Datasets:

Modalities:
Text
Languages:
English
Libraries:
Datasets
License:
Zhangir Azerbayev
squashed?
4365a98
raw
history blame
76.3 kB
(* ========================================================================= *)
(* Nonlinear universal reals procedure using SOS decomposition. *)
(* ========================================================================= *)
prioritize_real();;
let debugging = ref false;;
exception Sanity;;
exception Unsolvable;;
(* ------------------------------------------------------------------------- *)
(* Turn a rational into a decimal string with d sig digits. *)
(* ------------------------------------------------------------------------- *)
let decimalize =
let rec normalize y =
if abs_num y </ Int 1 // Int 10 then normalize (Int 10 */ y) - 1
else if abs_num y >=/ Int 1 then normalize (y // Int 10) + 1
else 0 in
fun d x ->
if x =/ Int 0 then "0.0" else
let y = abs_num x in
let e = normalize y in
let z = pow10(-e) */ y +/ Int 1 in
let k = round_num(pow10 d */ z) in
(if x </ Int 0 then "-0." else "0.") ^
implode(tl(explode(string_of_num k))) ^
(if e = 0 then "" else "e"^string_of_int e);;
(* ------------------------------------------------------------------------- *)
(* Iterations over numbers, and lists indexed by numbers. *)
(* ------------------------------------------------------------------------- *)
let rec itern k l f a =
match l with
[] -> a
| h::t -> itern (k + 1) t f (f h k a);;
let rec iter (m,n) f a =
if n < m then a
else iter (m+1,n) f (f m a);;
(* ------------------------------------------------------------------------- *)
(* The main types. *)
(* ------------------------------------------------------------------------- *)
type vector = int*(int,num)func;;
type matrix = (int*int)*(int*int,num)func;;
type monomial = (term,int)func;;
type poly = (monomial,num)func;;
(* ------------------------------------------------------------------------- *)
(* Assignment avoiding zeros. *)
(* ------------------------------------------------------------------------- *)
let (|-->) x y a = if y =/ Int 0 then a else (x |-> y) a;;
(* ------------------------------------------------------------------------- *)
(* This can be generic. *)
(* ------------------------------------------------------------------------- *)
let element (d,v) i = tryapplyd v i (Int 0);;
let mapa f (d,v) =
d,foldl (fun a i c -> (i |--> f(c)) a) undefined v;;
let is_zero (d,v) = is_undefined v;;
(* ------------------------------------------------------------------------- *)
(* Vectors. Conventionally indexed 1..n. *)
(* ------------------------------------------------------------------------- *)
let vec_0 n = (n,undefined:vector);;
let vec_dim (v:vector) = fst v;;
let vec_const c n =
if c =/ Int 0 then vec_0 n
else (n,itlist (fun k -> k |-> c) (1--n) undefined :vector);;
let vec_1 = vec_const (Int 1);;
let vec_cmul c (v:vector) =
let n = vec_dim v in
if c =/ Int 0 then vec_0 n
else n,mapf (fun x -> c */ x) (snd v)
let vec_neg (v:vector) = (fst v,mapf minus_num (snd v) :vector);;
let vec_add (v1:vector) (v2:vector) =
let m = vec_dim v1 and n = vec_dim v2 in
if m <> n then failwith "vec_add: incompatible dimensions" else
(n,combine (+/) (fun x -> x =/ Int 0) (snd v1) (snd v2) :vector);;
let vec_sub v1 v2 = vec_add v1 (vec_neg v2);;
let vec_dot (v1:vector) (v2:vector) =
let m = vec_dim v1 and n = vec_dim v2 in
if m <> n then failwith "vec_add: incompatible dimensions" else
foldl (fun a i x -> x +/ a) (Int 0)
(combine ( */ ) (fun x -> x =/ Int 0) (snd v1) (snd v2));;
let vec_of_list l =
let n = length l in
(n,itlist2 (|->) (1--n) l undefined :vector);;
(* ------------------------------------------------------------------------- *)
(* Matrices; again rows and columns indexed from 1. *)
(* ------------------------------------------------------------------------- *)
let matrix_0 (m,n) = ((m,n),undefined:matrix);;
let dimensions (m:matrix) = fst m;;
let matrix_const c (m,n as mn) =
if m <> n then failwith "matrix_const: needs to be square"
else if c =/ Int 0 then matrix_0 mn
else (mn,itlist (fun k -> (k,k) |-> c) (1--n) undefined :matrix);;
let matrix_1 = matrix_const (Int 1);;
let matrix_cmul c (m:matrix) =
let (i,j) = dimensions m in
if c =/ Int 0 then matrix_0 (i,j)
else (i,j),mapf (fun x -> c */ x) (snd m);;
let matrix_neg (m:matrix) = (dimensions m,mapf minus_num (snd m) :matrix);;
let matrix_add (m1:matrix) (m2:matrix) =
let d1 = dimensions m1 and d2 = dimensions m2 in
if d1 <> d2 then failwith "matrix_add: incompatible dimensions"
else (d1,combine (+/) (fun x -> x =/ Int 0) (snd m1) (snd m2) :matrix);;
let matrix_sub m1 m2 = matrix_add m1 (matrix_neg m2);;
let row k (m:matrix) =
let i,j = dimensions m in
(j,
foldl (fun a (i,j) c -> if i = k then (j |-> c) a else a) undefined (snd m)
: vector);;
let column k (m:matrix) =
let i,j = dimensions m in
(i,
foldl (fun a (i,j) c -> if j = k then (i |-> c) a else a) undefined (snd m)
: vector);;
let transp (m:matrix) =
let i,j = dimensions m in
((j,i),foldl (fun a (i,j) c -> ((j,i) |-> c) a) undefined (snd m) :matrix);;
let diagonal (v:vector) =
let n = vec_dim v in
((n,n),foldl (fun a i c -> ((i,i) |-> c) a) undefined (snd v) : matrix);;
let matrix_of_list l =
let m = length l in
if m = 0 then matrix_0 (0,0) else
let n = length (hd l) in
(m,n),itern 1 l (fun v i -> itern 1 v (fun c j -> (i,j) |-> c)) undefined;;
(* ------------------------------------------------------------------------- *)
(* Monomials. *)
(* ------------------------------------------------------------------------- *)
let monomial_eval assig (m:monomial) =
foldl (fun a x k -> a */ power_num (apply assig x) (Int k))
(Int 1) m;;
let monomial_1 = (undefined:monomial);;
let monomial_var x = (x |=> 1 :monomial);;
let (monomial_mul:monomial->monomial->monomial) =
combine (+) (fun x -> false);;
let monomial_pow (m:monomial) k =
if k = 0 then monomial_1
else mapf (fun x -> k * x) m;;
let monomial_divides (m1:monomial) (m2:monomial) =
foldl (fun a x k -> tryapplyd m2 x 0 >= k && a) true m1;;
let monomial_div (m1:monomial) (m2:monomial) =
let m = combine (+) (fun x -> x = 0) m1 (mapf (fun x -> -x) m2) in
if foldl (fun a x k -> k >= 0 && a) true m then m
else failwith "monomial_div: non-divisible";;
let monomial_degree x (m:monomial) = tryapplyd m x 0;;
let monomial_lcm (m1:monomial) (m2:monomial) =
(itlist (fun x -> x |-> max (monomial_degree x m1) (monomial_degree x m2))
(union (dom m1) (dom m2)) undefined :monomial);;
let monomial_multidegree (m:monomial) = foldl (fun a x k -> k + a) 0 m;;
let monomial_variables m = dom m;;
(* ------------------------------------------------------------------------- *)
(* Polynomials. *)
(* ------------------------------------------------------------------------- *)
let eval assig (p:poly) =
foldl (fun a m c -> a +/ c */ monomial_eval assig m) (Int 0) p;;
let poly_0 = (undefined:poly);;
let poly_isconst (p:poly) = foldl (fun a m c -> m = monomial_1 && a) true p;;
let poly_var x = ((monomial_var x) |=> Int 1 :poly);;
let poly_const c =
if c =/ Int 0 then poly_0 else (monomial_1 |=> c);;
let poly_cmul c (p:poly) =
if c =/ Int 0 then poly_0
else mapf (fun x -> c */ x) p;;
let poly_neg (p:poly) = (mapf minus_num p :poly);;
let poly_add (p1:poly) (p2:poly) =
(combine (+/) (fun x -> x =/ Int 0) p1 p2 :poly);;
let poly_sub p1 p2 = poly_add p1 (poly_neg p2);;
let poly_cmmul (c,m) (p:poly) =
if c =/ Int 0 then poly_0
else if m = monomial_1 then mapf (fun d -> c */ d) p
else foldl (fun a m' d -> (monomial_mul m m' |-> c */ d) a) poly_0 p;;
let poly_mul (p1:poly) (p2:poly) =
foldl (fun a m c -> poly_add (poly_cmmul (c,m) p2) a) poly_0 p1;;
let poly_div (p1:poly) (p2:poly) =
if not(poly_isconst p2) then failwith "poly_div: non-constant" else
let c = eval undefined p2 in
if c =/ Int 0 then failwith "poly_div: division by zero"
else poly_cmul (Int 1 // c) p1;;
let poly_square p = poly_mul p p;;
let rec poly_pow p k =
if k = 0 then poly_const (Int 1)
else if k = 1 then p
else let q = poly_square(poly_pow p (k / 2)) in
if k mod 2 = 1 then poly_mul p q else q;;
let poly_exp p1 p2 =
if not(poly_isconst p2) then failwith "poly_exp: not a constant" else
poly_pow p1 (Num.int_of_num (eval undefined p2));;
let degree x (p:poly) = foldl (fun a m c -> max (monomial_degree x m) a) 0 p;;
let multidegree (p:poly) =
foldl (fun a m c -> max (monomial_multidegree m) a) 0 p;;
let poly_variables (p:poly) =
foldr (fun m c -> union (monomial_variables m)) p [];;
(* ------------------------------------------------------------------------- *)
(* Order monomials for human presentation. *)
(* ------------------------------------------------------------------------- *)
let humanorder_varpow (x1,k1) (x2,k2) = x1 < x2 || x1 = x2 && k1 > k2;;
let humanorder_monomial =
let rec ord l1 l2 = match (l1,l2) with
_,[] -> true
| [],_ -> false
| h1::t1,h2::t2 -> humanorder_varpow h1 h2 || h1 = h2 && ord t1 t2 in
fun m1 m2 -> m1 = m2 ||
ord (sort humanorder_varpow (graph m1))
(sort humanorder_varpow (graph m2));;
(* ------------------------------------------------------------------------- *)
(* Conversions to strings. *)
(* ------------------------------------------------------------------------- *)
let string_of_vector min_size max_size (v:vector) =
let n_raw = vec_dim v in
if n_raw = 0 then "[]" else
let n = max min_size (min n_raw max_size) in
let xs = map (string_of_num o element v) (1--n) in
"[" ^ end_itlist (fun s t -> s ^ ", " ^ t) xs ^
(if n_raw > max_size then ", ...]" else "]");;
let string_of_matrix max_size (m:matrix) =
let i_raw,j_raw = dimensions m in
let i = min max_size i_raw and j = min max_size j_raw in
let rstr = map (fun k -> string_of_vector j j (row k m)) (1--i) in
"["^end_itlist(fun s t -> s^";\n "^t) rstr ^
(if j > max_size then "\n ...]" else "]");;
let rec string_of_term t =
if (is_comb t) then
let (a,b) = (dest_comb t) in
"("^(string_of_term a)^" "^(string_of_term b)^")"
else if (is_abs t) then
let (a,b) = (dest_abs t) in
"(\\"^(string_of_term a)^"."^(string_of_term b)^")"
else if (is_const t) then
let (a,_) = (dest_const t) in a
else if (is_var t) then
let (a,_) = (dest_var t) in a
else failwith "string_of_term";;
let string_of_varpow x k =
if k = 1 then string_of_term x else string_of_term x^"^"^string_of_int k;;
let string_of_monomial m =
if m = monomial_1 then "1" else
let vps = List.fold_right (fun (x,k) a -> string_of_varpow x k :: a)
(sort humanorder_varpow (graph m)) [] in
end_itlist (fun s t -> s^"*"^t) vps;;
let string_of_cmonomial (c,m) =
if m = monomial_1 then string_of_num c
else if c =/ Int 1 then string_of_monomial m
else string_of_num c ^ "*" ^ string_of_monomial m;;
let string_of_poly (p:poly) =
if p = poly_0 then "<<0>>" else
let cms = sort (fun (m1,_) (m2,_) -> humanorder_monomial m1 m2) (graph p) in
let s =
List.fold_left (fun a (m,c) ->
if c </ Int 0 then a ^ " - " ^ string_of_cmonomial(minus_num c,m)
else a ^ " + " ^ string_of_cmonomial(c,m))
"" cms in
let s1 = String.sub s 0 3
and s2 = String.sub s 3 (String.length s - 3) in
"<<" ^(if s1 = " + " then s2 else "-"^s2)^">>";;
(* ------------------------------------------------------------------------- *)
(* Printers. *)
(* ------------------------------------------------------------------------- *)
let print_vector v = Format.print_string(string_of_vector 0 20 v);;
let print_matrix m = Format.print_string(string_of_matrix 20 m);;
let print_monomial m = Format.print_string(string_of_monomial m);;
let print_poly m = Format.print_string(string_of_poly m);;
#install_printer print_vector;;
#install_printer print_matrix;;
#install_printer print_monomial;;
#install_printer print_poly;;
(* ------------------------------------------------------------------------- *)
(* Conversion from HOL term. *)
(* ------------------------------------------------------------------------- *)
let poly_of_term =
let neg_tm = `(--):real->real`
and add_tm = `(+):real->real->real`
and sub_tm = `(-):real->real->real`
and mul_tm = `(*):real->real->real`
and inv_tm = `(inv):real->real`
and div_tm = `(/):real->real->real`
and pow_tm = `(pow):real->num->real`
and zero_tm = `&0:real`
and real_ty = `:real` in
let rec poly_of_term tm =
if tm = zero_tm then poly_0
else if is_ratconst tm then poly_const(rat_of_term tm)
else if not(is_comb tm) then poly_var tm else
let lop,r = dest_comb tm in
if lop = neg_tm then poly_neg(poly_of_term r)
else if lop = inv_tm then
let p = poly_of_term r in
if poly_isconst p then poly_const(Int 1 // eval undefined p)
else failwith "poly_of_term: inverse of non-constant polyomial"
else if not(is_comb lop) then poly_var tm else
let op,l = dest_comb lop in
if op = pow_tm && is_numeral r then
poly_pow (poly_of_term l) (dest_small_numeral r)
else if op = add_tm then poly_add (poly_of_term l) (poly_of_term r)
else if op = sub_tm then poly_sub (poly_of_term l) (poly_of_term r)
else if op = mul_tm then poly_mul (poly_of_term l) (poly_of_term r)
else if op = div_tm then
let p = poly_of_term l and q = poly_of_term r in
if poly_isconst q then poly_cmul (Int 1 // eval undefined q) p
else failwith "poly_of_term: division by non-constant polynomial"
else poly_var tm in
fun tm -> if type_of tm = real_ty then poly_of_term tm
else failwith "poly_of_term: term does not have real type";;
(* ------------------------------------------------------------------------- *)
(* String of vector (just a list of space-separated numbers). *)
(* ------------------------------------------------------------------------- *)
let sdpa_of_vector (v:vector) =
let n = vec_dim v in
let strs = map (decimalize 20 o element v) (1--n) in
end_itlist (fun x y -> x ^ " " ^ y) strs ^ "\n";;
(* ------------------------------------------------------------------------- *)
(* String for block diagonal matrix numbered k. *)
(* ------------------------------------------------------------------------- *)
let sdpa_of_blockdiagonal k m =
let pfx = string_of_int k ^" " in
let ents =
foldl (fun a (b,i,j) c -> if i > j then a else ((b,i,j),c)::a) [] m in
let entss = sort (increasing fst) ents in
itlist (fun ((b,i,j),c) a ->
pfx ^ string_of_int b ^ " " ^ string_of_int i ^ " " ^ string_of_int j ^
" " ^ decimalize 20 c ^ "\n" ^ a) entss "";;
(* ------------------------------------------------------------------------- *)
(* String for a matrix numbered k, in SDPA sparse format. *)
(* ------------------------------------------------------------------------- *)
let sdpa_of_matrix k (m:matrix) =
let pfx = string_of_int k ^ " 1 " in
let ms = foldr (fun (i,j) c a -> if i > j then a else ((i,j),c)::a)
(snd m) [] in
let mss = sort (increasing fst) ms in
itlist (fun ((i,j),c) a ->
pfx ^ string_of_int i ^ " " ^ string_of_int j ^
" " ^ decimalize 20 c ^ "\n" ^ a) mss "";;
(* ------------------------------------------------------------------------- *)
(* String in SDPA sparse format for standard SDP problem: *)
(* *)
(* X = v_1 * [M_1] + ... + v_m * [M_m] - [M_0] must be PSD *)
(* Minimize obj_1 * v_1 + ... obj_m * v_m *)
(* ------------------------------------------------------------------------- *)
let sdpa_of_problem comment obj mats =
let m = length mats - 1
and n,_ = dimensions (hd mats) in
"\"" ^ comment ^ "\"\n" ^
string_of_int m ^ "\n" ^
"1\n" ^
string_of_int n ^ "\n" ^
sdpa_of_vector obj ^
itlist2 (fun k m a -> sdpa_of_matrix (k - 1) m ^ a)
(1--length mats) mats "";;
(* ------------------------------------------------------------------------- *)
(* More parser basics. *)
(* ------------------------------------------------------------------------- *)
let word s =
end_itlist (fun p1 p2 -> (p1 ++ p2) >> (fun (s,t) -> s^t))
(map a (explode s));;
let token s =
many (some isspace) ++ word s ++ many (some isspace)
>> (fun ((_,t),_) -> t);;
let decimal =
let numeral = some isnum in
let decimalint = atleast 1 numeral >> (Num.num_of_string o implode) in
let decimalfrac = atleast 1 numeral
>> (fun s -> Num.num_of_string(implode s) // pow10 (length s)) in
let decimalsig =
decimalint ++ possibly (a "." ++ decimalfrac >> snd)
>> (function (h,[]) -> h | (h,[x]) -> h +/ x) in
let signed prs =
a "-" ++ prs >> (minus_num o snd)
||| (a "+" ++ prs >> snd)
||| prs in
let exponent = (a "e" ||| a "E") ++ signed decimalint >> snd in
signed decimalsig ++ possibly exponent
>> (function (h,[]) -> h | (h,[x]) -> h */ power_num (Int 10) x);;
let mkparser p s =
let x,rst = p(explode s) in
if rst = [] then x else failwith "mkparser: unparsed input";;
let parse_decimal = mkparser decimal;;
(* ------------------------------------------------------------------------- *)
(* Parse back a vector. *)
(* ------------------------------------------------------------------------- *)
let parse_sdpaoutput,parse_csdpoutput =
let vector =
token "{" ++ listof decimal (token ",") "decimal" ++ token "}"
>> (fun ((_,v),_) -> vec_of_list v) in
let parse_vector = mkparser vector in
let rec skipupto dscr prs inp =
(dscr ++ prs >> snd
||| (some (fun c -> true) ++ skipupto dscr prs >> snd)) inp in
let ignore inp = (),[] in
let sdpaoutput =
skipupto (word "xVec" ++ token "=")
(vector ++ ignore >> fst) in
let csdpoutput =
(decimal ++ many(a " " ++ decimal >> snd) >> (fun (h,t) -> h::t)) ++
(a " " ++ a "\n" ++ ignore) >> (vec_of_list o fst) in
mkparser sdpaoutput,mkparser csdpoutput;;
(* ------------------------------------------------------------------------- *)
(* Also parse the SDPA output to test success (CSDP yields a return code). *)
(* ------------------------------------------------------------------------- *)
let sdpa_run_succeeded =
let rec skipupto dscr prs inp =
(dscr ++ prs >> snd
||| (some (fun c -> true) ++ skipupto dscr prs >> snd)) inp in
let prs = skipupto (word "phase.value" ++ token "=")
(possibly (a "p") ++ possibly (a "d") ++
(word "OPT" ||| word "FEAS")) in
fun s -> try prs (explode s); true with Noparse -> false;;
(* ------------------------------------------------------------------------- *)
(* The default parameters. Unfortunately this goes to a fixed file. *)
(* ------------------------------------------------------------------------- *)
let sdpa_default_parameters =
"100 unsigned int maxIteration;
1.0E-7 double 0.0 < epsilonStar;
1.0E2 double 0.0 < lambdaStar;
2.0 double 1.0 < omegaStar;
-1.0E5 double lowerBound;
1.0E5 double upperBound;
0.1 double 0.0 <= betaStar < 1.0;
0.2 double 0.0 <= betaBar < 1.0, betaStar <= betaBar;
0.9 double 0.0 < gammaStar < 1.0;
1.0E-7 double 0.0 < epsilonDash;
";;
(* ------------------------------------------------------------------------- *)
(* These were suggested by Makoto Yamashita for problems where we are *)
(* right at the edge of the semidefinite cone, as sometimes happens. *)
(* ------------------------------------------------------------------------- *)
let sdpa_alt_parameters =
"1000 unsigned int maxIteration;
1.0E-7 double 0.0 < epsilonStar;
1.0E4 double 0.0 < lambdaStar;
2.0 double 1.0 < omegaStar;
-1.0E5 double lowerBound;
1.0E5 double upperBound;
0.1 double 0.0 <= betaStar < 1.0;
0.2 double 0.0 <= betaBar < 1.0, betaStar <= betaBar;
0.9 double 0.0 < gammaStar < 1.0;
1.0E-7 double 0.0 < epsilonDash;
";;
let sdpa_params = sdpa_alt_parameters;;
(* ------------------------------------------------------------------------- *)
(* CSDP parameters; so far I'm sticking with the defaults. *)
(* ------------------------------------------------------------------------- *)
let csdp_default_parameters =
"axtol=1.0e-8
atytol=1.0e-8
objtol=1.0e-8
pinftol=1.0e8
dinftol=1.0e8
maxiter=100
minstepfrac=0.9
maxstepfrac=0.97
minstepp=1.0e-8
minstepd=1.0e-8
usexzgap=1
tweakgap=0
affine=0
printlevel=1
";;
let csdp_params = csdp_default_parameters;;
(* ------------------------------------------------------------------------- *)
(* Now call SDPA on a problem and parse back the output. *)
(* ------------------------------------------------------------------------- *)
let run_sdpa dbg obj mats =
let input_file = Filename.temp_file "sos" ".dat-s" in
let output_file =
String.sub input_file 0 (String.length input_file - 6) ^ ".out"
and params_file = Filename.concat (!temp_path) "param.sdpa" in
file_of_string input_file (sdpa_of_problem "" obj mats);
file_of_string params_file sdpa_params;
Sys.command("cd "^ !temp_path ^
"; sdpa "^input_file ^ " " ^ output_file ^
(if dbg then "" else "> /dev/null"));
let op = string_of_file output_file in
if not(sdpa_run_succeeded op) then failwith "sdpa: call failed" else
let res = parse_sdpaoutput op in
((if dbg then ()
else (Sys.remove input_file; Sys.remove output_file));
res);;
let sdpa obj mats = run_sdpa (!debugging) obj mats;;
(* ------------------------------------------------------------------------- *)
(* The same thing with CSDP. *)
(* ------------------------------------------------------------------------- *)
let run_csdp dbg obj mats =
let input_file = Filename.temp_file "sos" ".dat-s" in
let output_file =
String.sub input_file 0 (String.length input_file - 6) ^ ".out"
and params_file = Filename.concat (!temp_path) "param.csdp" in
file_of_string input_file (sdpa_of_problem "" obj mats);
file_of_string params_file csdp_params;
let rv = Sys.command("cd "^(!temp_path)^"; csdp "^input_file ^
" " ^ output_file ^
(if dbg then "" else "> /dev/null")) in
let op = string_of_file output_file in
let res = parse_csdpoutput op in
((if dbg then ()
else (Sys.remove input_file; Sys.remove output_file));
rv,res);;
let csdp obj mats =
let rv,res = run_csdp (!debugging) obj mats in
(if rv = 1 || rv = 2 then failwith "csdp: Problem is infeasible"
else if rv = 3 then
(Format.print_string "csdp warning: Reduced accuracy";
Format.print_newline())
else if rv <> 0 then failwith("csdp: error "^string_of_int rv)
else ());
res;;
(* ------------------------------------------------------------------------- *)
(* Try some apparently sensible scaling first. Note that this is purely to *)
(* get a cleaner translation to floating-point, and doesn't affect any of *)
(* the results, in principle. In practice it seems a lot better when there *)
(* are extreme numbers in the original problem. *)
(* ------------------------------------------------------------------------- *)
let scale_then =
let common_denominator amat acc =
foldl (fun a m c -> lcm_num (denominator c) a) acc amat
and maximal_element amat acc =
foldl (fun maxa m c -> max_num maxa (abs_num c)) acc amat in
fun solver obj mats ->
let cd1 = itlist common_denominator mats (Int 1)
and cd2 = common_denominator (snd obj) (Int 1) in
let mats' = map (mapf (fun x -> cd1 */ x)) mats
and obj' = vec_cmul cd2 obj in
let max1 = itlist maximal_element mats' (Int 0)
and max2 = maximal_element (snd obj') (Int 0) in
let scal1 = pow2 (20-int_of_float(log(float_of_num max1) /. log 2.0))
and scal2 = pow2 (20-int_of_float(log(float_of_num max2) /. log 2.0)) in
let mats'' = map (mapf (fun x -> x */ scal1)) mats'
and obj'' = vec_cmul scal2 obj' in
solver obj'' mats'';;
(* ------------------------------------------------------------------------- *)
(* Round a vector to "nice" rationals. *)
(* ------------------------------------------------------------------------- *)
let nice_rational n x = round_num (n */ x) // n;;
let nice_vector n = mapa (nice_rational n);;
(* ------------------------------------------------------------------------- *)
(* Reduce linear program to SDP (diagonal matrices) and test with CSDP. This *)
(* one tests A [-1;x1;..;xn] >= 0 (i.e. left column is negated constants). *)
(* ------------------------------------------------------------------------- *)
let linear_program_basic a =
let m,n = dimensions a in
let mats = map (fun j -> diagonal (column j a)) (1--n)
and obj = vec_const (Int 1) m in
let rv,res = run_csdp false obj mats in
if rv = 1 || rv = 2 then false
else if rv = 0 then true
else failwith "linear_program: An error occurred in the SDP solver";;
(* ------------------------------------------------------------------------- *)
(* Alternative interface testing A x >= b for matrix A, vector b. *)
(* ------------------------------------------------------------------------- *)
let linear_program a b =
let m,n = dimensions a in
if vec_dim b <> m then failwith "linear_program: incompatible dimensions" else
let mats = diagonal b :: map (fun j -> diagonal (column j a)) (1--n)
and obj = vec_const (Int 1) m in
let rv,res = run_csdp false obj mats in
if rv = 1 || rv = 2 then false
else if rv = 0 then true
else failwith "linear_program: An error occurred in the SDP solver";;
(* ------------------------------------------------------------------------- *)
(* Test whether a point is in the convex hull of others. Rather than use *)
(* computational geometry, express as linear inequalities and call CSDP. *)
(* This is a bit lazy of me, but it's easy and not such a bottleneck so far. *)
(* ------------------------------------------------------------------------- *)
let in_convex_hull pts pt =
let pts1 = (1::pt) :: map (fun x -> 1::x) pts in
let pts2 = map (fun p -> map (fun x -> -x) p @ p) pts1 in
let n = length pts + 1
and v = 2 * (length pt + 1) in
let m = v + n - 1 in
let mat =
(m,n),
itern 1 pts2 (fun pts j -> itern 1 pts (fun x i -> (i,j) |-> Int x))
(iter (1,n) (fun i -> (v + i,i+1) |-> Int 1) undefined) in
linear_program_basic mat;;
(* ------------------------------------------------------------------------- *)
(* Filter down a set of points to a minimal set with the same convex hull. *)
(* ------------------------------------------------------------------------- *)
let minimal_convex_hull =
let augment1 (m::ms) = if in_convex_hull ms m then ms else ms@[m] in
let augment m ms = funpow 3 augment1 (m::ms) in
fun mons ->
let mons' = itlist augment (tl mons) [hd mons] in
funpow (length mons') augment1 mons';;
(* ------------------------------------------------------------------------- *)
(* Stuff for "equations" (generic A->num functions). *)
(* ------------------------------------------------------------------------- *)
let equation_cmul c eq =
if c =/ Int 0 then undefined else mapf (fun d -> c */ d) eq;;
let equation_add eq1 eq2 = combine (+/) (fun x -> x =/ Int 0) eq1 eq2;;
let equation_eval assig eq =
let value v = apply assig v in
foldl (fun a v c -> a +/ value(v) */ c) (Int 0) eq;;
(* ------------------------------------------------------------------------- *)
(* Eliminate among linear equations: return unconstrained variables and *)
(* assignments for the others in terms of them. We give one pseudo-variable *)
(* "one" that's used for a constant term. *)
(* ------------------------------------------------------------------------- *)
let eliminate_equations =
let rec extract_first p l =
match l with
[] -> failwith "extract_first"
| h::t -> if p(h) then h,t else
let k,s = extract_first p t in
k,h::s in
let rec eliminate vars dun eqs =
match vars with
[] -> if forall is_undefined eqs then dun
else raise Unsolvable
| v::vs ->
try let eq,oeqs = extract_first (fun e -> defined e v) eqs in
let a = apply eq v in
let eq' = equation_cmul (Int(-1) // a) (undefine v eq) in
let elim e =
let b = tryapplyd e v (Int 0) in
if b =/ Int 0 then e else
equation_add e (equation_cmul (minus_num b // a) eq) in
eliminate vs ((v |-> eq') (mapf elim dun)) (map elim oeqs)
with Failure _ -> eliminate vs dun eqs in
fun one vars eqs ->
let assig = eliminate vars undefined eqs in
let vs = foldl (fun a x f -> subtract (dom f) [one] @ a) [] assig in
setify vs,assig;;
(* ------------------------------------------------------------------------- *)
(* Eliminate all variables, in an essentially arbitrary order. *)
(* ------------------------------------------------------------------------- *)
let eliminate_all_equations one =
let choose_variable eq =
let (v,_) = choose eq in
if v = one then
let eq' = undefine v eq in
if is_undefined eq' then failwith "choose_variable" else
let (w,_) = choose eq' in w
else v in
let rec eliminate dun eqs =
match eqs with
[] -> dun
| eq::oeqs ->
if is_undefined eq then eliminate dun oeqs else
let v = choose_variable eq in
let a = apply eq v in
let eq' = equation_cmul (Int(-1) // a) (undefine v eq) in
let elim e =
let b = tryapplyd e v (Int 0) in
if b =/ Int 0 then e else
equation_add e (equation_cmul (minus_num b // a) eq) in
eliminate ((v |-> eq') (mapf elim dun)) (map elim oeqs) in
fun eqs ->
let assig = eliminate undefined eqs in
let vs = foldl (fun a x f -> subtract (dom f) [one] @ a) [] assig in
setify vs,assig;;
(* ------------------------------------------------------------------------- *)
(* Solve equations by assigning arbitrary numbers. *)
(* ------------------------------------------------------------------------- *)
let solve_equations one eqs =
let vars,assigs = eliminate_all_equations one eqs in
let vfn = itlist (fun v -> (v |-> Int 0)) vars (one |=> Int(-1)) in
let ass =
combine (+/) (fun c -> false) (mapf (equation_eval vfn) assigs) vfn in
if forall (fun e -> equation_eval ass e =/ Int 0) eqs
then undefine one ass else raise Sanity;;
(* ------------------------------------------------------------------------- *)
(* Hence produce the "relevant" monomials: those whose squares lie in the *)
(* Newton polytope of the monomials in the input. (This is enough according *)
(* to Reznik: "Extremal PSD forms with few terms", Duke Math. Journal, *)
(* vol 45, pp. 363--374, 1978. *)
(* *)
(* These are ordered in sort of decreasing degree. In particular the *)
(* constant monomial is last; this gives an order in diagonalization of the *)
(* quadratic form that will tend to display constants. *)
(* ------------------------------------------------------------------------- *)
let newton_polytope pol =
let vars = poly_variables pol in
let mons = map (fun m -> map (fun x -> monomial_degree x m) vars) (dom pol)
and ds = map (fun x -> (degree x pol + 1) / 2) vars in
let all = itlist (fun n -> allpairs (fun h t -> h::t) (0--n)) ds [[]]
and mons' = minimal_convex_hull mons in
let all' =
filter (fun m -> in_convex_hull mons' (map (fun x -> 2 * x) m)) all in
map (fun m -> itlist2 (fun v i a -> if i = 0 then a else (v |-> i) a)
vars m monomial_1) (rev all');;
(* ------------------------------------------------------------------------- *)
(* Diagonalize (Cholesky/LDU) the matrix corresponding to a quadratic form. *)
(* ------------------------------------------------------------------------- *)
let diag m =
let nn = dimensions m in
let n = fst nn in
if snd nn <> n then failwith "diagonalize: non-square matrix" else
let rec diagonalize i m =
if is_zero m then [] else
let a11 = element m (i,i) in
if a11 </ Int 0 then failwith "diagonalize: not PSD"
else if a11 =/ Int 0 then
if is_zero(row i m) then diagonalize (i + 1) m
else failwith "diagonalize: not PSD"
else
let v = row i m in
let v' = mapa (fun a1k -> a1k // a11) v in
let m' =
(n,n),
iter (i+1,n) (fun j ->
iter (i+1,n) (fun k ->
((j,k) |--> (element m (j,k) -/ element v j */ element v' k))))
undefined in
(a11,v')::diagonalize (i + 1) m' in
diagonalize 1 m;;
(* ------------------------------------------------------------------------- *)
(* Adjust a diagonalization to collect rationals at the start. *)
(* ------------------------------------------------------------------------- *)
let deration d =
if d = [] then Int 0,d else
let adj(c,l) =
let a = foldl (fun a i c -> lcm_num a (denominator c)) (Int 1) (snd l) //
foldl (fun a i c -> gcd_num a (numerator c)) (Int 0) (snd l) in
(c // (a */ a)),mapa (fun x -> a */ x) l in
let d' = map adj d in
let a = itlist (lcm_num o denominator o fst) d' (Int 1) //
itlist (gcd_num o numerator o fst) d' (Int 0) in
(Int 1 // a),map (fun (c,l) -> (a */ c,l)) d';;
(* ------------------------------------------------------------------------- *)
(* Enumeration of monomials with given multidegree bound. *)
(* ------------------------------------------------------------------------- *)
let rec enumerate_monomials d vars =
if d < 0 then []
else if d = 0 then [undefined]
else if vars = [] then [monomial_1] else
let alts =
map (fun k -> let oths = enumerate_monomials (d - k) (tl vars) in
map (fun ks -> if k = 0 then ks else (hd vars |-> k) ks) oths)
(0--d) in
end_itlist (@) alts;;
(* ------------------------------------------------------------------------- *)
(* Enumerate products of distinct input polys with degree <= d. *)
(* We ignore any constant input polynomials. *)
(* Give the output polynomial and a record of how it was derived. *)
(* ------------------------------------------------------------------------- *)
let rec enumerate_products d pols =
if d = 0 then [poly_const num_1,Rational_lt num_1] else if d < 0 then [] else
match pols with
[] -> [poly_const num_1,Rational_lt num_1]
| (p,b)::ps -> let e = multidegree p in
if e = 0 then enumerate_products d ps else
enumerate_products d ps @
map (fun (q,c) -> poly_mul p q,Product(b,c))
(enumerate_products (d - e) ps);;
(* ------------------------------------------------------------------------- *)
(* Multiply equation-parametrized poly by regular poly and add accumulator. *)
(* ------------------------------------------------------------------------- *)
let epoly_pmul p q acc =
foldl (fun a m1 c ->
foldl (fun b m2 e ->
let m = monomial_mul m1 m2 in
let es = tryapplyd b m undefined in
(m |-> equation_add (equation_cmul c e) es) b)
a q) acc p;;
(* ------------------------------------------------------------------------- *)
(* Usual operations on equation-parametrized poly. *)
(* ------------------------------------------------------------------------- *)
let epoly_cmul c l =
if c =/ Int 0 then undefined else mapf (equation_cmul c) l;;
(* ------------------------------------------------------------------------- *)
(* Convert regular polynomial. Note that we treat (0,0,0) as -1. *)
(* ------------------------------------------------------------------------- *)
let epoly_of_poly p =
foldl (fun a m c -> (m |-> ((0,0,0) |=> minus_num c)) a) undefined p;;
(* ------------------------------------------------------------------------- *)
(* String for block diagonal matrix numbered k. *)
(* ------------------------------------------------------------------------- *)
let sdpa_of_blockdiagonal k m =
let pfx = string_of_int k ^" " in
let ents =
foldl (fun a (b,i,j) c -> if i > j then a else ((b,i,j),c)::a) [] m in
let entss = sort (increasing fst) ents in
itlist (fun ((b,i,j),c) a ->
pfx ^ string_of_int b ^ " " ^ string_of_int i ^ " " ^ string_of_int j ^
" " ^ decimalize 20 c ^ "\n" ^ a) entss "";;
(* ------------------------------------------------------------------------- *)
(* SDPA for problem using block diagonal (i.e. multiple SDPs) *)
(* ------------------------------------------------------------------------- *)
let sdpa_of_blockproblem comment nblocks blocksizes obj mats =
let m = length mats - 1 in
"\"" ^ comment ^ "\"\n" ^
string_of_int m ^ "\n" ^
string_of_int nblocks ^ "\n" ^
(end_itlist (fun s t -> s^" "^t) (map string_of_int blocksizes)) ^
"\n" ^
sdpa_of_vector obj ^
itlist2 (fun k m a -> sdpa_of_blockdiagonal (k - 1) m ^ a)
(1--length mats) mats "";;
(* ------------------------------------------------------------------------- *)
(* Hence run CSDP on a problem in block diagonal form. *)
(* ------------------------------------------------------------------------- *)
let run_csdp dbg nblocks blocksizes obj mats =
let input_file = Filename.temp_file "sos" ".dat-s" in
let output_file =
String.sub input_file 0 (String.length input_file - 6) ^ ".out"
and params_file = Filename.concat (!temp_path) "param.csdp" in
file_of_string input_file
(sdpa_of_blockproblem "" nblocks blocksizes obj mats);
file_of_string params_file csdp_params;
let rv = Sys.command("cd "^(!temp_path)^"; csdp "^input_file ^
" " ^ output_file ^
(if dbg then "" else "> /dev/null")) in
let op = string_of_file output_file in
let res = parse_csdpoutput op in
((if dbg then ()
else (Sys.remove input_file; Sys.remove output_file));
rv,res);;
let csdp nblocks blocksizes obj mats =
let rv,res = run_csdp (!debugging) nblocks blocksizes obj mats in
(if rv = 1 || rv = 2 then failwith "csdp: Problem is infeasible"
else if rv = 3 then
(Format.print_string "csdp warning: Reduced accuracy";
Format.print_newline())
else if rv <> 0 then failwith("csdp: error "^string_of_int rv)
else ());
res;;
(* ------------------------------------------------------------------------- *)
(* 3D versions of matrix operations to consider blocks separately. *)
(* ------------------------------------------------------------------------- *)
let bmatrix_add = combine (+/) (fun x -> x =/ Int 0);;
let bmatrix_cmul c bm =
if c =/ Int 0 then undefined
else mapf (fun x -> c */ x) bm;;
let bmatrix_neg = bmatrix_cmul (Int(-1));;
let bmatrix_sub m1 m2 = bmatrix_add m1 (bmatrix_neg m2);;
(* ------------------------------------------------------------------------- *)
(* Smash a block matrix into components. *)
(* ------------------------------------------------------------------------- *)
let blocks blocksizes bm =
map (fun (bs,b0) ->
let m = foldl
(fun a (b,i,j) c -> if b = b0 then ((i,j) |-> c) a else a)
undefined bm in
let d = foldl (fun a (i,j) c -> max a (max i j)) 0 m in
(((bs,bs),m):matrix))
(zip blocksizes (1--length blocksizes));;
(* ------------------------------------------------------------------------- *)
(* Positiv- and Nullstellensatz. Flag "linf" forces a linear representation. *)
(* ------------------------------------------------------------------------- *)
let real_positivnullstellensatz_general linf d eqs leqs pol =
let vars = itlist (union o poly_variables) (pol::eqs @ map fst leqs) [] in
let monoid =
if linf then
(poly_const num_1,Rational_lt num_1)::
(filter (fun (p,c) -> multidegree p <= d) leqs)
else enumerate_products d leqs in
let nblocks = length monoid in
let mk_idmultiplier k p =
let e = d - multidegree p in
let mons = enumerate_monomials e vars in
let nons = zip mons (1--length mons) in
mons,
itlist (fun (m,n) -> (m |-> ((-k,-n,n) |=> Int 1))) nons undefined in
let mk_sqmultiplier k (p,c) =
let e = (d - multidegree p) / 2 in
let mons = enumerate_monomials e vars in
let nons = zip mons (1--length mons) in
mons,
itlist (fun (m1,n1) ->
itlist (fun (m2,n2) a ->
let m = monomial_mul m1 m2 in
if n1 > n2 then a else
let c = if n1 = n2 then Int 1 else Int 2 in
let e = tryapplyd a m undefined in
(m |-> equation_add ((k,n1,n2) |=> c) e) a)
nons)
nons undefined in
let sqmonlist,sqs = unzip(map2 mk_sqmultiplier (1--length monoid) monoid)
and idmonlist,ids = unzip(map2 mk_idmultiplier (1--length eqs) eqs) in
let blocksizes = map length sqmonlist in
let bigsum =
itlist2 (fun p q a -> epoly_pmul p q a) eqs ids
(itlist2 (fun (p,c) s a -> epoly_pmul p s a) monoid sqs
(epoly_of_poly(poly_neg pol))) in
let eqns = foldl (fun a m e -> e::a) [] bigsum in
let pvs,assig = eliminate_all_equations (0,0,0) eqns in
let qvars = (0,0,0)::pvs in
let allassig = itlist (fun v -> (v |-> (v |=> Int 1))) pvs assig in
let mk_matrix v =
foldl (fun m (b,i,j) ass -> if b < 0 then m else
let c = tryapplyd ass v (Int 0) in
if c =/ Int 0 then m else
((b,j,i) |-> c) (((b,i,j) |-> c) m))
undefined allassig in
let diagents = foldl
(fun a (b,i,j) e -> if b > 0 && i = j then equation_add e a else a)
undefined allassig in
let mats = map mk_matrix qvars
and obj = length pvs,
itern 1 pvs (fun v i -> (i |--> tryapplyd diagents v (Int 0)))
undefined in
let raw_vec = if pvs = [] then vec_0 0
else scale_then (csdp nblocks blocksizes) obj mats in
let find_rounding d =
(if !debugging then
(Format.print_string("Trying rounding with limit "^string_of_num d);
Format.print_newline())
else ());
let vec = nice_vector d raw_vec in
let blockmat = iter (1,vec_dim vec)
(fun i a -> bmatrix_add (bmatrix_cmul (element vec i) (el i mats)) a)
(bmatrix_neg (el 0 mats)) in
let allmats = blocks blocksizes blockmat in
vec,map diag allmats in
let vec,ratdias =
if pvs = [] then find_rounding num_1
else tryfind find_rounding (map Num.num_of_int (1--31) @
map pow2 (5--66)) in
let newassigs =
itlist (fun k -> el (k - 1) pvs |-> element vec k)
(1--vec_dim vec) ((0,0,0) |=> Int(-1)) in
let finalassigs =
foldl (fun a v e -> (v |-> equation_eval newassigs e) a) newassigs
allassig in
let poly_of_epoly p =
foldl (fun a v e -> (v |--> equation_eval finalassigs e) a)
undefined p in
let mk_sos mons =
let mk_sq (c,m) =
c,itlist (fun k a -> (el (k - 1) mons |--> element m k) a)
(1--length mons) undefined in
map mk_sq in
let sqs = map2 mk_sos sqmonlist ratdias
and cfs = map poly_of_epoly ids in
let msq = filter (fun (a,b) -> b <> []) (map2 (fun a b -> a,b) monoid sqs) in
let eval_sq sqs = itlist
(fun (c,q) -> poly_add (poly_cmul c (poly_mul q q))) sqs poly_0 in
let sanity =
itlist (fun ((p,c),s) -> poly_add (poly_mul p (eval_sq s))) msq
(itlist2 (fun p q -> poly_add (poly_mul p q)) cfs eqs
(poly_neg pol)) in
if not(is_undefined sanity) then raise Sanity else
cfs,map (fun (a,b) -> snd a,b) msq;;
(* ------------------------------------------------------------------------- *)
(* Iterative deepening. *)
(* ------------------------------------------------------------------------- *)
let rec deepen f n =
try print_string "Searching with depth limit ";
print_int n; print_newline(); f n
with Failure _ -> deepen f (n + 1);;
(* ------------------------------------------------------------------------- *)
(* The ordering so we can create canonical HOL polynomials. *)
(* ------------------------------------------------------------------------- *)
let dest_monomial mon = sort (increasing fst) (graph mon);;
let monomial_order =
let rec lexorder l1 l2 =
match (l1,l2) with
[],[] -> true
| vps,[] -> false
| [],vps -> true
| ((x1,n1)::vs1),((x2,n2)::vs2) ->
if x1 < x2 then true
else if x2 < x1 then false
else if n1 < n2 then false
else if n2 < n1 then true
else lexorder vs1 vs2 in
fun m1 m2 ->
if m2 = monomial_1 then true else if m1 = monomial_1 then false else
let mon1 = dest_monomial m1 and mon2 = dest_monomial m2 in
let deg1 = itlist ((+) o snd) mon1 0
and deg2 = itlist ((+) o snd) mon2 0 in
if deg1 < deg2 then false else if deg1 > deg2 then true
else lexorder mon1 mon2;;
let dest_poly p =
map (fun (m,c) -> c,dest_monomial m)
(sort (fun (m1,_) (m2,_) -> monomial_order m1 m2) (graph p));;
(* ------------------------------------------------------------------------- *)
(* Map back polynomials and their composites to HOL. *)
(* ------------------------------------------------------------------------- *)
let term_of_varpow =
let pow_tm = `(pow):real->num->real` in
fun x k ->
if k = 1 then x else mk_comb(mk_comb(pow_tm,x),mk_small_numeral k);;
let term_of_monomial =
let one_tm = `&1:real`
and mul_tm = `(*):real->real->real` in
fun m -> if m = monomial_1 then one_tm else
let m' = dest_monomial m in
let vps = itlist (fun (x,k) a -> term_of_varpow x k :: a) m' [] in
end_itlist (fun s t -> mk_comb(mk_comb(mul_tm,s),t)) vps;;
let term_of_cmonomial =
let mul_tm = `(*):real->real->real` in
fun (m,c) ->
if m = monomial_1 then term_of_rat c
else if c =/ num_1 then term_of_monomial m
else mk_comb(mk_comb(mul_tm,term_of_rat c),term_of_monomial m);;
let term_of_poly =
let zero_tm = `&0:real`
and add_tm = `(+):real->real->real` in
fun p ->
if p = poly_0 then zero_tm else
let cms = map term_of_cmonomial
(sort (fun (m1,_) (m2,_) -> monomial_order m1 m2) (graph p)) in
end_itlist (fun t1 t2 -> mk_comb(mk_comb(add_tm,t1),t2)) cms;;
let term_of_sqterm (c,p) =
Product(Rational_lt c,Square(term_of_poly p));;
let term_of_sos (pr,sqs) =
if sqs = [] then pr
else Product(pr,end_itlist (fun a b -> Sum(a,b)) (map term_of_sqterm sqs));;
(* ------------------------------------------------------------------------- *)
(* Interface to HOL. *)
(* ------------------------------------------------------------------------- *)
let REAL_NONLINEAR_PROVER translator (eqs,les,lts) =
let eq0 = map (poly_of_term o lhand o concl) eqs
and le0 = map (poly_of_term o lhand o concl) les
and lt0 = map (poly_of_term o lhand o concl) lts in
let eqp0 = map (fun (t,i) -> t,Axiom_eq i) (zip eq0 (0--(length eq0 - 1)))
and lep0 = map (fun (t,i) -> t,Axiom_le i) (zip le0 (0--(length le0 - 1)))
and ltp0 = map (fun (t,i) -> t,Axiom_lt i) (zip lt0 (0--(length lt0 - 1))) in
let keq,eq = partition (fun (p,_) -> multidegree p = 0) eqp0
and klep,lep = partition (fun (p,_) -> multidegree p = 0) lep0
and kltp,ltp = partition (fun (p,_) -> multidegree p = 0) ltp0 in
let trivial_axiom (p,ax) =
match ax with
Axiom_eq n when eval undefined p <>/ num_0 -> el n eqs
| Axiom_le n when eval undefined p </ num_0 -> el n les
| Axiom_lt n when eval undefined p <=/ num_0 -> el n lts
| _ -> failwith "not a trivial axiom" in
try let th = tryfind trivial_axiom (keq @ klep @ kltp) in
CONV_RULE (LAND_CONV REAL_POLY_CONV THENC REAL_RAT_RED_CONV) th
with Failure _ ->
let pol = itlist poly_mul (map fst ltp) (poly_const num_1) in
let leq = lep @ ltp in
let tryall d =
let e = multidegree pol in
let k = if e = 0 then 0 else d / e in
let eq' = map fst eq in
tryfind (fun i -> d,i,real_positivnullstellensatz_general false d eq' leq
(poly_neg(poly_pow pol i)))
(0--k) in
let d,i,(cert_ideal,cert_cone) = deepen tryall 0 in
let proofs_ideal =
map2 (fun q (p,ax) -> Eqmul(term_of_poly q,ax)) cert_ideal eq
and proofs_cone = map term_of_sos cert_cone
and proof_ne =
if ltp = [] then Rational_lt num_1 else
let p = end_itlist (fun s t -> Product(s,t)) (map snd ltp) in
funpow i (fun q -> Product(p,q)) (Rational_lt num_1) in
let proof = end_itlist (fun s t -> Sum(s,t))
(proof_ne :: proofs_ideal @ proofs_cone) in
print_string("Translating proof certificate to HOL");
print_newline();
translator (eqs,les,lts) proof;;
(* ------------------------------------------------------------------------- *)
(* A wrapper that tries to substitute away variables first. *)
(* ------------------------------------------------------------------------- *)
let REAL_NONLINEAR_SUBST_PROVER =
let zero = `&0:real`
and mul_tm = `( * ):real->real->real`
and shuffle1 =
CONV_RULE(REWR_CONV(REAL_ARITH `a + x = (y:real) <=> x = y - a`))
and shuffle2 =
CONV_RULE(REWR_CONV(REAL_ARITH `x + a = (y:real) <=> x = y - a`)) in
let rec substitutable_monomial fvs tm =
match tm with
Var(_,Tyapp("real",[])) when not (mem tm fvs) -> Int 1,tm
| Comb(Comb(Const("real_mul",_),c),(Var(_,_) as t))
when is_ratconst c && not (mem t fvs)
-> rat_of_term c,t
| Comb(Comb(Const("real_add",_),s),t) ->
(try substitutable_monomial (union (frees t) fvs) s
with Failure _ -> substitutable_monomial (union (frees s) fvs) t)
| _ -> failwith "substitutable_monomial"
and isolate_variable v th =
match lhs(concl th) with
x when x = v -> th
| Comb(Comb(Const("real_add",_),(Var(_,Tyapp("real",[])) as x)),t)
when x = v -> shuffle2 th
| Comb(Comb(Const("real_add",_),s),t) ->
isolate_variable v(shuffle1 th) in
let make_substitution th =
let (c,v) = substitutable_monomial [] (lhs(concl th)) in
let th1 = AP_TERM (mk_comb(mul_tm,term_of_rat(Int 1 // c))) th in
let th2 = CONV_RULE(BINOP_CONV REAL_POLY_MUL_CONV) th1 in
CONV_RULE (RAND_CONV REAL_POLY_CONV) (isolate_variable v th2) in
fun translator ->
let rec substfirst(eqs,les,lts) =
try let eth = tryfind make_substitution eqs in
let modify =
CONV_RULE(LAND_CONV(SUBS_CONV[eth] THENC REAL_POLY_CONV)) in
substfirst(filter (fun t -> lhand(concl t) <> zero) (map modify eqs),
map modify les,map modify lts)
with Failure _ -> REAL_NONLINEAR_PROVER translator (eqs,les,lts) in
substfirst;;
(* ------------------------------------------------------------------------- *)
(* Overall function. *)
(* ------------------------------------------------------------------------- *)
let REAL_SOS =
let init = GEN_REWRITE_CONV ONCE_DEPTH_CONV [DECIMAL]
and pure = GEN_REAL_ARITH REAL_NONLINEAR_SUBST_PROVER in
fun tm -> let th = init tm in EQ_MP (SYM th) (pure(rand(concl th)));;
(* ------------------------------------------------------------------------- *)
(* Add hacks for division. *)
(* ------------------------------------------------------------------------- *)
let REAL_SOSFIELD =
let inv_tm = `inv:real->real` in
let prenex_conv =
TOP_DEPTH_CONV BETA_CONV THENC
PURE_REWRITE_CONV[FORALL_SIMP; EXISTS_SIMP; real_div;
REAL_INV_INV; REAL_INV_MUL; GSYM REAL_POW_INV] THENC
NNFC_CONV THENC DEPTH_BINOP_CONV `(/\)` CONDS_CELIM_CONV THENC
PRENEX_CONV
and setup_conv = NNF_CONV THENC WEAK_CNF_CONV THENC CONJ_CANON_CONV
and core_rule t =
try REAL_ARITH t
with Failure _ -> try REAL_RING t
with Failure _ -> REAL_SOS t
and is_inv =
let is_div = is_binop `(/):real->real->real` in
fun tm -> (is_div tm || (is_comb tm && rator tm = inv_tm)) &&
not(is_ratconst(rand tm)) in
let BASIC_REAL_FIELD tm =
let is_freeinv t = is_inv t && free_in t tm in
let itms = setify(map rand (find_terms is_freeinv tm)) in
let hyps = map (fun t -> SPEC t REAL_MUL_RINV) itms in
let tm' = itlist (fun th t -> mk_imp(concl th,t)) hyps tm in
let itms' = map (curry mk_comb inv_tm) itms in
let gvs = map (genvar o type_of) itms' in
let tm'' = subst (zip gvs itms') tm' in
let th1 = setup_conv tm'' in
let cjs = conjuncts(rand(concl th1)) in
let ths = map core_rule cjs in
let th2 = EQ_MP (SYM th1) (end_itlist CONJ ths) in
rev_itlist (C MP) hyps (INST (zip itms' gvs) th2) in
fun tm ->
let th0 = prenex_conv tm in
let tm0 = rand(concl th0) in
let avs,bod = strip_forall tm0 in
let th1 = setup_conv bod in
let ths = map BASIC_REAL_FIELD (conjuncts(rand(concl th1))) in
EQ_MP (SYM th0) (GENL avs (EQ_MP (SYM th1) (end_itlist CONJ ths)));;
(* ------------------------------------------------------------------------- *)
(* Integer version. *)
(* ------------------------------------------------------------------------- *)
let INT_SOS =
let atom_CONV =
let pth = prove
(`(~(x <= y) <=> y + &1 <= x:int) /\
(~(x < y) <=> y <= x) /\
(~(x = y) <=> x + &1 <= y \/ y + &1 <= x) /\
(x < y <=> x + &1 <= y)`,
REWRITE_TAC[INT_NOT_LE; INT_NOT_LT; INT_NOT_EQ; INT_LT_DISCRETE]) in
GEN_REWRITE_CONV I [pth]
and bub_CONV = GEN_REWRITE_CONV TOP_SWEEP_CONV
[int_eq; int_le; int_lt; int_ge; int_gt;
int_of_num_th; int_neg_th; int_add_th; int_mul_th;
int_sub_th; int_pow_th; int_abs_th; int_max_th; int_min_th] in
let base_CONV = TRY_CONV atom_CONV THENC bub_CONV in
let NNF_NORM_CONV = GEN_NNF_CONV false
(base_CONV,fun t -> base_CONV t,base_CONV(mk_neg t)) in
let init_CONV =
GEN_REWRITE_CONV DEPTH_CONV [FORALL_SIMP; EXISTS_SIMP] THENC
GEN_REWRITE_CONV DEPTH_CONV [INT_GT; INT_GE] THENC
CONDS_ELIM_CONV THENC NNF_NORM_CONV in
let p_tm = `p:bool`
and not_tm = `(~)` in
let pth = TAUT(mk_eq(mk_neg(mk_neg p_tm),p_tm)) in
fun tm ->
let th0 = INST [tm,p_tm] pth
and th1 = NNF_NORM_CONV(mk_neg tm) in
let th2 = REAL_SOS(mk_neg(rand(concl th1))) in
EQ_MP th0 (EQ_MP (AP_TERM not_tm (SYM th1)) th2);;
(* ------------------------------------------------------------------------- *)
(* Natural number version. *)
(* ------------------------------------------------------------------------- *)
let SOS_RULE tm =
let avs = frees tm in
let tm' = list_mk_forall(avs,tm) in
let th1 = NUM_TO_INT_CONV tm' in
let th2 = INT_SOS (rand(concl th1)) in
SPECL avs (EQ_MP (SYM th1) th2);;
(* ------------------------------------------------------------------------- *)
(* Now pure SOS stuff. *)
(* ------------------------------------------------------------------------- *)
prioritize_real();;
(* ------------------------------------------------------------------------- *)
(* Some combinatorial helper functions. *)
(* ------------------------------------------------------------------------- *)
let rec allpermutations l =
if l = [] then [[]] else
itlist (fun h acc -> map (fun t -> h::t)
(allpermutations (subtract l [h])) @ acc) l [];;
let allvarorders l =
map (fun vlis x -> index x vlis) (allpermutations l);;
let changevariables_monomial zoln (m:monomial) =
foldl (fun a x k -> (assoc x zoln |-> k) a) monomial_1 m;;
let changevariables zoln pol =
foldl (fun a m c -> (changevariables_monomial zoln m |-> c) a)
poly_0 pol;;
(* ------------------------------------------------------------------------- *)
(* Return to original non-block matrices. *)
(* ------------------------------------------------------------------------- *)
let sdpa_of_vector (v:vector) =
let n = vec_dim v in
let strs = map (decimalize 20 o element v) (1--n) in
end_itlist (fun x y -> x ^ " " ^ y) strs ^ "\n";;
let sdpa_of_blockdiagonal k m =
let pfx = string_of_int k ^" " in
let ents =
foldl (fun a (b,i,j) c -> if i > j then a else ((b,i,j),c)::a) [] m in
let entss = sort (increasing fst) ents in
itlist (fun ((b,i,j),c) a ->
pfx ^ string_of_int b ^ " " ^ string_of_int i ^ " " ^ string_of_int j ^
" " ^ decimalize 20 c ^ "\n" ^ a) entss "";;
let sdpa_of_matrix k (m:matrix) =
let pfx = string_of_int k ^ " 1 " in
let ms = foldr (fun (i,j) c a -> if i > j then a else ((i,j),c)::a)
(snd m) [] in
let mss = sort (increasing fst) ms in
itlist (fun ((i,j),c) a ->
pfx ^ string_of_int i ^ " " ^ string_of_int j ^
" " ^ decimalize 20 c ^ "\n" ^ a) mss "";;
let sdpa_of_problem comment obj mats =
let m = length mats - 1
and n,_ = dimensions (hd mats) in
"\"" ^ comment ^ "\"\n" ^
string_of_int m ^ "\n" ^
"1\n" ^
string_of_int n ^ "\n" ^
sdpa_of_vector obj ^
itlist2 (fun k m a -> sdpa_of_matrix (k - 1) m ^ a)
(1--length mats) mats "";;
let run_sdpa dbg obj mats =
let input_file = Filename.temp_file "sos" ".dat-s" in
let output_file =
String.sub input_file 0 (String.length input_file - 6) ^ ".out"
and params_file = Filename.concat (!temp_path) "param.sdpa" in
file_of_string input_file (sdpa_of_problem "" obj mats);
file_of_string params_file sdpa_params;
Sys.command("cd "^(!temp_path)^"; sdpa "^input_file ^ " " ^ output_file ^
(if dbg then "" else "> /dev/null"));
let op = string_of_file output_file in
if not(sdpa_run_succeeded op) then failwith "sdpa: call failed" else
let res = parse_sdpaoutput op in
((if dbg then ()
else (Sys.remove input_file; Sys.remove output_file));
res);;
let sdpa obj mats = run_sdpa (!debugging) obj mats;;
let run_csdp dbg obj mats =
let input_file = Filename.temp_file "sos" ".dat-s" in
let output_file =
String.sub input_file 0 (String.length input_file - 6) ^ ".out"
and params_file = Filename.concat (!temp_path) "param.csdp" in
file_of_string input_file (sdpa_of_problem "" obj mats);
file_of_string params_file csdp_params;
let rv = Sys.command("cd "^(!temp_path)^"; csdp "^input_file ^
" " ^ output_file ^
(if dbg then "" else "> /dev/null")) in
let op = string_of_file output_file in
let res = parse_csdpoutput op in
((if dbg then ()
else (Sys.remove input_file; Sys.remove output_file));
rv,res);;
let csdp obj mats =
let rv,res = run_csdp (!debugging) obj mats in
(if rv = 1 || rv = 2 then failwith "csdp: Problem is infeasible"
else if rv = 3 then
(Format.print_string "csdp warning: Reduced accuracy";
Format.print_newline())
else if rv <> 0 then failwith("csdp: error "^string_of_int rv)
else ());
res;;
(* ------------------------------------------------------------------------- *)
(* Sum-of-squares function with some lowbrow symmetry reductions. *)
(* ------------------------------------------------------------------------- *)
let sumofsquares_general_symmetry tool pol =
let vars = poly_variables pol
and lpps = newton_polytope pol in
let n = length lpps in
let sym_eqs =
let invariants = filter
(fun vars' ->
is_undefined(poly_sub pol (changevariables (zip vars vars') pol)))
(allpermutations vars) in
let lpps2 = allpairs monomial_mul lpps lpps in
let lpp2_classes =
setify(map (fun m ->
setify(map (fun vars' -> changevariables_monomial (zip vars vars') m)
invariants)) lpps2) in
let lpns = zip lpps (1--length lpps) in
let lppcs =
filter (fun (m,(n1,n2)) -> n1 <= n2)
(allpairs
(fun (m1,n1) (m2,n2) -> (m1,m2),(n1,n2)) lpns lpns) in
let clppcs = end_itlist (@)
(map (fun ((m1,m2),(n1,n2)) ->
map (fun vars' ->
(changevariables_monomial (zip vars vars') m1,
changevariables_monomial (zip vars vars') m2),(n1,n2))
invariants)
lppcs) in
let clppcs_dom = setify(map fst clppcs) in
let clppcs_cls = map (fun d -> filter (fun (e,_) -> e = d) clppcs)
clppcs_dom in
let eqvcls = map (setify o map snd) clppcs_cls in
let mk_eq cls acc =
match cls with
[] -> raise Sanity
| [h] -> acc
| h::t -> map (fun k -> (k |-> Int(-1)) (h |=> Int 1)) t @ acc in
itlist mk_eq eqvcls [] in
let eqs = foldl (fun a x y -> y::a) []
(itern 1 lpps (fun m1 n1 ->
itern 1 lpps (fun m2 n2 f ->
let m = monomial_mul m1 m2 in
if n1 > n2 then f else
let c = if n1 = n2 then Int 1 else Int 2 in
(m |-> ((n1,n2) |-> c) (tryapplyd f m undefined)) f))
(foldl (fun a m c -> (m |-> ((0,0)|=>c)) a)
undefined pol)) @
sym_eqs in
let pvs,assig = eliminate_all_equations (0,0) eqs in
let allassig = itlist (fun v -> (v |-> (v |=> Int 1))) pvs assig in
let qvars = (0,0)::pvs in
let diagents =
end_itlist equation_add (map (fun i -> apply allassig (i,i)) (1--n)) in
let mk_matrix v =
((n,n),
foldl (fun m (i,j) ass -> let c = tryapplyd ass v (Int 0) in
if c =/ Int 0 then m else
((j,i) |-> c) (((i,j) |-> c) m))
undefined allassig :matrix) in
let mats = map mk_matrix qvars
and obj = length pvs,
itern 1 pvs (fun v i -> (i |--> tryapplyd diagents v (Int 0)))
undefined in
let raw_vec = if pvs = [] then vec_0 0 else tool obj mats in
let find_rounding d =
(if !debugging then
(Format.print_string("Trying rounding with limit "^string_of_num d);
Format.print_newline())
else ());
let vec = nice_vector d raw_vec in
let mat = iter (1,vec_dim vec)
(fun i a -> matrix_add (matrix_cmul (element vec i) (el i mats)) a)
(matrix_neg (el 0 mats)) in
deration(diag mat) in
let rat,dia =
if pvs = [] then
let mat = matrix_neg (el 0 mats) in
deration(diag mat)
else
tryfind find_rounding (map Num.num_of_int (1--31) @
map pow2 (5--66)) in
let poly_of_lin(d,v) =
d,foldl(fun a i c -> (el (i - 1) lpps |-> c) a) undefined (snd v) in
let lins = map poly_of_lin dia in
let sqs = map (fun (d,l) -> poly_mul (poly_const d) (poly_pow l 2)) lins in
let sos = poly_cmul rat (end_itlist poly_add sqs) in
if is_undefined(poly_sub sos pol) then rat,lins else raise Sanity;;
let sumofsquares = sumofsquares_general_symmetry csdp;;
(* ------------------------------------------------------------------------- *)
(* Pure HOL SOS conversion. *)
(* ------------------------------------------------------------------------- *)
let SOS_CONV =
let mk_square =
let pow_tm = `(pow)` and two_tm = `2` in
fun tm -> mk_comb(mk_comb(pow_tm,tm),two_tm)
and mk_prod = mk_binop `(*)`
and mk_sum = mk_binop `(+)` in
fun tm ->
let k,sos = sumofsquares(poly_of_term tm) in
let mk_sqtm(c,p) =
mk_prod (term_of_rat(k */ c)) (mk_square(term_of_poly p)) in
let tm' = end_itlist mk_sum (map mk_sqtm sos) in
let th = REAL_POLY_CONV tm and th' = REAL_POLY_CONV tm' in
TRANS th (SYM th');;
(* ------------------------------------------------------------------------- *)
(* Attempt to prove &0 <= x by direct SOS decomposition. *)
(* ------------------------------------------------------------------------- *)
let PURE_SOS_TAC =
let tac =
MATCH_ACCEPT_TAC(REWRITE_RULE[GSYM REAL_POW_2] REAL_LE_SQUARE) ORELSE
MATCH_ACCEPT_TAC REAL_LE_SQUARE ORELSE
(MATCH_MP_TAC REAL_LE_ADD THEN CONJ_TAC) ORELSE
(MATCH_MP_TAC REAL_LE_MUL THEN CONJ_TAC) ORELSE
CONV_TAC(RAND_CONV REAL_RAT_REDUCE_CONV THENC REAL_RAT_LE_CONV) in
REPEAT GEN_TAC THEN REWRITE_TAC[real_ge] THEN
GEN_REWRITE_TAC I [GSYM REAL_SUB_LE] THEN
CONV_TAC(RAND_CONV SOS_CONV) THEN
REPEAT tac THEN NO_TAC;;
let PURE_SOS tm = prove(tm,PURE_SOS_TAC);;
(* ------------------------------------------------------------------------- *)
(* Examples. *)
(* ------------------------------------------------------------------------- *)
(*****
time REAL_SOS
`a1 >= &0 /\ a2 >= &0 /\
(a1 * a1 + a2 * a2 = b1 * b1 + b2 * b2 + &2) /\
(a1 * b1 + a2 * b2 = &0)
==> a1 * a2 - b1 * b2 >= &0`;;
time REAL_SOS `&3 * x + &7 * a < &4 /\ &3 < &2 * x ==> a < &0`;;
time REAL_SOS
`b pow 2 < &4 * a * c ==> ~(a * x pow 2 + b * x + c = &0)`;;
time REAL_SOS
`(a * x pow 2 + b * x + c = &0) ==> b pow 2 >= &4 * a * c`;;
time REAL_SOS
`&0 <= x /\ x <= &1 /\ &0 <= y /\ y <= &1
==> x pow 2 + y pow 2 < &1 \/
(x - &1) pow 2 + y pow 2 < &1 \/
x pow 2 + (y - &1) pow 2 < &1 \/
(x - &1) pow 2 + (y - &1) pow 2 < &1`;;
time REAL_SOS
`&0 <= b /\ &0 <= c /\ &0 <= x /\ &0 <= y /\
(x pow 2 = c) /\ (y pow 2 = a pow 2 * c + b)
==> a * c <= y * x`;;
time REAL_SOS
`&0 <= x /\ &0 <= y /\ &0 <= z /\ x + y + z <= &3
==> x * y + x * z + y * z >= &3 * x * y * z`;;
time REAL_SOS
`(x pow 2 + y pow 2 + z pow 2 = &1) ==> (x + y + z) pow 2 <= &3`;;
time REAL_SOS
`(w pow 2 + x pow 2 + y pow 2 + z pow 2 = &1)
==> (w + x + y + z) pow 2 <= &4`;;
time REAL_SOS
`x >= &1 /\ y >= &1 ==> x * y >= x + y - &1`;;
time REAL_SOS
`x > &1 /\ y > &1 ==> x * y > x + y - &1`;;
time REAL_SOS
`abs(x) <= &1
==> abs(&64 * x pow 7 - &112 * x pow 5 + &56 * x pow 3 - &7 * x) <= &1`;;
time REAL_SOS
`abs(x - z) <= e /\ abs(y - z) <= e /\ &0 <= u /\ &0 <= v /\ (u + v = &1)
==> abs((u * x + v * y) - z) <= e`;;
(* ------------------------------------------------------------------------- *)
(* One component of denominator in dodecahedral example. *)
(* ------------------------------------------------------------------------- *)
time REAL_SOS
`&2 <= x /\ x <= &125841 / &50000 /\
&2 <= y /\ y <= &125841 / &50000 /\
&2 <= z /\ z <= &125841 / &50000
==> &2 * (x * z + x * y + y * z) - (x * x + y * y + z * z) >= &0`;;
(* ------------------------------------------------------------------------- *)
(* Over a larger but simpler interval. *)
(* ------------------------------------------------------------------------- *)
time REAL_SOS
`&2 <= x /\ x <= &4 /\ &2 <= y /\ y <= &4 /\ &2 <= z /\ z <= &4
==> &0 <= &2 * (x * z + x * y + y * z) - (x * x + y * y + z * z)`;;
(* ------------------------------------------------------------------------- *)
(* We can do 12. I think 12 is a sharp bound; see PP's certificate. *)
(* ------------------------------------------------------------------------- *)
time REAL_SOS
`&2 <= x /\ x <= &4 /\ &2 <= y /\ y <= &4 /\ &2 <= z /\ z <= &4
==> &12 <= &2 * (x * z + x * y + y * z) - (x * x + y * y + z * z)`;;
(* ------------------------------------------------------------------------- *)
(* Gloptipoly example. *)
(* ------------------------------------------------------------------------- *)
(*** This works but normalization takes minutes
time REAL_SOS
`(x - y - &2 * x pow 4 = &0) /\ &0 <= x /\ x <= &2 /\ &0 <= y /\ y <= &3
==> y pow 2 - &7 * y - &12 * x + &17 >= &0`;;
***)
(* ------------------------------------------------------------------------- *)
(* Inequality from sci.math (see "Leon-Sotelo, por favor"). *)
(* ------------------------------------------------------------------------- *)
time REAL_SOS
`&0 <= x /\ &0 <= y /\ (x * y = &1)
==> x + y <= x pow 2 + y pow 2`;;
time REAL_SOS
`&0 <= x /\ &0 <= y /\ (x * y = &1)
==> x * y * (x + y) <= x pow 2 + y pow 2`;;
time REAL_SOS
`&0 <= x /\ &0 <= y ==> x * y * (x + y) pow 2 <= (x pow 2 + y pow 2) pow 2`;;
(* ------------------------------------------------------------------------- *)
(* Some examples over integers and natural numbers. *)
(* ------------------------------------------------------------------------- *)
time SOS_RULE `!m n. 2 * m + n = (n + m) + m`;;
time SOS_RULE `!n. ~(n = 0) ==> (0 MOD n = 0)`;;
time SOS_RULE `!m n. m < n ==> (m DIV n = 0)`;;
time SOS_RULE `!n:num. n <= n * n`;;
time SOS_RULE `!m n. n * (m DIV n) <= m`;;
time SOS_RULE `!n. ~(n = 0) ==> (0 DIV n = 0)`;;
time SOS_RULE `!m n p. ~(p = 0) /\ m <= n ==> m DIV p <= n DIV p`;;
time SOS_RULE `!a b n. ~(a = 0) ==> (n <= b DIV a <=> a * n <= b)`;;
(* ------------------------------------------------------------------------- *)
(* This is particularly gratifying --- cf hideous manual proof in arith.ml *)
(* ------------------------------------------------------------------------- *)
(*** This doesn't now seem to work as well as it did; what changed?
time SOS_RULE
`!a b c d. ~(b = 0) /\ b * c < (a + 1) * d ==> c DIV d <= a DIV b`;;
***)
(* ------------------------------------------------------------------------- *)
(* Key lemma for injectivity of Cantor-type pairing functions. *)
(* ------------------------------------------------------------------------- *)
time SOS_RULE
`!x1 y1 x2 y2. ((x1 + y1) EXP 2 + x1 + 1 = (x2 + y2) EXP 2 + x2 + 1)
==> (x1 + y1 = x2 + y2)`;;
time SOS_RULE
`!x1 y1 x2 y2. ((x1 + y1) EXP 2 + x1 + 1 = (x2 + y2) EXP 2 + x2 + 1) /\
(x1 + y1 = x2 + y2)
==> (x1 = x2) /\ (y1 = y2)`;;
time SOS_RULE
`!x1 y1 x2 y2.
(((x1 + y1) EXP 2 + 3 * x1 + y1) DIV 2 =
((x2 + y2) EXP 2 + 3 * x2 + y2) DIV 2)
==> (x1 + y1 = x2 + y2)`;;
time SOS_RULE
`!x1 y1 x2 y2.
(((x1 + y1) EXP 2 + 3 * x1 + y1) DIV 2 =
((x2 + y2) EXP 2 + 3 * x2 + y2) DIV 2) /\
(x1 + y1 = x2 + y2)
==> (x1 = x2) /\ (y1 = y2)`;;
(* ------------------------------------------------------------------------- *)
(* Reciprocal multiplication (actually just ARITH_RULE does these). *)
(* ------------------------------------------------------------------------- *)
time SOS_RULE `x <= 127 ==> ((86 * x) DIV 256 = x DIV 3)`;;
time SOS_RULE `x < 2 EXP 16 ==> ((104858 * x) DIV (2 EXP 20) = x DIV 10)`;;
(* ------------------------------------------------------------------------- *)
(* This is more impressive since it's really nonlinear. See REMAINDER_DECODE *)
(* ------------------------------------------------------------------------- *)
time SOS_RULE `0 < m /\ m < n ==> ((m * ((n * x) DIV m + 1)) DIV n = x)`;;
(* ------------------------------------------------------------------------- *)
(* Some conversion examples. *)
(* ------------------------------------------------------------------------- *)
time SOS_CONV
`&2 * x pow 4 + &2 * x pow 3 * y - x pow 2 * y pow 2 + &5 * y pow 4`;;
time SOS_CONV
`x pow 4 - (&2 * y * z + &1) * x pow 2 +
(y pow 2 * z pow 2 + &2 * y * z + &2)`;;
time SOS_CONV `&4 * x pow 4 +
&4 * x pow 3 * y - &7 * x pow 2 * y pow 2 - &2 * x * y pow 3 +
&10 * y pow 4`;;
time SOS_CONV `&4 * x pow 4 * y pow 6 + x pow 2 - x * y pow 2 + y pow 2`;;
time SOS_CONV
`&4096 * (x pow 4 + x pow 2 + z pow 6 - &3 * x pow 2 * z pow 2) + &729`;;
time SOS_CONV
`&120 * x pow 2 - &63 * x pow 4 + &10 * x pow 6 +
&30 * x * y - &120 * y pow 2 + &120 * y pow 4 + &31`;;
time SOS_CONV
`&9 * x pow 2 * y pow 4 + &9 * x pow 2 * z pow 4 + &36 * x pow 2 * y pow 3 +
&36 * x pow 2 * y pow 2 - &48 * x * y * z pow 2 + &4 * y pow 4 +
&4 * z pow 4 - &16 * y pow 3 + &16 * y pow 2`;;
time SOS_CONV
`(x pow 2 + y pow 2 + z pow 2) *
(x pow 4 * y pow 2 + x pow 2 * y pow 4 +
z pow 6 - &3 * x pow 2 * y pow 2 * z pow 2)`;;
time SOS_CONV
`x pow 4 + y pow 4 + z pow 4 - &4 * x * y * z + x + y + z + &3`;;
(*** I think this will work, but normalization is slow
time SOS_CONV
`&100 * (x pow 4 + y pow 4 + z pow 4 - &4 * x * y * z + x + y + z) + &212`;;
***)
time SOS_CONV
`&100 * ((&2 * x - &2) pow 2 + (x pow 3 - &8 * x - &2) pow 2) - &588`;;
time SOS_CONV
`x pow 2 * (&120 - &63 * x pow 2 + &10 * x pow 4) + &30 * x * y +
&30 * y pow 2 * (&4 * y pow 2 - &4) + &31`;;
(* ------------------------------------------------------------------------- *)
(* Example of basic rule. *)
(* ------------------------------------------------------------------------- *)
time PURE_SOS
`!x. x pow 4 + y pow 4 + z pow 4 - &4 * x * y * z + x + y + z + &3
>= &1 / &7`;;
time PURE_SOS
`&0 <= &98 * x pow 12 +
-- &980 * x pow 10 +
&3038 * x pow 8 +
-- &2968 * x pow 6 +
&1022 * x pow 4 +
-- &84 * x pow 2 +
&2`;;
time PURE_SOS
`!x. &0 <= &2 * x pow 14 +
-- &84 * x pow 12 +
&1022 * x pow 10 +
-- &2968 * x pow 8 +
&3038 * x pow 6 +
-- &980 * x pow 4 +
&98 * x pow 2`;;
(* ------------------------------------------------------------------------- *)
(* From Zeng et al, JSC vol 37 (2004), p83-99. *)
(* All of them work nicely with pure SOS_CONV, except (maybe) the one noted. *)
(* ------------------------------------------------------------------------- *)
PURE_SOS
`x pow 6 + y pow 6 + z pow 6 - &3 * x pow 2 * y pow 2 * z pow 2 >= &0`;;
PURE_SOS `x pow 4 + y pow 4 + z pow 4 + &1 - &4*x*y*z >= &0`;;
PURE_SOS `x pow 4 + &2*x pow 2*z + x pow 2 - &2*x*y*z + &2*y pow 2*z pow 2 +
&2*y*z pow 2 + &2*z pow 2 - &2*x + &2* y*z + &1 >= &0`;;
(**** This is harder. Interestingly, this fails the pure SOS test, it seems.
Yet only on rounding(!?) Poor Newton polytope optimization or something?
But REAL_SOS does finally converge on the second run at level 12!
REAL_SOS
`x pow 4*y pow 4 - &2*x pow 5*y pow 3*z pow 2 + x pow 6*y pow 2*z pow 4 + &2*x
pow 2*y pow 3*z - &4* x pow 3*y pow 2*z pow 3 + &2*x pow 4*y*z pow 5 + z pow
2*y pow 2 - &2*z pow 4*y*x + z pow 6*x pow 2 >= &0`;;
****)
PURE_SOS
`x pow 4 + &4*x pow 2*y pow 2 + &2*x*y*z pow 2 + &2*x*y*w pow 2 + y pow 4 + z
pow 4 + w pow 4 + &2*z pow 2*w pow 2 + &2*x pow 2*w + &2*y pow 2*w + &2*x*y +
&3*w pow 2 + &2*z pow 2 + &1 >= &0`;;
PURE_SOS
`w pow 6 + &2*z pow 2*w pow 3 + x pow 4 + y pow 4 + z pow 4 + &2*x pow 2*w +
&2*x pow 2*z + &3*x pow 2 + w pow 2 + &2*z*w + z pow 2 + &2*z + &2*w + &1 >=
&0`;;
*****)