Datasets:
Tasks:
Text Generation
Modalities:
Text
Sub-tasks:
language-modeling
Languages:
English
Size:
100K - 1M
License:
(* ========================================================================= *) | |
(* Syntax and semantics of modal logic. *) | |
(* *) | |
(* (c) Copyright, Marco Maggesi, Cosimo Perini Brogi 2020-2022. *) | |
(* *) | |
(* Part of this code is copied or adapted from *) | |
(* John Harrison (2017) The HOL Light Tutorial. *) | |
(* ========================================================================= *) | |
(* ------------------------------------------------------------------------- *) | |
(* Syntax of formulae. *) | |
(* ------------------------------------------------------------------------- *) | |
parse_as_infix("&&",(16,"right"));; | |
parse_as_infix("||",(15,"right"));; | |
parse_as_infix("-->",(14,"right"));; | |
parse_as_infix("<->",(13,"right"));; | |
parse_as_prefix "Not";; | |
parse_as_prefix "Box";; | |
let form_INDUCT,form_RECURSION = define_type | |
"form = False | |
| True | |
| Atom string | |
| Not form | |
| && form form | |
| || form form | |
| --> form form | |
| <-> form form | |
| Box form";; | |
let form_CASES = prove_cases_thm form_INDUCT;; | |
let form_DISTINCT = distinctness "form";; | |
let form_INJ = injectivity "form";; | |
(* ------------------------------------------------------------------------- *) | |
(* Kripke's Semantics of formulae. *) | |
(* ------------------------------------------------------------------------- *) | |
let holds = | |
let pth = prove | |
(`(!WP. P WP) <=> (!W R. P (W,R))`, | |
MATCH_ACCEPT_TAC FORALL_PAIR_THM) in | |
(end_itlist CONJ o map (REWRITE_RULE[pth] o GEN_ALL) o CONJUNCTS o | |
new_recursive_definition form_RECURSION) | |
`(holds WR V False (w:W) <=> F) /\ | |
(holds WR V True w <=> T) /\ | |
(holds WR V (Atom s) w <=> V s w) /\ | |
(holds WR V (Not p) w <=> ~(holds WR V p w)) /\ | |
(holds WR V (p && q) w <=> holds WR V p w /\ holds WR V q w) /\ | |
(holds WR V (p || q) w <=> holds WR V p w \/ holds WR V q w) /\ | |
(holds WR V (p --> q) w <=> holds WR V p w ==> holds WR V q w) /\ | |
(holds WR V (p <-> q) w <=> holds WR V p w <=> holds WR V q w) /\ | |
(holds WR V (Box p) w <=> | |
!w'. w' IN FST WR /\ SND WR w w' ==> holds WR V p w')`;; | |
let holds_in = new_definition | |
`holds_in (W,R) p <=> !V w. w IN W ==> holds (W,R) V p w`;; | |
parse_as_infix("|=",(11,"right"));; | |
let valid = new_definition | |
`L: (W->bool)#(W->W->bool)->bool |= p <=> !f. L f ==> holds_in f p`;; | |
(* ------------------------------------------------------------------------- *) | |
(* Some model-theoretic lemmas. *) | |
(* ------------------------------------------------------------------------- *) | |
let MODAL_TAC = | |
REWRITE_TAC[valid; FORALL_PAIR_THM; holds_in; holds] THEN MESON_TAC[];; | |
let MODAL_RULE tm = prove(tm,MODAL_TAC);; | |
let HOLDS_FORALL_LEMMA = prove | |
(`!W R P. (!p V. P (holds (W,R) V p)) <=> (!p:W->bool. P p)`, | |
REPEAT GEN_TAC THEN EQ_TAC THENL [ALL_TAC; SIMP_TAC[]] THEN | |
DISCH_TAC THEN GEN_TAC THEN | |
SUBGOAL_THEN `P (\w:W. holds (W,R) (\a. p) (Atom a) w):bool` | |
(MP_TAC o REWRITE_RULE[holds]) THEN | |
ASM_REWRITE_TAC[ETA_AX]);; | |
let MODAL_SCHEMA_TAC = | |
REWRITE_TAC[holds_in; holds] THEN MP_TAC HOLDS_FORALL_LEMMA THEN | |
REPEAT(MATCH_MP_TAC MONO_FORALL THEN GEN_TAC) THEN | |
DISCH_THEN(fun th -> REWRITE_TAC[th]);; | |
(* ------------------------------------------------------------------------- *) | |
(* Transitive Noetherian frames. *) | |
(* ------------------------------------------------------------------------- *) | |
let MODAL_TRANS = prove | |
(`!W R. | |
(!w w' w'':W. w IN W /\ w' IN W /\ w'' IN W /\ | |
R w w' /\ R w' w'' | |
==> R w w'') <=> | |
(!p. holds_in (W,R) (Box p --> Box Box p))`, | |
MODAL_SCHEMA_TAC THEN MESON_TAC[]);; | |
let TRANSNT = new_definition | |
`TRANSNT (W:W->bool,R:W->W->bool) <=> | |
~(W = {}) /\ | |
(!x y:W. R x y ==> x IN W /\ y IN W) /\ | |
(!x y z:W. x IN W /\ y IN W /\ z IN W /\ R x y /\ R y z ==> R x z) /\ | |
WF(\x y. R y x)`;; | |
(* ------------------------------------------------------------------------- *) | |
(* Subformulas. *) | |
(* ------------------------------------------------------------------------- *) | |
let IN_MINOR_RULES,IN_MINOR_INDUCT,IN_MINOR_CASES = new_inductive_set | |
`(!p. p IN MINOR (Not p)) /\ | |
(!p q. p IN MINOR (p && q)) /\ | |
(!p q. q IN MINOR (p && q)) /\ | |
(!p q. p IN MINOR (p || q)) /\ | |
(!p q. q IN MINOR (p || q)) /\ | |
(!p q. p IN MINOR (p --> q)) /\ | |
(!p q. q IN MINOR (p --> q)) /\ | |
(!p q. p IN MINOR (p <-> q)) /\ | |
(!p q. q IN MINOR (p <-> q)) /\ | |
(!p. p IN MINOR (Box p))`;; | |
let MINOR_CLAUSES = prove | |
(`MINOR False = {} /\ | |
MINOR True = {} /\ | |
MINOR (Atom s) = {} /\ | |
(!p. MINOR (Not p) = {p}) /\ | |
(!p q. MINOR (p && q) = {p,q}) /\ | |
(!p q. MINOR (p || q) = {p,q}) /\ | |
(!p q. MINOR (p --> q) = {p,q}) /\ | |
(!p q. MINOR (p <-> q) = {p,q}) /\ | |
(!p. MINOR (Box p) = {p})`, | |
REWRITE_TAC[EXTENSION; IN_INSERT; NOT_IN_EMPTY; IN_MINOR_CASES; | |
distinctness "form"; injectivity "form"] THEN | |
MESON_TAC[]);; | |
parse_as_infix("SUBFORMULA",get_infix_status "SUBSET");; | |
let SUBFORMULA = new_definition | |
`(SUBFORMULA) = RTC (\p q. p IN MINOR q)`;; | |
let SUBFORMULA_REFL = prove | |
(`!p. p SUBFORMULA p`, | |
REWRITE_TAC[SUBFORMULA; RTC_REFL]);; | |
let SUBFORMULA_TRANS = prove | |
(`!p q r. p SUBFORMULA q /\ q SUBFORMULA r ==> p SUBFORMULA r`, | |
REWRITE_TAC[SUBFORMULA; RTC_TRANS]);; | |
let SUBFORMULA_CASES_L = prove | |
(`!p q. p SUBFORMULA q <=> p = q \/ (?r. p SUBFORMULA r /\ r IN MINOR q)`, | |
REWRITE_TAC[SUBFORMULA] THEN MESON_TAC[RTC_CASES_L]);; | |
let FINITE_SUBFORMULA = prove | |
(`!p. FINITE {q | q SUBFORMULA p}`, | |
MATCH_MP_TAC form_INDUCT THEN | |
REPEAT STRIP_TAC THEN ONCE_REWRITE_TAC[SUBFORMULA_CASES_L] THEN | |
ASM_REWRITE_TAC[MINOR_CLAUSES; IN_INSERT; NOT_IN_EMPTY; | |
SET_RULE `{x | x = a} = {a}`; | |
SET_RULE `{q | q = a \/ P q} = a INSERT {q | P q}`; | |
SET_RULE `{q | ?r. q SUBFORMULA r /\ r = a} = {q | q SUBFORMULA a}`; | |
SET_RULE `{q | ?r. q SUBFORMULA r /\ (r = a0 \/ r = a1)} = | |
{q | q SUBFORMULA a0} UNION {q | q SUBFORMULA a1}`; | |
EMPTY_GSPEC; FINITE_UNION; FINITE_INSERT; FINITE_EMPTY]);; | |
let FINITE_SUBSET_SUBFORMULAS_LEMMA = prove | |
(`!p. FINITE {A | A SUBSET {q | q SUBFORMULA p} UNION | |
{Not q | q SUBFORMULA p}}`, | |
REWRITE_TAC[FINITE_POWERSET_EQ; FINITE_UNION; FINITE_SUBFORMULA] THEN | |
REWRITE_TAC[SET_RULE `{Not q | q SUBFORMULA p} = | |
IMAGE (Not) {q | q SUBFORMULA p}`] THEN | |
GEN_TAC THEN MATCH_MP_TAC FINITE_IMAGE THEN | |
REWRITE_TAC[FINITE_SUBFORMULA]);; | |
let SUBFORMULA_INVERSION = prove | |
(`(!p. p SUBFORMULA False <=> p = False) /\ | |
(!p. p SUBFORMULA True <=> p = True) /\ | |
(!p s. p SUBFORMULA (Atom s) <=> p = Atom s) /\ | |
(!p q. p SUBFORMULA (Not q) <=> p = Not q \/ p SUBFORMULA q) /\ | |
(!p q r. p SUBFORMULA (q && r) <=> | |
p = q && r \/ p SUBFORMULA q \/ p SUBFORMULA r) /\ | |
(!p q r. p SUBFORMULA (q || r) <=> | |
p = q || r \/ p SUBFORMULA q \/ p SUBFORMULA r) /\ | |
(!p q r. p SUBFORMULA (q --> r) <=> | |
p = q --> r \/ p SUBFORMULA q \/ p SUBFORMULA r) /\ | |
(!p q r. p SUBFORMULA (q <-> r) <=> | |
p = q <-> r \/ p SUBFORMULA q \/ p SUBFORMULA r) /\ | |
(!p q. p SUBFORMULA (Box q) <=> p = Box q \/ p SUBFORMULA q)`, | |
REPEAT CONJ_TAC THEN REPEAT GEN_TAC THEN | |
GEN_REWRITE_TAC LAND_CONV [SUBFORMULA_CASES_L] THEN | |
REWRITE_TAC[MINOR_CLAUSES; IN_INSERT; NOT_IN_EMPTY] THEN | |
MESON_TAC[SUBFORMULA_REFL]);; | |
let SUBFORMULA_LIST = prove | |
(`!p. ?X. NOREPETITION X /\ (!q. MEM q X <=> q SUBFORMULA p)`, | |
GEN_TAC THEN EXISTS_TAC `list_of_set {q | q SUBFORMULA p}` THEN | |
SIMP_TAC[FINITE_SUBFORMULA; MEM_LIST_OF_SET; IN_ELIM_THM] THEN | |
SIMP_TAC[NOREPETITION_LIST_OF_SET; FINITE_SUBFORMULA]);; | |
MATCH_MP_TAC NOREPETITION_LIST_OF_SET | |
(* ------------------------------------------------------------------------- *) | |
(* Cardinality of the type of formulae. *) | |
(* ------------------------------------------------------------------------- *) | |
let COUNTABLE_FORM = prove | |
(`COUNTABLE (:form)`, | |
(DESTRUCT_TAC "@size. size" o prove_general_recursive_function_exists) | |
`?depth. | |
depth False = 0 /\ | |
depth True = 0 /\ | |
(!a. depth (Atom a) = 0) /\ | |
(!p. depth (Not p) = depth p + 1) /\ | |
(!p q. depth (p && q) = MAX (depth p) (depth q) + 1) /\ | |
(!p q. depth (p || q) = MAX (depth p) (depth q) + 1) /\ | |
(!p q. depth (p --> q) = MAX (depth p) (depth q) + 1) /\ | |
(!p q. depth (p <-> q) = MAX (depth p) (depth q) + 1) /\ | |
(!p. depth (Box p) = depth p + 1)` THEN | |
ABBREV_TAC `u n = {p:form | p | size p < n}` THEN | |
POP_ASSUM (LABEL_TAC "u") THEN | |
SUBGOAL_THEN `(:form) = UNIONS {u n | n | n IN (:num)}` SUBST1_TAC THENL | |
[REWRITE_TAC[EXTENSION; IN_UNIV; IN_UNIONS; IN_ELIM_THM] THEN | |
X_GEN_TAC `p:form` THEN EXISTS_TAC `u (size (p:form)+1):form->bool` THEN | |
REMOVE_THEN "u" (fun th -> REWRITE_TAC[GSYM th]) THEN | |
REWRITE_TAC[IN_ELIM_THM; ARITH_RULE `m < m + 1`] THEN MESON_TAC[]; | |
ALL_TAC] THEN | |
MATCH_MP_TAC COUNTABLE_UNIONS THEN CONJ_TAC THENL | |
[MATCH_MP_TAC COUNTABLE_SUBSET THEN | |
EXISTS_TAC `IMAGE u (:num):(form->bool)->bool` THEN | |
SIMP_TAC[NUM_COUNTABLE; COUNTABLE_IMAGE] THEN | |
REWRITE_TAC[SUBSET; FORALL_IN_GSPEC; IN_IMAGE; IN_UNIV] THEN | |
MESON_TAC[]; | |
ALL_TAC] THEN | |
REWRITE_TAC[FORALL_IN_GSPEC; IN_UNIV] THEN | |
INDUCT_TAC THENL | |
[REMOVE_THEN "u" (fun th -> REWRITE_TAC[GSYM th]) THEN | |
REWRITE_TAC[ARITH_RULE `!n. ~(n < 0)`; EMPTY_GSPEC; COUNTABLE_EMPTY]; | |
POP_ASSUM (LABEL_TAC "ind")] THEN | |
MATCH_MP_TAC COUNTABLE_SUBSET THEN | |
EXISTS_TAC | |
`u (n:num) UNION | |
{True, False} UNION | |
IMAGE Atom (:string) UNION | |
IMAGE (Not) (u n) UNION | |
IMAGE (\(op,p,q). op p q) | |
({(&&),(||),(-->),(<->)} CROSS (u n) CROSS (u n)) UNION | |
IMAGE (Box) (u n)` THEN | |
CONJ_TAC THENL | |
[ASM_REWRITE_TAC[COUNTABLE_UNION; COUNTABLE_INSERT; COUNTABLE_EMPTY] THEN | |
ASM_SIMP_TAC[COUNTABLE_IMAGE; COUNTABLE_STRING; COUNTABLE_CROSS; | |
COUNTABLE_INSERT; COUNTABLE_EMPTY]; | |
ALL_TAC] THEN | |
USE_THEN "u" (SUBST1_TAC o GSYM o SPEC `SUC n`) THEN | |
REWRITE_TAC[SUBSET; FORALL_IN_GSPEC] THEN | |
CLAIM_TAC "u_alt" `!p:form n:num. size p < n <=> p IN u n` THENL | |
[USE_THEN "u" (fun th -> REWRITE_TAC[GSYM th]) THEN SET_TAC[]; ALL_TAC] THEN | |
CLAIM_TAC "max" | |
`!p q:form n:num. MAX (size p) (size q) < n <=> p IN u n /\ q IN u n` THENL | |
[USE_THEN "u" (fun th -> REWRITE_TAC[GSYM th]) THEN | |
SET_TAC[ARITH_RULE `!p q n. MAX p q < n <=> p < n /\ q < n`]; | |
ALL_TAC] THEN | |
GEN_TAC THEN STRUCT_CASES_TAC (SPEC `p:form` (cases "form")) THEN | |
HYP REWRITE_TAC "size" [LT_0; IN_UNION; IN_INSERT; NOT_IN_EMPTY; | |
distinctness "form"; GSYM ADD1; LT_SUC] THEN | |
HYP REWRITE_TAC "u_alt max" [] THEN | |
ASM_SIMP_TAC[FUN_IN_IMAGE; IN_UNIV] THEN | |
REWRITE_TAC[IN_IMAGE; EXISTS_PAIR_THM; IN_CROSS; IN_INSERT; NOT_IN_EMPTY; | |
distinctness "form"; injectivity "form"] THEN | |
MESON_TAC[]);; | |
(* ------------------------------------------------------------------------- *) | |
(* Bisimulation. *) | |
(* ------------------------------------------------------------------------- *) | |
let BISIMIMULATION = new_definition | |
`BISIMIMULATION (W1,R1,V1) (W2,R2,V2) Z <=> | |
(!w1:A w2:B. | |
Z w1 w2 | |
==> w1 IN W1 /\ w2 IN W2 /\ | |
(!a:string. V1 a w1 <=> V2 a w2) /\ | |
(!w1'. R1 w1 w1' ==> ?w2'. w2' IN W2 /\ Z w1' w2' /\ R2 w2 w2') /\ | |
(!w2'. R2 w2 w2' ==> ?w1'. w1' IN W1 /\ Z w1' w2' /\ R1 w1 w1'))`;; | |
let BISIMIMULATION_HOLDS = prove | |
(`!W1 R1 V1 W2 R2 V2 Z p w1:A w2:B. | |
BISIMIMULATION (W1,R1,V1) (W2,R2,V2) Z /\ | |
Z w1 w2 | |
==> (holds (W1,R1) V1 p w1 <=> holds (W2,R2) V2 p w2)`, | |
SUBGOAL_THEN | |
`!W1 R1 V1 W2 R2 V2 Z. | |
BISIMIMULATION (W1,R1,V1) (W2,R2,V2) Z | |
==> !p w1:A w2:B. | |
Z w1 w2 | |
==> (holds (W1,R1) V1 p w1 <=> holds (W2,R2) V2 p w2)` | |
(fun th -> MESON_TAC[th]) THEN | |
REPEAT GEN_TAC THEN REWRITE_TAC[BISIMIMULATION] THEN DISCH_TAC THEN | |
MATCH_MP_TAC form_INDUCT THEN REWRITE_TAC[holds] THEN ASM_MESON_TAC[]);; | |
(* ------------------------------------------------------------------------- *) | |
(* Bisimilarity. *) | |
(* ------------------------------------------------------------------------- *) | |
let BISIMILAR = new_definition | |
`BISIMILAR (W1,R1,V1) (W2,R2,V2) (w1:A) (w2:B) <=> | |
?Z. BISIMIMULATION (W1,R1,V1) (W2,R2,V2) Z /\ Z w1 w2`;; | |
let BISIMILAR_IN = prove | |
(`!W1 R1 V1 W2 R2 V2 w1:A w2:B. | |
BISIMILAR (W1,R1,V1) (W2,R2,V2) w1 w2 ==> w1 IN W1 /\ w2 IN W2`, | |
REWRITE_TAC[BISIMILAR; BISIMIMULATION] THEN MESON_TAC[]);; | |
let BISIMILAR_HOLDS = prove | |
(`!W1 R1 V1 W2 R2 V2 w1:A w2:B. | |
BISIMILAR (W1,R1,V1) (W2,R2,V2) w1 w2 | |
==> (!p. holds (W1,R1) V1 p w1 <=> holds (W2,R2) V2 p w2)`, | |
REWRITE_TAC[BISIMILAR] THEN MESON_TAC[BISIMIMULATION_HOLDS]);; | |
let BISIMILAR_HOLDS_IN = prove | |
(`!W1 R1 W2 R2. | |
(!V1 w1:A. ?V2 w2:B. BISIMILAR (W1,R1,V1) (W2,R2,V2) w1 w2) | |
==> (!p. holds_in (W2,R2) p ==> holds_in (W1,R1) p)`, | |
REWRITE_TAC[holds_in] THEN MESON_TAC[BISIMILAR_HOLDS; BISIMILAR_IN]);; | |
let BISIMILAR_VALID = prove | |
(`!L1 L2 . | |
(!W1 R1 V1 w1:A. | |
L1 (W1,R1) /\ w1 IN W1 | |
==> ?W2 R2 V2 w2:B. | |
L2 (W2,R2) /\ | |
BISIMILAR (W1,R1,V1) (W2,R2,V2) w1 w2) | |
==> (!p. L2 |= p ==> L1 |= p)`, | |
REWRITE_TAC[valid; holds_in; FORALL_PAIR_THM] THEN | |
MESON_TAC[BISIMILAR_HOLDS; BISIMILAR_IN]);; | |
(* ----------------------------------------------------------------------- *) | |
(* Further operators. *) | |
(* ----------------------------------------------------------------------- *) | |
parse_as_prefix "Diam";; | |
parse_as_prefix "Dotbox";; | |
let diam_DEF = new_definition | |
`Diam p = Not Box Not p`;; | |
let dotbox_DEF = new_definition | |
`Dotbox p = (Box p && p)`;; | |