm,lt)] | |
else [] | |
(* easier REWR_CONV which assumes that the supplied theorem is ground and quantifier free, | |
so type instantiation and var capture checks are not needed *) | |
(* no restrictions on the term argument *) | |
let EREWR_CONV th tm = | |
let lt = lhs(concl th) in | |
let il = ERC lt tm in | |
INST il th | |