Datasets:
Tasks:
Text Generation
Modalities:
Text
Sub-tasks:
language-modeling
Languages:
English
Size:
100K - 1M
License:
(* ========================================================================= *) | |
(* Decision procedure for the provability logic GL. *) | |
(* *) | |
(* (c) Copyright, Marco Maggesi, Cosimo Perini Brogi 2020-2022. *) | |
(* ========================================================================= *) | |
(* ------------------------------------------------------------------------- *) | |
(* Lemmata. *) | |
(* ------------------------------------------------------------------------- *) | |
let HOLDS_NNFC_UNFOLD = prove | |
(`(!V w:W. ~holds (W,R) V False w) /\ | |
(!V w. holds (W,R) V True w) /\ | |
(!V s w. holds (W,R) V (Atom s) w <=> V s w) /\ | |
(!V p w. holds (W,R) V (Not p) w <=> ~holds (W,R) V p w) /\ | |
(!p V q w. | |
holds (W,R) V (p && q) w <=> holds (W,R) V p w /\ holds (W,R) V q w) /\ | |
(!p V q w. | |
holds (W,R) V (p || q) w <=> holds (W,R) V p w \/ holds (W,R) V q w) /\ | |
(!p V q w. | |
holds (W,R) V (p --> q) w <=> | |
~holds (W,R) V p w \/ holds (W,R) V q w) /\ | |
(!p V q w. | |
holds (W,R) V (p <-> q) w <=> | |
(holds (W,R) V p w \/ ~holds (W,R) V q w) /\ | |
(~holds (W,R) V p w \/ holds (W,R) V q w))`, | |
REWRITE_TAC[holds] THEN MESON_TAC[]);; | |
let COMPLETENESS_NUM = | |
let COMPLETENESS_THEOREM_NUM = | |
REWRITE_RULE[num_INFINITE] | |
(INST_TYPE [`:num`,`:A`] COMPLETENESS_THEOREM_GEN) | |
in | |
let HOLDS_BOX_EQ = prove | |
(`!W R p w:A. | |
ITF (W,R) /\ w IN W | |
==> (holds (W,R) V (Box p) w <=> | |
(!y. y IN W /\ R w y ==> holds (W,R) V (Box p --> p) y))`, | |
INTRO_TAC "!W R p w; WR w" THEN REWRITE_TAC[holds] THEN | |
EQ_TAC THENL [MESON_TAC[]; ALL_TAC] THEN | |
CLAIM_TAC "tnt" `TRANSNT(W:A->bool,R)` THENL | |
[MATCH_MP_TAC ITF_NT THEN ASM_REWRITE_TAC[]; ALL_TAC] THEN | |
REPEAT STRIP_TAC THEN MATCH_MP_TAC | |
(REWRITE_RULE [holds_in; holds; RIGHT_IMP_FORALL_THM; IMP_IMP] | |
TRANSNT_IMP_LOB) THEN | |
EXISTS_TAC `w:A` THEN HYP_TAC "tnt" (REWRITE_RULE[TRANSNT]) THEN | |
ASM_REWRITE_TAC[] THEN | |
ASM_MESON_TAC[]) | |
in | |
prove | |
(`!p. (!W R V w:num. | |
(!x y z:num. R y z ==> R x y ==> R x z) /\ | |
(!p w. w IN W /\ | |
(!y. y IN W /\ R w y /\ holds (W,R) V (Box p) y | |
==> holds (W,R) V p y) | |
==> holds (W,R) V (Box p) w) /\ | |
(!Q p w. w IN W /\ | |
(!y. y IN W /\ R w y /\ holds (W,R) V (Box p) y | |
==> holds (W,R) V p y \/ Q) | |
==> holds (W,R) V (Box p) w \/ Q) /\ | |
(!w w'. R w w' | |
==> !p. holds (W,R) V (Box p) w ==> holds (W,R) V p w') /\ | |
(!p w. holds (W,R) V (Box p) w | |
==> !w'. R w w' ==> holds (W,R) V p w') /\ | |
w IN W | |
==> holds (W,R) V p w) | |
==> |-- p`, | |
GEN_TAC THEN REWRITE_TAC[IMP_IMP] THEN DISCH_TAC THEN | |
MATCH_MP_TAC COMPLETENESS_THEOREM_NUM THEN | |
REWRITE_TAC[valid; FORALL_PAIR_THM; holds_in] THEN | |
REPEAT GEN_TAC THEN INTRO_TAC "itf" THEN REPEAT STRIP_TAC THEN | |
FIRST_X_ASSUM MATCH_MP_TAC THEN | |
ASM_REWRITE_TAC[] THEN CONJ_TAC THENL | |
[ASM_MESON_TAC[ITF]; ALL_TAC] THEN | |
MATCH_MP_TAC (MESON [] `P /\ (P ==> Q) ==> P /\ Q`) THEN | |
CONJ_TAC THENL | |
[REPEAT STRIP_TAC THEN ASM_SIMP_TAC[HOLDS_BOX_EQ] THEN | |
ONCE_REWRITE_TAC[holds] THEN ASM_MESON_TAC[]; | |
ALL_TAC] THEN | |
DISCH_TAC THEN | |
CONJ_TAC THENL [POP_ASSUM MP_TAC THEN MESON_TAC[]; ALL_TAC] THEN | |
ONCE_REWRITE_TAC[holds] THEN ASM_MESON_TAC[ITF]);; | |
(* ------------------------------------------------------------------------- *) | |
(* The work horse of the tactic. *) | |
(* ------------------------------------------------------------------------- *) | |
module Rule_gl = struct | |
(* Some additional theorem-tactics. *) | |
let DISCARD_TAC : thm_tactic = | |
let truth_tm = concl TRUTH in | |
fun th -> | |
let tm = concl th in | |
if tm = truth_tm then ALL_TAC else | |
fun (asl,w as g) -> | |
if exists (fun a -> aconv tm (concl(snd a))) asl then ALL_TAC g | |
else failwith "DISCARD_TAC: not already present" | |
let NEG_RIGHT_TAC (k:thm_tactic) : tactic = | |
let pth = MESON [] | |
`((~P \/ Q) <=> (P ==> Q)) /\ | |
(~P <=> (P ==> F))` in | |
GEN_REWRITE_TAC I [pth] THEN DISCH_THEN k | |
let NEG_CONTR_TAC : thm_tactic = | |
let pth = MESON [] `~P ==> P ==> Q` in | |
fun th -> MATCH_MP_TAC (MATCH_MP pth th) THEN | |
FIRST_X_ASSUM MATCH_ACCEPT_TAC | |
let NEG_LEFT_TAC : thm_tactic = | |
let pth = MESON [] `~P ==> (P \/ Q) ==> Q` in | |
MATCH_MP_TAC o MATCH_MP pth | |
(* Non-recursive building block tactics. *) | |
let GEN_BOX_RIGHT_TAC (kacc:thm_tactic) (kholds:thm_tactic): tactic = | |
let ptac = | |
CONJ_TAC THENL | |
[FIRST_ASSUM MATCH_ACCEPT_TAC; | |
GEN_TAC THEN | |
DISCH_THEN (CONJUNCTS_THEN2 ASSUME_TAC | |
(CONJUNCTS_THEN2 kacc kholds))] in | |
let ttac th = (MATCH_MP_TAC th THEN ptac) in | |
USE_THEN "boxr1" ttac ORELSE USE_THEN "boxr2" ttac | |
let HOLDS_NNFC_UNFOLD_CONV : conv = | |
GEN_REWRITE_CONV TOP_DEPTH_CONV | |
[HOLDS_NNFC_UNFOLD; OR_CLAUSES; AND_CLAUSES] THENC | |
NNFC_CONV | |
let STRIP_HOLDS_TCL:thm_tactical = | |
let strip_tcl:thm_tactical = FIRST_TCL [CONJUNCTS_THEN; DISJ_CASES_THEN] in | |
let rule = CONV_RULE HOLDS_NNFC_UNFOLD_CONV in | |
fun ttac -> REPEAT_TCL strip_tcl ttac o rule | |
let ASSUME_HOLDS_LITERAL_TAC:thm_tactic = | |
let rewr_tac th = | |
let pth = MESON[] | |
`(T \/ p <=> T) /\ (p \/ T <=> T) /\ | |
(F \/ p <=> p) /\ (p \/ F <=> p)` in | |
GEN_REWRITE_TAC DEPTH_CONV [th; pth] in | |
let lbl_tac th = rewr_tac th THEN | |
CONTR_TAC th ORELSE | |
DISCARD_TAC th ORELSE | |
LABEL_TAC "holds" th in | |
fun th -> | |
rewr_tac th THEN | |
FIRST (mapfilter (fun ttac -> ttac th) | |
[NEG_CONTR_TAC; NEG_LEFT_TAC; lbl_tac]) | |
(* Non-recursive building box theorem-tacticals. *) | |
let STEP_BOXL1_TCL : thm_tactical = fun k acc -> | |
USE_THEN "boxl1" (fun boxl1 -> | |
try let f = MATCH_MP (MATCH_MP boxl1 acc) in | |
ASSUM_LIST (MAP_EVERY (STRIP_HOLDS_TCL k) o mapfilter f) | |
with Failure _ -> ALL_TAC) | |
let STEP_BOXL2_TCL : thm_tactical = fun k hth -> | |
USE_THEN "boxl2" (fun boxl2 -> | |
try let f = MATCH_MP (MATCH_MP boxl2 hth) in | |
ASSUM_LIST (MAP_EVERY (STRIP_HOLDS_TCL k) o mapfilter f) | |
with Failure _ -> ALL_TAC) | |
let ACC_TCL:thm_tactical = fun k acc -> | |
USE_THEN "trans" (fun trans -> | |
let f = MATCH_MP (MATCH_MP trans acc) in | |
ASSUM_LIST (MAP_EVERY k o mapfilter f)) | |
(* Recursive theorem-tacticals. *) | |
let rec HOLDS_TAC:thm_tactic = fun th -> | |
ASSUME_HOLDS_LITERAL_TAC th THEN | |
TRY (STEP_BOXL2_TCL HOLDS_TAC th) | |
let rec SATURATE_ACC_TCL:thm_tactical = fun ttac th -> | |
LABEL_TAC "acc" th THEN | |
STEP_BOXL1_TCL ttac th THEN | |
ACC_TCL (SATURATE_ACC_TCL ttac) th | |
let SATURATE_ACC_TAC:thm_tactic = fun th g -> | |
(STEP_BOXL1_TCL HOLDS_TAC th THEN | |
SATURATE_ACC_TCL HOLDS_TAC th) | |
g | |
let BOX_RIGHT_TAC = GEN_BOX_RIGHT_TAC SATURATE_ACC_TAC HOLDS_TAC | |
(* Sort atoms in disjunctions. *) | |
let dest_holds = function | |
Comb(Comb(Comb(Comb(Const("holds",_),_),_),tm),_) -> tm | |
| _ -> failwith "dest_holds" | |
(* let is_holds = can dest_holds *) | |
let dest_box = function | |
Comb(Const("Box",_),tm) -> tm | |
| _ -> failwith "dest_box" | |
let is_box = can dest_box | |
let rank tm = | |
try 0,dest_holds(dest_neg tm) with Failure _ -> | |
try let x = dest_holds tm in | |
try 1,dest_box x with Failure _ -> 2,x | |
with Failure _ -> 3,tm (* This case should never occur in practice. *) | |
(* Must be a total order, otherwise we may have loops in the main tactic. *) | |
let lt tm1 tm2 = | |
let c1 = Pervasives.compare tm1 tm2 in | |
if c1 = 0 then false else | |
let r1,x1 = rank tm1 | |
and r2,x2 = rank tm2 in | |
if r1 <> r2 then r1 < r2 else | |
let c2 = Pervasives.compare x1 x2 in | |
if c2 = 0 then c1 > 0 else | |
if free_in x1 x2 then true else | |
if free_in x2 x1 then false else | |
c2 > 0 | |
let SORT_BOX_CONV : conv = | |
let f = list_mk_disj o uniq o mergesort lt o striplist dest_disj in | |
fun tm -> DISJ_ACI_RULE (mk_eq(tm,f tm)) | |
let SORT_BOX_TAC : tactic = CONV_TAC SORT_BOX_CONV | |
(* Main tactic. *) | |
let GL_RIGHT_TAC : tactic = | |
CONV_TAC (HOLDS_NNFC_UNFOLD_CONV) THEN | |
PURE_ASM_REWRITE_TAC[AND_CLAUSES; OR_CLAUSES; NOT_CLAUSES] THEN | |
CONV_TAC CNF_CONV THEN | |
REPEAT CONJ_TAC THEN | |
TRY (NEG_RIGHT_TAC HOLDS_TAC) | |
let GL_STEP_TAC : tactic = | |
(FIRST o map CHANGED_TAC) | |
[GL_RIGHT_TAC; | |
SORT_BOX_TAC THEN BOX_RIGHT_TAC] | |
let INNER_GL_TAC : tactic = REPEAT GL_STEP_TAC | |
end;; | |
(* ------------------------------------------------------------------------- *) | |
(* Generate a countermodel. *) | |
(* ------------------------------------------------------------------------- *) | |
let the_gl_countermodel : term ref = ref `F`;; | |
let GL_BUILD_COUNTERMODEL : tactic = | |
let drop_labels = | |
["trans"; "boxr1"; "boxr2"; "boxl1"; "boxl2"] in | |
let drop_assumption s = mem s drop_labels in | |
let filter_asl = | |
mapfilter (fun s,t -> if drop_assumption s then fail() else concl t ) in | |
fun asl,w -> | |
let l = filter_asl asl in | |
the_gl_countermodel := | |
end_itlist (curry mk_conj) (l @ map mk_neg (striplist dest_disj w)); | |
failwith | |
"Contermodel stored in reference the_gl_countermodel.";; | |
(* ------------------------------------------------------------------------- *) | |
(* Top-level invocation. *) | |
(* ------------------------------------------------------------------------- *) | |
let GL_TAC : tactic = | |
REPEAT GEN_TAC THEN REPEAT (CONV_TAC let_CONV) THEN REPEAT GEN_TAC THEN | |
REWRITE_TAC[diam_DEF; dotbox_DEF] THEN MATCH_MP_TAC COMPLETENESS_NUM THEN | |
REPEAT GEN_TAC THEN INTRO_TAC "trans boxr1 boxr2 boxl1 boxl2 w" THEN | |
REPEAT GEN_TAC THEN Rule_gl.INNER_GL_TAC THEN GL_BUILD_COUNTERMODEL;; | |
let GL_RULE (tm:term) : thm = | |
prove(tm,GL_TAC);; | |
(* ------------------------------------------------------------------------- *) | |
(* Some arithmetical principles investigated via provability in GL *) | |
(* *) | |
(* Modal formulas can be realised as sentences (i.e. closed formulas) of *) | |
(* Peano Arithmetic (PA). The Box is thus interpreted as the predicate of *) | |
(* formal provability in PA, Bew(x). *) | |
(* *) | |
(* Under this interpretation, we will read modal formulas as follows: *) | |
(* - Box p = p is provable in PA; *) | |
(* - Not (Box (Not p)) = p is consistent with PA *) | |
(* - Not (Box p) = p is unprovable in PA *) | |
(* - Box (Not p) = p is refutable in PA *) | |
(* - (Box p) || (Box (Not p)) = p is decidable in PA *) | |
(* - Not (Box p) && Not (Box (Not p)) = p is undecidable in PA *) | |
(* - Box (p <-> q) = p and q are equivalent over PA *) | |
(* - Box (False) = PA is inconsistent *) | |
(* - Not (Box False) = Diam True = PA is consistent *) | |
(* ------------------------------------------------------------------------- *) | |
(*---------------------------------------------------------------------------*) | |
(* Formalised Second Incompleteness Theorem: *) | |
(* In PA, the following is provable: If PA is consistent, it cannot prove *) | |
(* its own consistency *) | |
(*---------------------------------------------------------------------------*) | |
let GL_second_incompleteness_theorem = time GL_RULE | |
`|-- (Not (Box False) --> Not (Box (Diam True)))`;; | |
(*---------------------------------------------------------------------------*) | |
(* PA ignores unprovability statements *) | |
(*---------------------------------------------------------------------------*) | |
let GL_PA_ignorance = time GL_RULE | |
`!p. |-- ((Box False) <-> Box (Diam p))`;; | |
(* ------------------------------------------------------------------------- *) | |
(* If PA does not prove its inconsistency, then its consistency is *) | |
(* undecidable. *) | |
(* ------------------------------------------------------------------------- *) | |
let GL_PA_undecidability_of_consistency = time GL_RULE | |
`|-- ( Not (Box (Box False)) | |
--> Not (Box (Not (Box False))) && | |
Not (Box (Not (Not (Box False)))) )`;; | |
(* ------------------------------------------------------------------------- *) | |
(* If a sentence is equivalent to its own unprovability, and if PA does not *) | |
(* prove its inconsistency, then that sentence is undecidable. *) | |
(* ------------------------------------------------------------------------- *) | |
let GL_undecidability_of_Godels_formula = time GL_RULE | |
`!p. |-- ( Box (p <-> Not (Box p)) && Not (Box (Box False)) | |
--> Not (Box p) && Not (Box (Not p)) )`;; | |
(* ------------------------------------------------------------------------- *) | |
(* If a reflection principle implies the second iterated consistency *) | |
(* assertion, then the converse implication holds too. *) | |
(* ------------------------------------------------------------------------- *) | |
let GL_reflection_and_iterated_consistency = time GL_RULE | |
`!p. |-- ( Box ((Box p --> p) --> Diam (Diam True)) | |
--> (Diam (Diam True) --> (Box p --> p)) )`;; | |
(* ------------------------------------------------------------------------- *) | |
(* A Godel sentence is equiconsistent with a consistency statement *) | |
(* ------------------------------------------------------------------------- *) | |
let GL_Godel_sentence_equiconsistent_consistency = time GL_RULE | |
`!p. |-- ( Box (p <-> Not (Box p)) <-> Box (p <-> Not (Box False)) )`;; | |
(* ------------------------------------------------------------------------- *) | |
(* For any arithmetical senteces p q, p is equivalent to unprovability *) | |
(* of q --> p iff p is equivalent to consistency of q *) | |
(* ------------------------------------------------------------------------- *) | |
let GL_arithmetical_fixpoint = time GL_RULE | |
`!p q. |-- ( Dotbox (p <-> Not (Box (q --> p))) <-> | |
Dotbox (p <-> Diam q) )`;; | |