Datasets:

Modalities:
Text
Languages:
English
Libraries:
Datasets
License:
Zhangir Azerbayev
squashed?
4365a98
raw
history blame
14.8 kB
(* ========================================================================= *)
(* Decision procedure for the provability logic GL. *)
(* *)
(* (c) Copyright, Marco Maggesi, Cosimo Perini Brogi 2020-2022. *)
(* ========================================================================= *)
(* ------------------------------------------------------------------------- *)
(* Lemmata. *)
(* ------------------------------------------------------------------------- *)
let HOLDS_NNFC_UNFOLD = prove
(`(!V w:W. ~holds (W,R) V False w) /\
(!V w. holds (W,R) V True w) /\
(!V s w. holds (W,R) V (Atom s) w <=> V s w) /\
(!V p w. holds (W,R) V (Not p) w <=> ~holds (W,R) V p w) /\
(!p V q w.
holds (W,R) V (p && q) w <=> holds (W,R) V p w /\ holds (W,R) V q w) /\
(!p V q w.
holds (W,R) V (p || q) w <=> holds (W,R) V p w \/ holds (W,R) V q w) /\
(!p V q w.
holds (W,R) V (p --> q) w <=>
~holds (W,R) V p w \/ holds (W,R) V q w) /\
(!p V q w.
holds (W,R) V (p <-> q) w <=>
(holds (W,R) V p w \/ ~holds (W,R) V q w) /\
(~holds (W,R) V p w \/ holds (W,R) V q w))`,
REWRITE_TAC[holds] THEN MESON_TAC[]);;
let COMPLETENESS_NUM =
let COMPLETENESS_THEOREM_NUM =
REWRITE_RULE[num_INFINITE]
(INST_TYPE [`:num`,`:A`] COMPLETENESS_THEOREM_GEN)
in
let HOLDS_BOX_EQ = prove
(`!W R p w:A.
ITF (W,R) /\ w IN W
==> (holds (W,R) V (Box p) w <=>
(!y. y IN W /\ R w y ==> holds (W,R) V (Box p --> p) y))`,
INTRO_TAC "!W R p w; WR w" THEN REWRITE_TAC[holds] THEN
EQ_TAC THENL [MESON_TAC[]; ALL_TAC] THEN
CLAIM_TAC "tnt" `TRANSNT(W:A->bool,R)` THENL
[MATCH_MP_TAC ITF_NT THEN ASM_REWRITE_TAC[]; ALL_TAC] THEN
REPEAT STRIP_TAC THEN MATCH_MP_TAC
(REWRITE_RULE [holds_in; holds; RIGHT_IMP_FORALL_THM; IMP_IMP]
TRANSNT_IMP_LOB) THEN
EXISTS_TAC `w:A` THEN HYP_TAC "tnt" (REWRITE_RULE[TRANSNT]) THEN
ASM_REWRITE_TAC[] THEN
ASM_MESON_TAC[])
in
prove
(`!p. (!W R V w:num.
(!x y z:num. R y z ==> R x y ==> R x z) /\
(!p w. w IN W /\
(!y. y IN W /\ R w y /\ holds (W,R) V (Box p) y
==> holds (W,R) V p y)
==> holds (W,R) V (Box p) w) /\
(!Q p w. w IN W /\
(!y. y IN W /\ R w y /\ holds (W,R) V (Box p) y
==> holds (W,R) V p y \/ Q)
==> holds (W,R) V (Box p) w \/ Q) /\
(!w w'. R w w'
==> !p. holds (W,R) V (Box p) w ==> holds (W,R) V p w') /\
(!p w. holds (W,R) V (Box p) w
==> !w'. R w w' ==> holds (W,R) V p w') /\
w IN W
==> holds (W,R) V p w)
==> |-- p`,
GEN_TAC THEN REWRITE_TAC[IMP_IMP] THEN DISCH_TAC THEN
MATCH_MP_TAC COMPLETENESS_THEOREM_NUM THEN
REWRITE_TAC[valid; FORALL_PAIR_THM; holds_in] THEN
REPEAT GEN_TAC THEN INTRO_TAC "itf" THEN REPEAT STRIP_TAC THEN
FIRST_X_ASSUM MATCH_MP_TAC THEN
ASM_REWRITE_TAC[] THEN CONJ_TAC THENL
[ASM_MESON_TAC[ITF]; ALL_TAC] THEN
MATCH_MP_TAC (MESON [] `P /\ (P ==> Q) ==> P /\ Q`) THEN
CONJ_TAC THENL
[REPEAT STRIP_TAC THEN ASM_SIMP_TAC[HOLDS_BOX_EQ] THEN
ONCE_REWRITE_TAC[holds] THEN ASM_MESON_TAC[];
ALL_TAC] THEN
DISCH_TAC THEN
CONJ_TAC THENL [POP_ASSUM MP_TAC THEN MESON_TAC[]; ALL_TAC] THEN
ONCE_REWRITE_TAC[holds] THEN ASM_MESON_TAC[ITF]);;
(* ------------------------------------------------------------------------- *)
(* The work horse of the tactic. *)
(* ------------------------------------------------------------------------- *)
module Rule_gl = struct
(* Some additional theorem-tactics. *)
let DISCARD_TAC : thm_tactic =
let truth_tm = concl TRUTH in
fun th ->
let tm = concl th in
if tm = truth_tm then ALL_TAC else
fun (asl,w as g) ->
if exists (fun a -> aconv tm (concl(snd a))) asl then ALL_TAC g
else failwith "DISCARD_TAC: not already present"
let NEG_RIGHT_TAC (k:thm_tactic) : tactic =
let pth = MESON []
`((~P \/ Q) <=> (P ==> Q)) /\
(~P <=> (P ==> F))` in
GEN_REWRITE_TAC I [pth] THEN DISCH_THEN k
let NEG_CONTR_TAC : thm_tactic =
let pth = MESON [] `~P ==> P ==> Q` in
fun th -> MATCH_MP_TAC (MATCH_MP pth th) THEN
FIRST_X_ASSUM MATCH_ACCEPT_TAC
let NEG_LEFT_TAC : thm_tactic =
let pth = MESON [] `~P ==> (P \/ Q) ==> Q` in
MATCH_MP_TAC o MATCH_MP pth
(* Non-recursive building block tactics. *)
let GEN_BOX_RIGHT_TAC (kacc:thm_tactic) (kholds:thm_tactic): tactic =
let ptac =
CONJ_TAC THENL
[FIRST_ASSUM MATCH_ACCEPT_TAC;
GEN_TAC THEN
DISCH_THEN (CONJUNCTS_THEN2 ASSUME_TAC
(CONJUNCTS_THEN2 kacc kholds))] in
let ttac th = (MATCH_MP_TAC th THEN ptac) in
USE_THEN "boxr1" ttac ORELSE USE_THEN "boxr2" ttac
let HOLDS_NNFC_UNFOLD_CONV : conv =
GEN_REWRITE_CONV TOP_DEPTH_CONV
[HOLDS_NNFC_UNFOLD; OR_CLAUSES; AND_CLAUSES] THENC
NNFC_CONV
let STRIP_HOLDS_TCL:thm_tactical =
let strip_tcl:thm_tactical = FIRST_TCL [CONJUNCTS_THEN; DISJ_CASES_THEN] in
let rule = CONV_RULE HOLDS_NNFC_UNFOLD_CONV in
fun ttac -> REPEAT_TCL strip_tcl ttac o rule
let ASSUME_HOLDS_LITERAL_TAC:thm_tactic =
let rewr_tac th =
let pth = MESON[]
`(T \/ p <=> T) /\ (p \/ T <=> T) /\
(F \/ p <=> p) /\ (p \/ F <=> p)` in
GEN_REWRITE_TAC DEPTH_CONV [th; pth] in
let lbl_tac th = rewr_tac th THEN
CONTR_TAC th ORELSE
DISCARD_TAC th ORELSE
LABEL_TAC "holds" th in
fun th ->
rewr_tac th THEN
FIRST (mapfilter (fun ttac -> ttac th)
[NEG_CONTR_TAC; NEG_LEFT_TAC; lbl_tac])
(* Non-recursive building box theorem-tacticals. *)
let STEP_BOXL1_TCL : thm_tactical = fun k acc ->
USE_THEN "boxl1" (fun boxl1 ->
try let f = MATCH_MP (MATCH_MP boxl1 acc) in
ASSUM_LIST (MAP_EVERY (STRIP_HOLDS_TCL k) o mapfilter f)
with Failure _ -> ALL_TAC)
let STEP_BOXL2_TCL : thm_tactical = fun k hth ->
USE_THEN "boxl2" (fun boxl2 ->
try let f = MATCH_MP (MATCH_MP boxl2 hth) in
ASSUM_LIST (MAP_EVERY (STRIP_HOLDS_TCL k) o mapfilter f)
with Failure _ -> ALL_TAC)
let ACC_TCL:thm_tactical = fun k acc ->
USE_THEN "trans" (fun trans ->
let f = MATCH_MP (MATCH_MP trans acc) in
ASSUM_LIST (MAP_EVERY k o mapfilter f))
(* Recursive theorem-tacticals. *)
let rec HOLDS_TAC:thm_tactic = fun th ->
ASSUME_HOLDS_LITERAL_TAC th THEN
TRY (STEP_BOXL2_TCL HOLDS_TAC th)
let rec SATURATE_ACC_TCL:thm_tactical = fun ttac th ->
LABEL_TAC "acc" th THEN
STEP_BOXL1_TCL ttac th THEN
ACC_TCL (SATURATE_ACC_TCL ttac) th
let SATURATE_ACC_TAC:thm_tactic = fun th g ->
(STEP_BOXL1_TCL HOLDS_TAC th THEN
SATURATE_ACC_TCL HOLDS_TAC th)
g
let BOX_RIGHT_TAC = GEN_BOX_RIGHT_TAC SATURATE_ACC_TAC HOLDS_TAC
(* Sort atoms in disjunctions. *)
let dest_holds = function
Comb(Comb(Comb(Comb(Const("holds",_),_),_),tm),_) -> tm
| _ -> failwith "dest_holds"
(* let is_holds = can dest_holds *)
let dest_box = function
Comb(Const("Box",_),tm) -> tm
| _ -> failwith "dest_box"
let is_box = can dest_box
let rank tm =
try 0,dest_holds(dest_neg tm) with Failure _ ->
try let x = dest_holds tm in
try 1,dest_box x with Failure _ -> 2,x
with Failure _ -> 3,tm (* This case should never occur in practice. *)
(* Must be a total order, otherwise we may have loops in the main tactic. *)
let lt tm1 tm2 =
let c1 = Pervasives.compare tm1 tm2 in
if c1 = 0 then false else
let r1,x1 = rank tm1
and r2,x2 = rank tm2 in
if r1 <> r2 then r1 < r2 else
let c2 = Pervasives.compare x1 x2 in
if c2 = 0 then c1 > 0 else
if free_in x1 x2 then true else
if free_in x2 x1 then false else
c2 > 0
let SORT_BOX_CONV : conv =
let f = list_mk_disj o uniq o mergesort lt o striplist dest_disj in
fun tm -> DISJ_ACI_RULE (mk_eq(tm,f tm))
let SORT_BOX_TAC : tactic = CONV_TAC SORT_BOX_CONV
(* Main tactic. *)
let GL_RIGHT_TAC : tactic =
CONV_TAC (HOLDS_NNFC_UNFOLD_CONV) THEN
PURE_ASM_REWRITE_TAC[AND_CLAUSES; OR_CLAUSES; NOT_CLAUSES] THEN
CONV_TAC CNF_CONV THEN
REPEAT CONJ_TAC THEN
TRY (NEG_RIGHT_TAC HOLDS_TAC)
let GL_STEP_TAC : tactic =
(FIRST o map CHANGED_TAC)
[GL_RIGHT_TAC;
SORT_BOX_TAC THEN BOX_RIGHT_TAC]
let INNER_GL_TAC : tactic = REPEAT GL_STEP_TAC
end;;
(* ------------------------------------------------------------------------- *)
(* Generate a countermodel. *)
(* ------------------------------------------------------------------------- *)
let the_gl_countermodel : term ref = ref `F`;;
let GL_BUILD_COUNTERMODEL : tactic =
let drop_labels =
["trans"; "boxr1"; "boxr2"; "boxl1"; "boxl2"] in
let drop_assumption s = mem s drop_labels in
let filter_asl =
mapfilter (fun s,t -> if drop_assumption s then fail() else concl t ) in
fun asl,w ->
let l = filter_asl asl in
the_gl_countermodel :=
end_itlist (curry mk_conj) (l @ map mk_neg (striplist dest_disj w));
failwith
"Contermodel stored in reference the_gl_countermodel.";;
(* ------------------------------------------------------------------------- *)
(* Top-level invocation. *)
(* ------------------------------------------------------------------------- *)
let GL_TAC : tactic =
REPEAT GEN_TAC THEN REPEAT (CONV_TAC let_CONV) THEN REPEAT GEN_TAC THEN
REWRITE_TAC[diam_DEF; dotbox_DEF] THEN MATCH_MP_TAC COMPLETENESS_NUM THEN
REPEAT GEN_TAC THEN INTRO_TAC "trans boxr1 boxr2 boxl1 boxl2 w" THEN
REPEAT GEN_TAC THEN Rule_gl.INNER_GL_TAC THEN GL_BUILD_COUNTERMODEL;;
let GL_RULE (tm:term) : thm =
prove(tm,GL_TAC);;
(* ------------------------------------------------------------------------- *)
(* Some arithmetical principles investigated via provability in GL *)
(* *)
(* Modal formulas can be realised as sentences (i.e. closed formulas) of *)
(* Peano Arithmetic (PA). The Box is thus interpreted as the predicate of *)
(* formal provability in PA, Bew(x). *)
(* *)
(* Under this interpretation, we will read modal formulas as follows: *)
(* - Box p = p is provable in PA; *)
(* - Not (Box (Not p)) = p is consistent with PA *)
(* - Not (Box p) = p is unprovable in PA *)
(* - Box (Not p) = p is refutable in PA *)
(* - (Box p) || (Box (Not p)) = p is decidable in PA *)
(* - Not (Box p) && Not (Box (Not p)) = p is undecidable in PA *)
(* - Box (p <-> q) = p and q are equivalent over PA *)
(* - Box (False) = PA is inconsistent *)
(* - Not (Box False) = Diam True = PA is consistent *)
(* ------------------------------------------------------------------------- *)
(*---------------------------------------------------------------------------*)
(* Formalised Second Incompleteness Theorem: *)
(* In PA, the following is provable: If PA is consistent, it cannot prove *)
(* its own consistency *)
(*---------------------------------------------------------------------------*)
let GL_second_incompleteness_theorem = time GL_RULE
`|-- (Not (Box False) --> Not (Box (Diam True)))`;;
(*---------------------------------------------------------------------------*)
(* PA ignores unprovability statements *)
(*---------------------------------------------------------------------------*)
let GL_PA_ignorance = time GL_RULE
`!p. |-- ((Box False) <-> Box (Diam p))`;;
(* ------------------------------------------------------------------------- *)
(* If PA does not prove its inconsistency, then its consistency is *)
(* undecidable. *)
(* ------------------------------------------------------------------------- *)
let GL_PA_undecidability_of_consistency = time GL_RULE
`|-- ( Not (Box (Box False))
--> Not (Box (Not (Box False))) &&
Not (Box (Not (Not (Box False)))) )`;;
(* ------------------------------------------------------------------------- *)
(* If a sentence is equivalent to its own unprovability, and if PA does not *)
(* prove its inconsistency, then that sentence is undecidable. *)
(* ------------------------------------------------------------------------- *)
let GL_undecidability_of_Godels_formula = time GL_RULE
`!p. |-- ( Box (p <-> Not (Box p)) && Not (Box (Box False))
--> Not (Box p) && Not (Box (Not p)) )`;;
(* ------------------------------------------------------------------------- *)
(* If a reflection principle implies the second iterated consistency *)
(* assertion, then the converse implication holds too. *)
(* ------------------------------------------------------------------------- *)
let GL_reflection_and_iterated_consistency = time GL_RULE
`!p. |-- ( Box ((Box p --> p) --> Diam (Diam True))
--> (Diam (Diam True) --> (Box p --> p)) )`;;
(* ------------------------------------------------------------------------- *)
(* A Godel sentence is equiconsistent with a consistency statement *)
(* ------------------------------------------------------------------------- *)
let GL_Godel_sentence_equiconsistent_consistency = time GL_RULE
`!p. |-- ( Box (p <-> Not (Box p)) <-> Box (p <-> Not (Box False)) )`;;
(* ------------------------------------------------------------------------- *)
(* For any arithmetical senteces p q, p is equivalent to unprovability *)
(* of q --> p iff p is equivalent to consistency of q *)
(* ------------------------------------------------------------------------- *)
let GL_arithmetical_fixpoint = time GL_RULE
`!p q. |-- ( Dotbox (p <-> Not (Box (q --> p))) <->
Dotbox (p <-> Diam q) )`;;