Datasets:
Tasks:
Text Generation
Modalities:
Text
Sub-tasks:
language-modeling
Languages:
English
Size:
100K - 1M
License:
(* ========================================================================= *) | |
(* Alternative axiomatization of the modal provability logic GL. *) | |
(* *) | |
(* (c) Copyright, Marco Maggesi, Cosimo Perini Brogi 2020-2022. *) | |
(* ========================================================================= *) | |
let K4LRaxiom_RULES,K4LRaxiom_INDUCT,K4LRaxiom_CASES = new_inductive_definition | |
`(!p q. K4LRaxiom (p --> (q --> p))) /\ | |
(!p q r. K4LRaxiom ((p --> q --> r) --> (p --> q) --> (p --> r))) /\ | |
(!p. K4LRaxiom (((p --> False) --> False) --> p)) /\ | |
(!p q. K4LRaxiom ((p <-> q) --> p --> q)) /\ | |
(!p q. K4LRaxiom ((p <-> q) --> q --> p)) /\ | |
(!p q. K4LRaxiom ((p --> q) --> (q --> p) --> (p <-> q))) /\ | |
K4LRaxiom (True <-> False --> False) /\ | |
(!p. K4LRaxiom (Not p <-> p --> False)) /\ | |
(!p q. K4LRaxiom (p && q <-> (p --> q --> False) --> False)) /\ | |
(!p q. K4LRaxiom (p || q <-> Not(Not p && Not q))) /\ | |
(!p q. K4LRaxiom (Box (p --> q) --> Box p --> Box q)) /\ | |
(!p. K4LRaxiom (Box p --> Box (Box p)))`;; | |
(* ------------------------------------------------------------------------- *) | |
(* Rules. *) | |
(* ------------------------------------------------------------------------- *) | |
let K4LRproves_RULES,K4LRproves_INDUCT,K4LRproves_CASES = | |
new_inductive_definition | |
`(!p. K4LRaxiom p ==> |~ p) /\ | |
(!p q. |~ (p --> q) /\ |~ p ==> |~ q) /\ | |
(!p. |~ p ==> |~ (Box p)) /\ | |
(!p . |~ (Box p --> p) ==> |~ p)`;; | |
(* ------------------------------------------------------------------------- *) | |
(* Propositional lemmas. *) | |
(* ------------------------------------------------------------------------- *) | |
let K4LR_axiom_addimp = prove | |
(`!p q. |~ (p --> (q --> p))`, | |
MESON_TAC[K4LRproves_RULES; K4LRaxiom_RULES]);; | |
let K4LR_axiom_distribimp = prove | |
(`!p q r. |~ ((p --> q --> r) --> (p --> q) --> (p --> r))`, | |
MESON_TAC[K4LRproves_RULES; K4LRaxiom_RULES]);; | |
let K4LR_axiom_doubleneg = prove | |
(`!p. |~ (((p --> False) --> False) --> p)`, | |
MESON_TAC[K4LRproves_RULES; K4LRaxiom_RULES]);; | |
let K4LR_axiom_iffimp1 = prove | |
(`!p q. |~ ((p <-> q) --> p --> q)`, | |
MESON_TAC[K4LRproves_RULES; K4LRaxiom_RULES]);; | |
let K4LR_axiom_iffimp2 = prove | |
(`!p q. |~ ((p <-> q) --> q --> p)`, | |
MESON_TAC[K4LRproves_RULES; K4LRaxiom_RULES]);; | |
let K4LR_axiom_impiff = prove | |
(`!p q. |~ ((p --> q) --> (q --> p) --> (p <-> q))`, | |
MESON_TAC[K4LRproves_RULES; K4LRaxiom_RULES]);; | |
let K4LR_axiom_true = prove | |
(`|~ (True <-> (False --> False))`, | |
MESON_TAC[K4LRproves_RULES; K4LRaxiom_RULES]);; | |
let K4LR_axiom_not = prove | |
(`!p. |~ (Not p <-> (p --> False))`, | |
MESON_TAC[K4LRproves_RULES; K4LRaxiom_RULES]);; | |
let K4LR_axiom_and = prove | |
(`!p q. |~ ((p && q) <-> (p --> q --> False) --> False)`, | |
MESON_TAC[K4LRproves_RULES; K4LRaxiom_RULES]);; | |
let K4LR_axiom_or = prove | |
(`!p q. |~ ((p || q) <-> Not(Not p && Not q))`, | |
MESON_TAC[K4LRproves_RULES; K4LRaxiom_RULES]);; | |
let K4LR_axiom_boximp = prove | |
(`!p q. |~ (Box (p --> q) --> Box p --> Box q)`, | |
MESON_TAC[K4LRproves_RULES; K4LRaxiom_RULES]);; | |
let K4LR_axiom_4 = prove | |
(`!p. |~ (Box p --> Box (Box p))`, | |
MESON_TAC[K4LRproves_RULES; K4LRaxiom_RULES]);; | |
let K4LR_modusponens = prove | |
(`!p. |~ (p --> q) /\ |~ p ==> |~ q`, | |
MESON_TAC[K4LRproves_RULES]);; | |
let K4LR_necessitation = prove | |
(`!p. |~ p ==> |~ (Box p)`, | |
MESON_TAC[K4LRproves_RULES]);; | |
let K4LR_lobrule = prove | |
(`!p. |~ (Box p --> p) ==> |~ p`, | |
MESON_TAC[K4LRproves_RULES]);; | |
let K4LR_iff_imp1 = prove | |
(`!p q. |~ (p <-> q) ==> |~ (p --> q)`, | |
MESON_TAC[K4LR_modusponens; K4LR_axiom_iffimp1]);; | |
let K4LR_iff_imp2 = prove | |
(`!p q. |~ (p <-> q) ==> |~ (q --> p)`, | |
MESON_TAC[K4LR_modusponens; K4LR_axiom_iffimp2]);; | |
let K4LR_imp_antisym = prove | |
(`!p q. |~ (p --> q) /\ |~ (q --> p) ==> |~ (p <-> q)`, | |
MESON_TAC[K4LR_modusponens; K4LR_axiom_impiff]);; | |
let K4LR_add_assum = prove | |
(`!p q. |~ q ==> |~ (p --> q)`, | |
MESON_TAC[K4LR_modusponens; K4LR_axiom_addimp]);; | |
let K4LR_imp_refl_th = prove | |
(`!p. |~ (p --> p)`, | |
MESON_TAC[K4LR_modusponens; K4LR_axiom_distribimp; K4LR_axiom_addimp]);; | |
let K4LR_imp_add_assum = prove | |
(`!p q r. |~ (q --> r) ==> |~ ((p --> q) --> (p --> r))`, | |
MESON_TAC[K4LR_modusponens; K4LR_axiom_distribimp; K4LR_add_assum]);; | |
let K4LR_imp_unduplicate = prove | |
(`!p q. |~ (p --> p --> q) ==> |~ (p --> q)`, | |
MESON_TAC[K4LR_modusponens; K4LR_axiom_distribimp; K4LR_imp_refl_th]);; | |
let K4LR_imp_trans = prove | |
(`!p q. |~ (p --> q) /\ |~ (q --> r) ==> |~ (p --> r)`, | |
MESON_TAC[K4LR_modusponens; K4LR_imp_add_assum]);; | |
let K4LR_imp_swap = prove | |
(`!p q r. |~ (p --> q --> r) ==> |~ (q --> p --> r)`, | |
MESON_TAC[K4LR_imp_trans; K4LR_axiom_addimp; K4LR_modusponens; | |
K4LR_axiom_distribimp]);; | |
let K4LR_imp_trans_chain_2 = prove | |
(`!p q1 q2 r. |~ (p --> q1) /\ |~ (p --> q2) /\ |~ (q1 --> q2 --> r) | |
==> |~ (p --> r)`, | |
ASM_MESON_TAC[K4LR_imp_trans; K4LR_imp_swap; K4LR_imp_unduplicate]);; | |
let K4LR_imp_trans_th = prove | |
(`!p q r. |~ ((q --> r) --> (p --> q) --> (p --> r))`, | |
MESON_TAC[K4LR_imp_trans; K4LR_axiom_addimp; K4LR_axiom_distribimp]);; | |
let K4LR_imp_add_concl = prove | |
(`!p q r. |~ (p --> q) ==> |~ ((q --> r) --> (p --> r))`, | |
MESON_TAC[K4LR_modusponens; K4LR_imp_swap; K4LR_imp_trans_th]);; | |
let K4LR_imp_trans2 = prove | |
(`!p q r s. |~ (p --> q --> r) /\ |~ (r --> s) ==> |~ (p --> q --> s)`, | |
MESON_TAC[K4LR_imp_add_assum; K4LR_modusponens; K4LR_imp_trans_th]);; | |
let K4LR_imp_swap_th = prove | |
(`!p q r. |~ ((p --> q --> r) --> (q --> p --> r))`, | |
MESON_TAC[K4LR_imp_trans; K4LR_axiom_distribimp; K4LR_imp_add_concl; | |
K4LR_axiom_addimp]);; | |
let K4LR_contrapos = prove | |
(`!p q. |~ (p --> q) ==> |~ (Not q --> Not p)`, | |
MESON_TAC[K4LR_imp_trans; K4LR_iff_imp1; K4LR_axiom_not; | |
K4LR_imp_add_concl; K4LR_iff_imp2]);; | |
let K4LR_imp_truefalse_th = prove | |
(`!p q. |~ ((q --> False) --> p --> (p --> q) --> False)`, | |
MESON_TAC[K4LR_imp_trans; K4LR_imp_trans_th; K4LR_imp_swap_th]);; | |
let K4LR_imp_insert = prove | |
(`!p q r. |~ (p --> r) ==> |~ (p --> q --> r)`, | |
MESON_TAC[K4LR_imp_trans; K4LR_axiom_addimp]);; | |
let K4LR_imp_mono_th = prove | |
(`|~ ((p' --> p) --> (q --> q') --> (p --> q) --> (p' --> q'))`, | |
MESON_TAC[K4LR_imp_trans; K4LR_imp_swap; K4LR_imp_trans_th]);; | |
let K4LR_ex_falso_th = prove | |
(`!p. |~ (False --> p)`, | |
MESON_TAC[K4LR_imp_trans; K4LR_axiom_addimp; K4LR_axiom_doubleneg]);; | |
let K4LR_ex_falso = prove | |
(`!p. |~ False ==> |~ p`, | |
MESON_TAC[K4LR_ex_falso_th; K4LR_modusponens]);; | |
let K4LR_imp_contr_th = prove | |
(`!p q. |~ ((p --> False) --> (p --> q))`, | |
MESON_TAC[K4LR_imp_add_assum; K4LR_ex_falso_th]);; | |
let K4LR_contrad = prove | |
(`!p. |~ ((p --> False) --> p) ==> |~ p`, | |
MESON_TAC[K4LR_modusponens; K4LR_axiom_distribimp; | |
K4LR_imp_refl_th; K4LR_axiom_doubleneg]);; | |
let K4LR_bool_cases = prove | |
(`!p q. |~ (p --> q) /\ |~ ((p --> False) --> q) ==> |~ q`, | |
MESON_TAC[K4LR_contrad; K4LR_imp_trans; K4LR_imp_add_concl]);; | |
let K4LR_imp_false_rule = prove | |
(`!p q r. |~ ((q --> False) --> p --> r) | |
==> |~ (((p --> q) --> False) --> r)`, | |
MESON_TAC[K4LR_imp_add_concl; K4LR_imp_add_assum; K4LR_ex_falso_th; | |
K4LR_axiom_addimp; K4LR_imp_swap; K4LR_imp_trans; | |
K4LR_axiom_doubleneg; K4LR_imp_unduplicate]);; | |
let K4LR_imp_true_rule = prove | |
(`!p q r. |~ ((p --> False) --> r) /\ |~ (q --> r) | |
==> |~ ((p --> q) --> r)`, | |
MESON_TAC[K4LR_imp_insert; K4LR_imp_swap; K4LR_modusponens; | |
K4LR_imp_trans_th; K4LR_bool_cases]);; | |
let K4LR_truth_th = prove | |
(`|~ True`, | |
MESON_TAC[K4LR_modusponens; K4LR_axiom_true; | |
K4LR_imp_refl_th; K4LR_iff_imp2]);; | |
let K4LR_and_left_th = prove | |
(`!p q. |~ (p && q --> p)`, | |
MESON_TAC[K4LR_imp_add_assum; K4LR_axiom_addimp; K4LR_imp_trans; | |
K4LR_imp_add_concl; K4LR_axiom_doubleneg; K4LR_imp_trans; | |
K4LR_iff_imp1; K4LR_axiom_and]);; | |
let K4LR_and_right_th = prove | |
(`!p q. |~ (p && q --> q)`, | |
MESON_TAC[K4LR_axiom_addimp; K4LR_imp_trans; K4LR_imp_add_concl; | |
K4LR_axiom_doubleneg; K4LR_iff_imp1; K4LR_axiom_and]);; | |
let K4LR_and_pair_th = prove | |
(`!p q. |~ (p --> q --> p && q)`, | |
MESON_TAC[K4LR_iff_imp2; K4LR_axiom_and; K4LR_imp_swap_th; | |
K4LR_imp_add_assum; K4LR_imp_trans2; K4LR_modusponens; | |
K4LR_imp_swap; K4LR_imp_refl_th]);; | |
let K4LR_and = prove | |
(`!p q. |~ (p && q) <=> |~ p /\ |~ q`, | |
MESON_TAC[K4LR_and_left_th; K4LR_and_right_th; K4LR_and_pair_th; | |
K4LR_modusponens]);; | |
let K4LR_and_elim = prove | |
(`!p q r. |~ (r --> p && q) ==> |~ (r --> q) /\ |~ (r --> p)`, | |
MESON_TAC[K4LR_and_left_th; K4LR_and_right_th; K4LR_imp_trans]);; | |
let K4LR_shunt = prove | |
(`!p q r. |~ (p && q --> r) ==> |~ (p --> q --> r)`, | |
MESON_TAC[K4LR_modusponens; K4LR_imp_add_assum; K4LR_and_pair_th]);; | |
let K4LR_ante_conj = prove | |
(`!p q r. |~ (p --> q --> r) ==> |~ (p && q --> r)`, | |
MESON_TAC[K4LR_imp_trans_chain_2; K4LR_and_left_th; K4LR_and_right_th]);; | |
let K4LR_modusponens_th = prove | |
(`!p q. |~ ((p --> q) && p --> q)`, | |
MESON_TAC[K4LR_imp_refl_th; K4LR_ante_conj]);; | |
let K4LR_not_not_false_th = prove | |
(`!p. |~ ((p --> False) --> False <-> p)`, | |
MESON_TAC[K4LR_imp_antisym; K4LR_axiom_doubleneg; K4LR_imp_swap; | |
K4LR_imp_refl_th]);; | |
let K4LR_iff_sym = prove | |
(`!p q. |~ (p <-> q) <=> |~ (q <-> p)`, | |
MESON_TAC[K4LR_iff_imp1; K4LR_iff_imp2; K4LR_imp_antisym]);; | |
let K4LR_iff_trans = prove | |
(`!p q r. |~ (p <-> q) /\ |~ (q <-> r) ==> |~ (p <-> r)`, | |
MESON_TAC[K4LR_iff_imp1; K4LR_iff_imp2; K4LR_imp_trans; K4LR_imp_antisym]);; | |
let K4LR_not_not_th = prove | |
(`!p. |~ (Not (Not p) <-> p)`, | |
MESON_TAC[K4LR_iff_trans; K4LR_not_not_false_th; K4LR_axiom_not; | |
K4LR_imp_antisym; K4LR_imp_add_concl; K4LR_iff_imp1; | |
K4LR_iff_imp2]);; | |
let K4LR_contrapos_eq = prove | |
(`!p q. |~ (Not p --> Not q) <=> |~ (q --> p)`, | |
MESON_TAC[K4LR_contrapos; K4LR_not_not_th; K4LR_iff_imp1; | |
K4LR_iff_imp2; K4LR_imp_trans]);; | |
let K4LR_or_left_th = prove | |
(`!p q. |~ (q --> p || q)`, | |
MESON_TAC[K4LR_imp_trans; K4LR_not_not_th; K4LR_iff_imp2; | |
K4LR_and_right_th; K4LR_contrapos; K4LR_axiom_or]);; | |
let K4LR_or_right_th = prove | |
(`!p q. |~ (p --> p || q)`, | |
MESON_TAC[K4LR_imp_trans; K4LR_not_not_th; K4LR_iff_imp2; | |
K4LR_and_left_th; K4LR_contrapos; K4LR_axiom_or]);; | |
let K4LR_ante_disj = prove | |
(`!p q r. |~ (p --> r) /\ |~ (q --> r) ==> |~ (p || q --> r)`, | |
REPEAT GEN_TAC THEN ONCE_REWRITE_TAC[GSYM K4LR_contrapos_eq] THEN | |
MESON_TAC[K4LR_imp_trans; K4LR_imp_trans_chain_2; K4LR_and_pair_th; | |
K4LR_contrapos_eq; K4LR_not_not_th; K4LR_axiom_or; K4LR_iff_imp1; | |
K4LR_iff_imp2; K4LR_imp_trans]);; | |
let K4LR_iff_def_th = prove | |
(`!p q. |~ ((p <-> q) <-> (p --> q) && (q --> p))`, | |
MESON_TAC[K4LR_imp_antisym; K4LR_imp_trans_chain_2; K4LR_axiom_iffimp1; | |
K4LR_axiom_iffimp2; K4LR_and_pair_th; K4LR_axiom_impiff; | |
K4LR_imp_trans_chain_2; K4LR_and_left_th; K4LR_and_right_th]);; | |
let K4LR_iff_refl_th = prove | |
(`!p. |~ (p <-> p)`, | |
MESON_TAC[K4LR_imp_antisym; K4LR_imp_refl_th]);; | |
let K4LR_imp_box = prove | |
(`!p q. |~ (p --> q) ==> |~ (Box p --> Box q)`, | |
MESON_TAC[K4LR_modusponens; K4LR_necessitation; K4LR_axiom_boximp]);; | |
let K4LR_box_moduspones = prove | |
(`!p q. |~ (p --> q) /\ |~ (Box p) ==> |~ (Box q)`, | |
MESON_TAC[K4LR_imp_box; K4LR_modusponens]);; | |
let K4LR_box_and = prove | |
(`!p q. |~ (Box(p && q)) ==> |~ (Box p && Box q)`, | |
MESON_TAC[K4LR_and_left_th; K4LR_and_right_th; K4LR_imp_box; | |
K4LR_box_moduspones; K4LR_and]);; | |
let K4LR_box_and_inv = prove | |
(`!p q. |~ (Box p && Box q) ==> |~ (Box (p && q))`, | |
MESON_TAC[K4LR_and_pair_th; K4LR_imp_box; K4LR_axiom_boximp; | |
K4LR_imp_trans; K4LR_ante_conj; K4LR_modusponens]);; | |
let K4LR_and_comm = prove | |
(`!p q . |~ (p && q) <=> |~ (q && p)`, | |
MESON_TAC[K4LR_and]);; | |
let K4LR_and_assoc = prove | |
(`!p q r. |~ ((p && q) && r) <=> |~ (p && (q && r))`, | |
MESON_TAC[K4LR_and]);; | |
let K4LR_disj_imp = prove | |
(`!p q r. |~ (p || q --> r) <=> |~ (p --> r) /\ |~ (q --> r)`, | |
MESON_TAC[K4LR_ante_disj; K4LR_or_right_th; K4LR_or_left_th; | |
K4LR_imp_trans]);; | |
let K4LR_or_elim = prove | |
(`!p q r. |~ (p || q) /\ |~ (p --> r) /\ |~ (q --> r) ==> |~ r`, | |
MESON_TAC[K4LR_disj_imp; K4LR_modusponens]);; | |
let K4LR_or_comm = prove | |
(`!p q . |~ (p || q) <=> |~ (q || p)`, | |
MESON_TAC[K4LR_or_right_th; K4LR_or_left_th; K4LR_modusponens; | |
K4LR_disj_imp]);; | |
let K4LR_or_assoc = prove | |
(`!p q r. |~ ((p || q) || r) <=> |~ (p || (q || r))`, | |
MESON_TAC[K4LR_or_right_th; K4LR_or_left_th; K4LR_modusponens; | |
K4LR_disj_imp]);; | |
let K4LR_or_intror = prove | |
(`!p q. |~ q ==> |~ (p || q)`, | |
MESON_TAC[K4LR_or_left_th; K4LR_modusponens]);; | |
let K4LR_or_introl = prove | |
(`!p q. |~ p ==> |~ (p || q)`, | |
MESON_TAC[K4LR_or_right_th; K4LR_modusponens]);; | |
let K4LR_or_transl = prove | |
(`!p q r. |~ (p --> q) ==> |~ (p --> q || r)`, | |
MESON_TAC[K4LR_or_right_th; K4LR_imp_trans]);; | |
let K4LR_or_transr = prove | |
(`!p q r. |~ (p --> r) ==> |~ (p --> q || r)`, | |
MESON_TAC[K4LR_or_left_th; K4LR_imp_trans]);; | |
let K4LR_frege = prove | |
(`!p q r. |~ (p --> q --> r) /\ |~ (p --> q) ==> |~ (p --> r)`, | |
MESON_TAC[K4LR_axiom_distribimp; K4LR_modusponens; K4LR_shunt; | |
K4LR_ante_conj]);; | |
let K4LR_and_intro = prove | |
(`!p q r. |~ (p --> q) /\ |~ (p --> r) ==> |~ (p --> q && r)`, | |
MESON_TAC[K4LR_and_pair_th; K4LR_imp_trans_chain_2]);; | |
let K4LR_not_def = prove | |
(`!p. |~ (Not p) <=> |~ (p --> False)`, | |
MESON_TAC[K4LR_axiom_not; K4LR_modusponens; K4LR_iff_imp1; | |
K4LR_iff_imp2]);; | |
let K4LR_NC = prove | |
(`!p. |~ (p && Not p) <=> |~ False`, | |
MESON_TAC[K4LR_not_def; K4LR_modusponens; K4LR_and; K4LR_ex_falso]);; | |
let K4LR_nc_th = prove | |
(`!p. |~ (p && Not p --> False)`, | |
MESON_TAC[K4LR_ante_conj; K4LR_imp_swap; K4LR_axiom_not; | |
K4LR_axiom_iffimp1; K4LR_modusponens]);; | |
let K4LR_imp_clauses = prove | |
(`(!p. |~ (p --> True)) /\ | |
(!p. |~ (p --> False) <=> |~ (Not p)) /\ | |
(!p. |~ (True --> p) <=> |~ p) /\ | |
(!p. |~ (False --> p))`, | |
SIMP_TAC[K4LR_truth_th; K4LR_add_assum; K4LR_not_def; K4LR_ex_falso_th] THEN | |
GEN_TAC THEN EQ_TAC THENL | |
[MESON_TAC[K4LR_modusponens; K4LR_truth_th]; | |
MESON_TAC[K4LR_add_assum]]);; | |
let K4LR_and_left_true_th = prove | |
(`!p. |~ (True && p <-> p)`, | |
GEN_TAC THEN MATCH_MP_TAC K4LR_imp_antisym THEN CONJ_TAC THENL | |
[MATCH_ACCEPT_TAC K4LR_and_right_th; ALL_TAC] THEN | |
MATCH_MP_TAC K4LR_and_intro THEN | |
REWRITE_TAC[K4LR_imp_refl_th; K4LR_imp_clauses]);; | |
let K4LR_or_and_distr = prove | |
(`!p q r. |~ ((p || q) && r) ==> |~ ((p && r) || (q && r))`, | |
REPEAT GEN_TAC THEN ONCE_REWRITE_TAC[K4LR_and] THEN STRIP_TAC THEN | |
MATCH_MP_TAC K4LR_or_elim THEN EXISTS_TAC `p:form` THEN | |
EXISTS_TAC `q :form` THEN ASM_REWRITE_TAC[] THEN CONJ_TAC THENL | |
[MATCH_MP_TAC K4LR_or_transl THEN MATCH_MP_TAC K4LR_and_intro THEN | |
REWRITE_TAC[K4LR_imp_refl_th] THEN ASM_SIMP_TAC[K4LR_add_assum]; | |
MATCH_MP_TAC K4LR_or_transr THEN MATCH_MP_TAC K4LR_and_intro THEN | |
REWRITE_TAC[K4LR_imp_refl_th] THEN ASM_SIMP_TAC[K4LR_add_assum]]);; | |
let K4LR_and_or_distr = prove | |
(`!p q r. |~ ((p && q) || r) ==> |~ ((p || r) && (q || r))`, | |
REPEAT GEN_TAC THEN ONCE_REWRITE_TAC[K4LR_and] THEN DISCH_TAC THEN | |
CONJ_TAC THEN MATCH_MP_TAC K4LR_or_elim THEN | |
MAP_EVERY EXISTS_TAC [`p && q`; `r:form`] THEN | |
ASM_REWRITE_TAC[K4LR_or_left_th] THEN MATCH_MP_TAC K4LR_or_transl THEN | |
ASM_REWRITE_TAC[K4LR_and_left_th; K4LR_and_right_th]);; | |
let K4LR_or_and_distr_inv = prove | |
(`!p q r. |~ ((p && r) || (q && r)) ==> |~ ((p || q) && r)`, | |
REPEAT GEN_TAC THEN DISCH_TAC THEN MATCH_MP_TAC K4LR_or_elim THEN | |
MAP_EVERY EXISTS_TAC [`p && r`; `q && r`] THEN ASM_REWRITE_TAC[] THEN | |
POP_ASSUM (K ALL_TAC) THEN CONJ_TAC THEN MATCH_MP_TAC K4LR_and_intro THEN | |
CONJ_TAC THEN REWRITE_TAC[K4LR_and_left_th; K4LR_and_right_th] THENL | |
[MATCH_MP_TAC K4LR_or_transl THEN MATCH_ACCEPT_TAC K4LR_and_left_th; | |
MATCH_MP_TAC K4LR_or_transr THEN MATCH_ACCEPT_TAC K4LR_and_left_th]);; | |
let K4LR_or_and_distr_equiv = prove | |
(`!p q r. |~ ((p || q) && r) <=> |~ ((p && r) || (q && r))`, | |
MESON_TAC[K4LR_or_and_distr; K4LR_or_and_distr_inv]);; | |
let K4LR_and_or_distr_inv_prelim = prove | |
(`!p q r. |~ ((p || r) && (q || r)) ==> |~ (q --> (p && q) || r)`, | |
REPEAT GEN_TAC THEN REWRITE_TAC[K4LR_and] THEN INTRO_TAC "pr qr" THEN | |
MATCH_MP_TAC (SPECL [`p:form`; `r:form`] K4LR_or_elim) THEN | |
ASM_REWRITE_TAC[] THEN REMOVE_THEN "pr" (K ALL_TAC) THEN CONJ_TAC THENL | |
[MATCH_MP_TAC K4LR_shunt THEN MATCH_ACCEPT_TAC K4LR_or_right_th; | |
ALL_TAC] THEN | |
MATCH_MP_TAC K4LR_imp_insert THEN MATCH_ACCEPT_TAC K4LR_or_left_th);; | |
let K4LR_and_or_distr_inv = prove | |
(`!p q r. |~ ((p || r) && (q || r)) ==> |~ ((p && q) || r)`, | |
REPEAT GEN_TAC THEN REWRITE_TAC[K4LR_and] THEN INTRO_TAC "pr qr" THEN | |
MATCH_MP_TAC (SPECL [`p:form`; `r:form`] K4LR_or_elim) THEN | |
ASM_REWRITE_TAC[] THEN REMOVE_THEN "pr" (K ALL_TAC) THEN | |
REWRITE_TAC[K4LR_or_left_th] THEN | |
MATCH_MP_TAC (SPECL [`q:form`; `r:form`] K4LR_or_elim) THEN | |
ASM_REWRITE_TAC[] THEN REMOVE_THEN "qr" (K ALL_TAC) THEN CONJ_TAC THENL | |
[MATCH_MP_TAC K4LR_imp_swap THEN MATCH_MP_TAC K4LR_shunt THEN | |
MATCH_ACCEPT_TAC K4LR_or_right_th; | |
MATCH_MP_TAC K4LR_imp_insert THEN MATCH_ACCEPT_TAC K4LR_or_left_th]);; | |
let K4LR_and_or_distr_equiv = prove | |
(`!p q r. |~ ((p && q) || r) <=> |~ ((p || r) && (q || r))`, | |
MESON_TAC[K4LR_and_or_distr; K4LR_and_or_distr_inv]);; | |
let K4LR_DOUBLENEG_CL = prove | |
(`!p. |~ (Not(Not p)) ==> |~ p`, | |
MESON_TAC[K4LR_not_not_th; K4LR_modusponens; K4LR_iff_imp1; K4LR_iff_imp2]);; | |
let K4LR_DOUBLENEG = prove | |
(`!p. |~ p ==> |~ (Not(Not p))`, | |
MESON_TAC[K4LR_not_not_th; K4LR_modusponens; K4LR_iff_imp1; K4LR_iff_imp2]);; | |
let K4LR_and_eq_or = prove | |
(`!p q. |~ (p || q) <=> |~ (Not(Not p && Not q))`, | |
MESON_TAC[K4LR_modusponens; K4LR_axiom_or; K4LR_iff_imp1; K4LR_iff_imp2]);; | |
let K4LR_tnd_th = prove | |
(`!p. |~ (p || Not p)`, | |
GEN_TAC THEN REWRITE_TAC[K4LR_and_eq_or] THEN | |
REWRITE_TAC[K4LR_not_def] THEN MESON_TAC[K4LR_nc_th]);; | |
let K4LR_iff_mp = prove | |
(`!p q. |~ (p <-> q) /\ |~ p ==> |~ q`, | |
MESON_TAC[K4LR_iff_imp1; K4LR_modusponens]);; | |
let K4LR_and_subst = prove | |
(`!p p' q q'. |~ (p <-> p') /\ |~ (q <-> q') | |
==> (|~ (p && q) <=> |~ (p' && q'))`, | |
REPEAT STRIP_TAC THEN REWRITE_TAC[K4LR_and] THEN | |
ASM_MESON_TAC[K4LR_iff_mp; K4LR_iff_sym]);; | |
let K4LR_imp_mono_th = prove | |
(`!p p' q q'. |~ ((p' --> p) && (q --> q') --> (p --> q) --> (p' --> q'))`, | |
REPEAT GEN_TAC THEN MATCH_MP_TAC K4LR_ante_conj THEN | |
MATCH_ACCEPT_TAC K4LR_imp_mono_th);; | |
let K4LR_imp_mono = prove | |
(`!p p' q q'. |~ (p' --> p) /\ |~ (q --> q') | |
==> |~ ((p --> q) --> (p' --> q'))`, | |
REWRITE_TAC[GSYM K4LR_and] THEN | |
MESON_TAC[K4LR_modusponens;K4LR_imp_mono_th]);; | |
let K4LR_iff = prove | |
(`!p q. |~ (p <-> q) ==> (|~ p <=> |~ q)`, | |
MESON_TAC[K4LR_iff_imp1; K4LR_iff_imp2; K4LR_modusponens]);; | |
let K4LR_iff_def = prove | |
(`!p q. |~ (p <-> q) <=> |~ (p --> q) /\ |~ (q --> p)`, | |
REPEAT GEN_TAC THEN EQ_TAC THENL | |
[MESON_TAC[K4LR_iff_imp1; K4LR_iff_imp2]; | |
MATCH_ACCEPT_TAC K4LR_imp_antisym]);; | |
let K4LR_not_subst = prove | |
(`!p q. |~ (p <-> q) ==> |~ (Not p <-> Not q)`, | |
MESON_TAC[K4LR_iff_def; K4LR_iff_imp2; K4LR_contrapos]);; | |
let K4LR_and_rigth_true_th = prove | |
(`!p. |~ (p && True <-> p)`, | |
GEN_TAC THEN REWRITE_TAC[K4LR_iff_def] THEN CONJ_TAC THENL | |
[MATCH_ACCEPT_TAC K4LR_and_left_th; ALL_TAC] THEN | |
MATCH_MP_TAC K4LR_and_intro THEN REWRITE_TAC[K4LR_imp_refl_th] THEN | |
MATCH_MP_TAC K4LR_add_assum THEN MATCH_ACCEPT_TAC K4LR_truth_th);; | |
let K4LR_and_comm_th = prove | |
(`!p q. |~ (p && q <-> q && p)`, | |
SUBGOAL_THEN `!p q. |~ (p && q --> q && p)` | |
(fun th -> MESON_TAC[th; K4LR_iff_def]) THEN | |
MESON_TAC[K4LR_and_intro; K4LR_and_left_th; K4LR_and_right_th]);; | |
let K4LR_and_assoc_th = prove | |
(`!p q r. |~ ((p && q) && r <-> p && (q && r))`, | |
REPEAT GEN_TAC THEN MATCH_MP_TAC K4LR_imp_antisym THEN CONJ_TAC THEN | |
MATCH_MP_TAC K4LR_and_intro THEN | |
MESON_TAC[K4LR_and_left_th; K4LR_and_right_th; | |
K4LR_imp_trans; K4LR_and_intro]);; | |
let K4LR_and_subst_th = prove | |
(`!p p' q q'. |~ (p <-> p') /\ |~ (q <-> q') | |
==> |~ (p && q <-> p' && q')`, | |
SUBGOAL_THEN | |
`!p p' q q'. |~ (p <-> p') /\ |~ (q <-> q') | |
==> |~ (p && q --> p' && q')` | |
(fun th -> MESON_TAC[th; K4LR_iff_def]) THEN | |
REPEAT STRIP_TAC THEN MATCH_MP_TAC K4LR_and_intro THEN CONJ_TAC THENL | |
[MATCH_MP_TAC K4LR_imp_trans THEN EXISTS_TAC `p:form` THEN | |
REWRITE_TAC[K4LR_and_left_th] THEN ASM_SIMP_TAC[K4LR_iff_imp1]; | |
MATCH_MP_TAC K4LR_imp_trans THEN EXISTS_TAC `q:form` THEN | |
REWRITE_TAC[K4LR_and_right_th] THEN ASM_SIMP_TAC[K4LR_iff_imp1]]);; | |
let K4LR_imp_subst = prove | |
(`!p p' q q'. |~ (p <-> p') /\ |~ (q <-> q') | |
==> |~ ((p --> q) <-> (p' --> q'))`, | |
REPEAT GEN_TAC THEN STRIP_TAC THEN REWRITE_TAC[K4LR_iff_def] THEN | |
POP_ASSUM_LIST (MP_TAC o end_itlist CONJ) THEN | |
SUBGOAL_THEN `!p q p' q'. | |
|~ (p <-> p') /\ |~ (q <-> q') | |
==> |~ ((p --> q) --> (p' --> q'))` | |
(fun th -> MESON_TAC[th; K4LR_iff_sym]) THEN | |
REPEAT GEN_TAC THEN STRIP_TAC THEN MATCH_MP_TAC K4LR_imp_mono THEN | |
ASM_MESON_TAC[K4LR_iff_imp1; K4LR_iff_sym]);; | |
let K4LR_de_morgan_and_th = prove | |
(`!p q. |~ (Not (p && q) <-> Not p || Not q)`, | |
REPEAT GEN_TAC THEN MATCH_MP_TAC K4LR_iff_trans THEN | |
EXISTS_TAC `Not (Not (Not p) && Not (Not q))` THEN CONJ_TAC THENL | |
[MATCH_MP_TAC K4LR_not_subst THEN ONCE_REWRITE_TAC[K4LR_iff_sym] THEN | |
MATCH_MP_TAC K4LR_and_subst_th THEN CONJ_TAC THEN | |
MATCH_ACCEPT_TAC K4LR_not_not_th; | |
ONCE_REWRITE_TAC[K4LR_iff_sym] THEN MATCH_ACCEPT_TAC K4LR_axiom_or]);; | |
let K4LR_iff_sym_th = prove | |
(`!p q. |~ ((p <-> q) <-> (q <-> p))`, | |
REPEAT GEN_TAC THEN MATCH_MP_TAC K4LR_iff_trans THEN | |
EXISTS_TAC `(p --> q) && (q --> p)` THEN | |
ASM_REWRITE_TAC[K4LR_iff_def_th] THEN | |
ONCE_REWRITE_TAC[K4LR_iff_sym] THEN MATCH_MP_TAC K4LR_iff_trans THEN | |
EXISTS_TAC `(q --> p) && (p --> q)` THEN | |
REWRITE_TAC[K4LR_iff_def_th; K4LR_and_comm_th]);; | |
let K4LR_iff_true_th = prove | |
(`(!p. |~ ((p <-> True) <-> p)) /\ | |
(!p. |~ ((True <-> p) <-> p))`, | |
CLAIM_TAC "1" `!p. |~ ((p <-> True) <-> p)` THENL | |
[GEN_TAC THEN MATCH_MP_TAC K4LR_imp_antisym THEN CONJ_TAC THENL | |
[MATCH_MP_TAC K4LR_imp_trans THEN EXISTS_TAC `True --> p` THEN | |
CONJ_TAC THENL | |
[MATCH_ACCEPT_TAC K4LR_axiom_iffimp2; ALL_TAC] THEN | |
MATCH_MP_TAC K4LR_imp_trans THEN EXISTS_TAC `(True --> p) && True` THEN | |
REWRITE_TAC[K4LR_modusponens_th] THEN MATCH_MP_TAC K4LR_and_intro THEN | |
REWRITE_TAC[K4LR_imp_refl_th] THEN MATCH_MP_TAC K4LR_add_assum THEN | |
MATCH_ACCEPT_TAC K4LR_truth_th; | |
ALL_TAC] THEN | |
MATCH_MP_TAC K4LR_imp_trans THEN | |
EXISTS_TAC `(p --> True) && (True --> p)` THEN | |
CONJ_TAC THENL [ALL_TAC; MESON_TAC[K4LR_iff_def_th; K4LR_iff_imp2]] THEN | |
MATCH_MP_TAC K4LR_and_intro THEN REWRITE_TAC[K4LR_axiom_addimp] THEN | |
SIMP_TAC[K4LR_add_assum; K4LR_truth_th]; | |
ALL_TAC] THEN | |
ASM_REWRITE_TAC[] THEN GEN_TAC THEN MATCH_MP_TAC K4LR_iff_trans THEN | |
EXISTS_TAC `p <-> True` THEN ASM_REWRITE_TAC[K4LR_iff_sym_th]);; | |
let K4LR_or_subst_th = prove | |
(`!p p' q q'. |~ (p <-> p') /\ |~ (q <-> q') | |
==> |~ (p || q <-> p' || q')`, | |
SUBGOAL_THEN | |
`!p p' q q'. |~ (p <-> p') /\ |~ (q <-> q') | |
==> |~ (p || q --> p' || q')` | |
(fun th -> MESON_TAC[th; K4LR_iff_sym; K4LR_iff_def]) THEN | |
REPEAT STRIP_TAC THEN REWRITE_TAC[K4LR_disj_imp] THEN CONJ_TAC THEN | |
MATCH_MP_TAC K4LR_frege THENL | |
[EXISTS_TAC `p':form` THEN CONJ_TAC THENL | |
[MATCH_MP_TAC K4LR_add_assum THEN MATCH_ACCEPT_TAC K4LR_or_right_th; | |
ASM_SIMP_TAC[K4LR_iff_imp1]]; | |
EXISTS_TAC `q':form` THEN CONJ_TAC THENL | |
[MATCH_MP_TAC K4LR_add_assum THEN MATCH_ACCEPT_TAC K4LR_or_left_th; | |
ASM_SIMP_TAC[K4LR_iff_imp1]]]);; | |
let K4LR_or_subst_right = prove | |
(`!p q1 q2. |~ (q1 <-> q2) ==> |~ (p || q1 <-> p || q2)`, | |
REPEAT STRIP_TAC THEN MATCH_MP_TAC K4LR_or_subst_th THEN | |
ASM_REWRITE_TAC[K4LR_iff_refl_th]);; | |
let K4LR_or_rid_th = prove | |
(`!p. |~ (p || False <-> p)`, | |
GEN_TAC THEN REWRITE_TAC[K4LR_iff_def] THEN CONJ_TAC THENL | |
[REWRITE_TAC[K4LR_disj_imp; K4LR_imp_refl_th; K4LR_ex_falso_th]; | |
MATCH_ACCEPT_TAC K4LR_or_right_th]);; | |
let K4LR_or_lid_th = prove | |
(`!p. |~ (False || p <-> p)`, | |
GEN_TAC THEN REWRITE_TAC[K4LR_iff_def] THEN CONJ_TAC THENL | |
[REWRITE_TAC[K4LR_disj_imp; K4LR_imp_refl_th; K4LR_ex_falso_th]; | |
MATCH_ACCEPT_TAC K4LR_or_left_th]);; | |
let K4LR_or_assoc_left_th = prove | |
(`!p q r. |~ (p || (q || r) --> (p || q) || r)`, | |
REPEAT GEN_TAC THEN REWRITE_TAC[K4LR_disj_imp] THEN | |
MESON_TAC[K4LR_or_left_th; K4LR_or_right_th; K4LR_imp_trans]);; | |
let K4LR_or_assoc_right_th = prove | |
(`!p q r. |~ ((p || q) || r --> p || (q || r))`, | |
REPEAT GEN_TAC THEN REWRITE_TAC[K4LR_disj_imp] THEN | |
MESON_TAC[K4LR_or_left_th; K4LR_or_right_th; K4LR_imp_trans]);; | |
let K4LR_or_assoc_th = prove | |
(`!p q r. |~ (p || (q || r) <-> (p || q) || r)`, | |
REWRITE_TAC[K4LR_iff_def; K4LR_or_assoc_left_th; K4LR_or_assoc_right_th]);; | |
let K4LR_and_or_ldistrib_th = prove | |
(`!p q r. |~ (p && (q || r) <-> p && q || p && r)`, | |
REPEAT GEN_TAC THEN REWRITE_TAC[K4LR_iff_def; K4LR_disj_imp] THEN | |
REPEAT CONJ_TAC THEN TRY (MATCH_MP_TAC K4LR_and_intro) THEN | |
REPEAT CONJ_TAC THEN MATCH_MP_TAC K4LR_ante_conj THENL | |
[MATCH_MP_TAC K4LR_imp_swap THEN REWRITE_TAC[K4LR_disj_imp] THEN | |
CONJ_TAC THEN MATCH_MP_TAC K4LR_imp_swap THEN MATCH_MP_TAC K4LR_shunt THENL | |
[MATCH_ACCEPT_TAC K4LR_or_right_th; MATCH_ACCEPT_TAC K4LR_or_left_th]; | |
MATCH_ACCEPT_TAC K4LR_axiom_addimp; | |
MATCH_MP_TAC K4LR_add_assum THEN MATCH_ACCEPT_TAC K4LR_or_right_th; | |
MATCH_ACCEPT_TAC K4LR_axiom_addimp; | |
MATCH_MP_TAC K4LR_add_assum THEN MATCH_ACCEPT_TAC K4LR_or_left_th]);; | |
let K4LR_not_true_th = prove | |
(`|~ (Not True <-> False)`, | |
REWRITE_TAC[K4LR_iff_def; K4LR_ex_falso_th; GSYM K4LR_not_def] THEN | |
MATCH_MP_TAC K4LR_iff_mp THEN EXISTS_TAC `True` THEN | |
REWRITE_TAC[K4LR_truth_th] THEN ONCE_REWRITE_TAC[K4LR_iff_sym] THEN | |
MATCH_ACCEPT_TAC K4LR_not_not_th);; | |
let K4LR_and_subst_right_th = prove | |
(`!p q1 q2. |~ ((q1 <-> q2) --> (p && q1 <-> p && q2))`, | |
REPEAT GEN_TAC THEN MATCH_MP_TAC K4LR_imp_trans THEN | |
EXISTS_TAC `(p && q1 --> p && q2) && (p && q2 --> p && q1)` THEN | |
CONJ_TAC THENL | |
[ALL_TAC; | |
MATCH_MP_TAC K4LR_iff_imp2 THEN MATCH_ACCEPT_TAC K4LR_iff_def_th] THEN | |
SUBGOAL_THEN `!p q1 q2. |~ ((q1 <-> q2) --> (p && q1 --> p && q2))` | |
(fun th -> MATCH_MP_TAC K4LR_and_intro THEN | |
MESON_TAC[th; K4LR_and_comm_th; K4LR_imp_trans; K4LR_iff_def_th; | |
K4LR_iff_imp1; K4LR_iff_imp2]) THEN | |
REPEAT GEN_TAC THEN MATCH_MP_TAC K4LR_shunt THEN | |
MATCH_MP_TAC K4LR_and_intro THEN CONJ_TAC THENL | |
[MESON_TAC[K4LR_and_left_th; K4LR_and_right_th; K4LR_imp_trans]; | |
ALL_TAC] THEN | |
MATCH_MP_TAC K4LR_imp_trans THEN EXISTS_TAC `(q1 <-> q2) && q1` THEN | |
CONJ_TAC THENL | |
[MATCH_MP_TAC K4LR_and_intro THEN REWRITE_TAC[K4LR_and_left_th] THEN | |
MESON_TAC[K4LR_and_right_th; K4LR_imp_trans]; | |
MATCH_MP_TAC K4LR_imp_trans THEN EXISTS_TAC `(q1 --> q2) && q1` THEN | |
REWRITE_TAC[K4LR_modusponens_th] THEN MATCH_MP_TAC K4LR_and_intro THEN | |
REWRITE_TAC[K4LR_and_right_th] THEN MATCH_MP_TAC K4LR_imp_trans THEN | |
EXISTS_TAC `(q1 <-> q2)` THEN REWRITE_TAC[K4LR_and_left_th] THEN | |
MATCH_MP_TAC K4LR_imp_trans THEN | |
EXISTS_TAC `(q1 --> q2) && (q2 --> q1)` THEN | |
REWRITE_TAC[K4LR_and_left_th] THEN MATCH_MP_TAC K4LR_iff_imp1 THEN | |
MATCH_ACCEPT_TAC K4LR_iff_def_th]);; | |
let K4LR_and_subst_left_th = prove | |
(`!p1 p2 q. |~ ((p1 <-> p2) --> (p1 && q <-> p2 && q))`, | |
REPEAT GEN_TAC THEN MATCH_MP_TAC K4LR_imp_trans THEN | |
EXISTS_TAC `(p1 && q --> p2 && q) && (p2 && q --> p1 && q)` THEN | |
CONJ_TAC THENL | |
[ALL_TAC; | |
MATCH_MP_TAC K4LR_iff_imp2 THEN MATCH_ACCEPT_TAC K4LR_iff_def_th] THEN | |
SUBGOAL_THEN `!p1 p2 q. |~ ((p1 <-> p2) --> (p1 && q --> p2 && q))` | |
(fun th -> MATCH_MP_TAC K4LR_and_intro THEN | |
MESON_TAC[th; K4LR_and_comm_th; K4LR_imp_trans; K4LR_iff_def_th; | |
K4LR_iff_imp1; K4LR_iff_imp2]) THEN | |
REPEAT GEN_TAC THEN MATCH_MP_TAC K4LR_shunt THEN MATCH_MP_TAC | |
K4LR_and_intro THEN CONJ_TAC THENL | |
[ALL_TAC; | |
MESON_TAC[K4LR_and_left_th; K4LR_and_right_th; K4LR_imp_trans]] THEN | |
MATCH_MP_TAC K4LR_imp_trans THEN EXISTS_TAC `(p1 <-> p2) && p1` THEN | |
CONJ_TAC THENL | |
[MATCH_MP_TAC K4LR_and_intro THEN REWRITE_TAC[K4LR_and_left_th] THEN | |
MESON_TAC[K4LR_and_right_th; K4LR_and_left_th; K4LR_imp_trans]; | |
MATCH_MP_TAC K4LR_imp_trans THEN EXISTS_TAC `(p1 --> p2) && p1` THEN | |
REWRITE_TAC[K4LR_modusponens_th] THEN MATCH_MP_TAC K4LR_and_intro THEN | |
REWRITE_TAC[K4LR_and_right_th] THEN MATCH_MP_TAC K4LR_imp_trans THEN | |
EXISTS_TAC `(p1 <-> p2)` THEN REWRITE_TAC[K4LR_and_left_th] THEN | |
MATCH_MP_TAC K4LR_imp_trans THEN | |
EXISTS_TAC `(p1 --> p2) && (p2 --> p1)` THEN | |
REWRITE_TAC[K4LR_and_left_th] THEN MATCH_MP_TAC K4LR_iff_imp1 THEN | |
MATCH_ACCEPT_TAC K4LR_iff_def_th]);; | |
let K4LR_contrapos_th = prove | |
(`!p q. |~ ((p --> q) --> (Not q --> Not p))`, | |
REPEAT GEN_TAC THEN MATCH_MP_TAC K4LR_imp_swap THEN | |
MATCH_MP_TAC K4LR_imp_trans THEN EXISTS_TAC `(q --> False)` THEN | |
CONJ_TAC THENL | |
[MATCH_MP_TAC K4LR_iff_imp1 THEN MATCH_ACCEPT_TAC K4LR_axiom_not; | |
MATCH_MP_TAC K4LR_shunt THEN MATCH_MP_TAC K4LR_imp_trans THEN | |
EXISTS_TAC `p --> False` THEN CONJ_TAC THENL | |
[MESON_TAC[K4LR_ante_conj; K4LR_imp_trans_th]; | |
MESON_TAC[K4LR_axiom_not; K4LR_iff_imp2]]]);; | |
let K4LR_contrapos_eq_th = prove | |
(`!p q. |~ ((p --> q) <-> (Not q --> Not p))`, | |
SUBGOAL_THEN `!p q. |~ ((Not q --> Not p) --> (p --> q))` | |
(fun th -> MESON_TAC[th; K4LR_iff_def; K4LR_contrapos_th]) THEN | |
GEN_TAC THEN GEN_TAC THEN MATCH_MP_TAC K4LR_imp_trans THEN | |
EXISTS_TAC `Not (Not p) --> Not (Not q)` THEN CONJ_TAC THENL | |
[MATCH_ACCEPT_TAC K4LR_contrapos_th; ALL_TAC] THEN | |
MATCH_MP_TAC K4LR_iff_imp1 THEN MATCH_MP_TAC K4LR_imp_subst THEN | |
MESON_TAC[K4LR_not_not_th]);; | |
let K4LR_iff_sym_th = prove | |
(`!p q. |~ ((p <-> q) --> (q <-> p))`, | |
REPEAT GEN_TAC THEN MATCH_MP_TAC K4LR_imp_trans THEN | |
EXISTS_TAC `(p --> q) && (q --> p)` THEN CONJ_TAC THENL | |
[MESON_TAC[K4LR_iff_def_th; K4LR_iff_imp1]; ALL_TAC] THEN | |
MATCH_MP_TAC K4LR_imp_trans THEN EXISTS_TAC `(q --> p) && (p --> q)` THEN | |
CONJ_TAC THENL | |
[MESON_TAC[K4LR_and_comm_th; K4LR_iff_imp1]; | |
MESON_TAC[K4LR_iff_def_th; K4LR_iff_imp2]]);; | |
let K4LR_de_morgan_or_th = prove | |
(`!p q. |~ (Not (p || q) <-> Not p && Not q)`, | |
REPEAT GEN_TAC THEN MATCH_MP_TAC K4LR_iff_trans THEN | |
EXISTS_TAC `Not (Not (Not p && Not q))` THEN CONJ_TAC THENL | |
[MATCH_MP_TAC K4LR_not_subst THEN MATCH_ACCEPT_TAC K4LR_axiom_or; | |
MATCH_ACCEPT_TAC K4LR_not_not_th]);; | |
let K4LR_crysippus_th = prove | |
(`!p q. |~ (Not (p --> q) <-> p && Not q)`, | |
REPEAT GEN_TAC THEN MATCH_MP_TAC K4LR_iff_trans THEN | |
EXISTS_TAC `(p --> Not q --> False) --> False` THEN CONJ_TAC THENL | |
[ALL_TAC; MESON_TAC[K4LR_axiom_and; K4LR_iff_sym]] THEN | |
MATCH_MP_TAC K4LR_iff_trans THEN | |
EXISTS_TAC `Not (p --> Not q --> False)` THEN | |
CONJ_TAC THENL [ALL_TAC; MATCH_ACCEPT_TAC K4LR_axiom_not] THEN | |
MATCH_MP_TAC K4LR_not_subst THEN MATCH_MP_TAC K4LR_imp_subst THEN | |
CONJ_TAC THENL [MATCH_ACCEPT_TAC K4LR_iff_refl_th; ALL_TAC] THEN | |
MATCH_MP_TAC K4LR_iff_trans THEN EXISTS_TAC `Not (Not q)` THEN | |
CONJ_TAC THENL | |
[MESON_TAC[K4LR_not_not_th; K4LR_iff_sym]; | |
MATCH_ACCEPT_TAC K4LR_axiom_not]);; | |
let K4LR_frege_th = prove | |
(`!p q r. |~ (p --> q --> r) ==> |~((p --> q) --> (p --> r))`, | |
MESON_TAC[K4LR_axiom_distribimp; K4LR_modusponens]);; | |
(* ------------------------------------------------------------------------- *) | |
(* K4LR C= GL *) | |
(* ------------------------------------------------------------------------- *) | |
let GL_proves_K4LRaxioms = prove | |
(`!p. K4LRaxiom p ==> |-- p`, | |
MATCH_MP_TAC K4LRaxiom_INDUCT THEN | |
MESON_TAC[GLproves_RULES; GLaxiom_RULES; GL_schema_4]);; | |
let GL_proves_Lob_rule = prove | |
(`!p. |-- (Box p --> p) ==> |-- p`, | |
MESON_TAC[GL_necessitation; GL_modusponens; GL_axiom_lob]);; | |
let K4LRproves_subset_GLproves = prove | |
(`!p. |~ p ==> |-- p`, | |
MATCH_MP_TAC K4LRproves_INDUCT THEN | |
MESON_TAC[GL_proves_K4LRaxioms; GL_modusponens; | |
GL_necessitation; GL_proves_Lob_rule]);; | |
(* ------------------------------------------------------------------------- *) | |
(* GL C= K4LR *) | |
(* ------------------------------------------------------------------------- *) | |
let K4LR_proves_Lob_axiom = prove | |
(`!p. |~ (Box (Box p --> p) --> Box p)`, | |
GEN_TAC THEN MATCH_MP_TAC K4LR_lobrule THEN MATCH_MP_TAC K4LR_imp_trans THEN | |
EXISTS_TAC `Box (Box p --> p) --> Box (Box p)` THEN CONJ_TAC THENL | |
[MATCH_MP_TAC K4LR_imp_swap THEN MATCH_MP_TAC K4LR_imp_trans THEN | |
EXISTS_TAC `Box(Box(Box p --> p))` THEN CONJ_TAC THENL | |
[MESON_TAC[K4LR_axiom_4]; | |
MATCH_MP_TAC K4LR_imp_swap THEN MESON_TAC[K4LR_axiom_boximp]]; | |
MATCH_MP_TAC K4LR_frege_th THEN MESON_TAC[K4LR_axiom_boximp]]);; | |
let K4LR_proves_GLaxioms = prove | |
(`!p. GLaxiom p ==> |~ p`, | |
MATCH_MP_TAC GLaxiom_INDUCT THEN | |
MESON_TAC[K4LRproves_RULES; K4LRaxiom_RULES; K4LR_proves_Lob_axiom]);; | |
let GLproves_subset_K4LRproves = prove | |
(`!p. |-- p ==> |~ p`, | |
MATCH_MP_TAC GLproves_INDUCT THEN | |
MESON_TAC[K4LR_proves_GLaxioms; K4LR_modusponens; | |
K4LR_necessitation; K4LR_proves_Lob_axiom]);; | |
(* ------------------------------------------------------------------------- *) | |
(* GL = K4LR *) | |
(* ------------------------------------------------------------------------- *) | |
let GL_equiv_K4LR = prove | |
(`!p. |-- p <=> |~ p`, | |
MESON_TAC[GLproves_subset_K4LRproves; K4LRproves_subset_GLproves]);; | |