Datasets:
Tasks:
Text Generation
Modalities:
Text
Sub-tasks:
language-modeling
Languages:
English
Size:
100K - 1M
License:
(* ========================================================================= *) | |
(* Nonlinear universal reals procedure using SOS decomposition. *) | |
(* ========================================================================= *) | |
prioritize_real();; | |
let debugging = ref false;; | |
exception Sanity;; | |
exception Unsolvable;; | |
(* ------------------------------------------------------------------------- *) | |
(* Turn a rational into a decimal string with d sig digits. *) | |
(* ------------------------------------------------------------------------- *) | |
let decimalize = | |
let rec normalize y = | |
if abs_num y </ Int 1 // Int 10 then normalize (Int 10 */ y) - 1 | |
else if abs_num y >=/ Int 1 then normalize (y // Int 10) + 1 | |
else 0 in | |
fun d x -> | |
if x =/ Int 0 then "0.0" else | |
let y = abs_num x in | |
let e = normalize y in | |
let z = pow10(-e) */ y +/ Int 1 in | |
let k = round_num(pow10 d */ z) in | |
(if x </ Int 0 then "-0." else "0.") ^ | |
implode(tl(explode(string_of_num k))) ^ | |
(if e = 0 then "" else "e"^string_of_int e);; | |
(* ------------------------------------------------------------------------- *) | |
(* Iterations over numbers, and lists indexed by numbers. *) | |
(* ------------------------------------------------------------------------- *) | |
let rec itern k l f a = | |
match l with | |
[] -> a | |
| h::t -> itern (k + 1) t f (f h k a);; | |
let rec iter (m,n) f a = | |
if n < m then a | |
else iter (m+1,n) f (f m a);; | |
(* ------------------------------------------------------------------------- *) | |
(* The main types. *) | |
(* ------------------------------------------------------------------------- *) | |
type vector = int*(int,num)func;; | |
type matrix = (int*int)*(int*int,num)func;; | |
type monomial = (term,int)func;; | |
type poly = (monomial,num)func;; | |
(* ------------------------------------------------------------------------- *) | |
(* Assignment avoiding zeros. *) | |
(* ------------------------------------------------------------------------- *) | |
let (|-->) x y a = if y =/ Int 0 then a else (x |-> y) a;; | |
(* ------------------------------------------------------------------------- *) | |
(* This can be generic. *) | |
(* ------------------------------------------------------------------------- *) | |
let element (d,v) i = tryapplyd v i (Int 0);; | |
let mapa f (d,v) = | |
d,foldl (fun a i c -> (i |--> f(c)) a) undefined v;; | |
let is_zero (d,v) = is_undefined v;; | |
(* ------------------------------------------------------------------------- *) | |
(* Vectors. Conventionally indexed 1..n. *) | |
(* ------------------------------------------------------------------------- *) | |
let vec_0 n = (n,undefined:vector);; | |
let vec_dim (v:vector) = fst v;; | |
let vec_const c n = | |
if c =/ Int 0 then vec_0 n | |
else (n,itlist (fun k -> k |-> c) (1--n) undefined :vector);; | |
let vec_1 = vec_const (Int 1);; | |
let vec_cmul c (v:vector) = | |
let n = vec_dim v in | |
if c =/ Int 0 then vec_0 n | |
else n,mapf (fun x -> c */ x) (snd v) | |
let vec_neg (v:vector) = (fst v,mapf minus_num (snd v) :vector);; | |
let vec_add (v1:vector) (v2:vector) = | |
let m = vec_dim v1 and n = vec_dim v2 in | |
if m <> n then failwith "vec_add: incompatible dimensions" else | |
(n,combine (+/) (fun x -> x =/ Int 0) (snd v1) (snd v2) :vector);; | |
let vec_sub v1 v2 = vec_add v1 (vec_neg v2);; | |
let vec_dot (v1:vector) (v2:vector) = | |
let m = vec_dim v1 and n = vec_dim v2 in | |
if m <> n then failwith "vec_add: incompatible dimensions" else | |
foldl (fun a i x -> x +/ a) (Int 0) | |
(combine ( */ ) (fun x -> x =/ Int 0) (snd v1) (snd v2));; | |
let vec_of_list l = | |
let n = length l in | |
(n,itlist2 (|->) (1--n) l undefined :vector);; | |
(* ------------------------------------------------------------------------- *) | |
(* Matrices; again rows and columns indexed from 1. *) | |
(* ------------------------------------------------------------------------- *) | |
let matrix_0 (m,n) = ((m,n),undefined:matrix);; | |
let dimensions (m:matrix) = fst m;; | |
let matrix_const c (m,n as mn) = | |
if m <> n then failwith "matrix_const: needs to be square" | |
else if c =/ Int 0 then matrix_0 mn | |
else (mn,itlist (fun k -> (k,k) |-> c) (1--n) undefined :matrix);; | |
let matrix_1 = matrix_const (Int 1);; | |
let matrix_cmul c (m:matrix) = | |
let (i,j) = dimensions m in | |
if c =/ Int 0 then matrix_0 (i,j) | |
else (i,j),mapf (fun x -> c */ x) (snd m);; | |
let matrix_neg (m:matrix) = (dimensions m,mapf minus_num (snd m) :matrix);; | |
let matrix_add (m1:matrix) (m2:matrix) = | |
let d1 = dimensions m1 and d2 = dimensions m2 in | |
if d1 <> d2 then failwith "matrix_add: incompatible dimensions" | |
else (d1,combine (+/) (fun x -> x =/ Int 0) (snd m1) (snd m2) :matrix);; | |
let matrix_sub m1 m2 = matrix_add m1 (matrix_neg m2);; | |
let row k (m:matrix) = | |
let i,j = dimensions m in | |
(j, | |
foldl (fun a (i,j) c -> if i = k then (j |-> c) a else a) undefined (snd m) | |
: vector);; | |
let column k (m:matrix) = | |
let i,j = dimensions m in | |
(i, | |
foldl (fun a (i,j) c -> if j = k then (i |-> c) a else a) undefined (snd m) | |
: vector);; | |
let transp (m:matrix) = | |
let i,j = dimensions m in | |
((j,i),foldl (fun a (i,j) c -> ((j,i) |-> c) a) undefined (snd m) :matrix);; | |
let diagonal (v:vector) = | |
let n = vec_dim v in | |
((n,n),foldl (fun a i c -> ((i,i) |-> c) a) undefined (snd v) : matrix);; | |
let matrix_of_list l = | |
let m = length l in | |
if m = 0 then matrix_0 (0,0) else | |
let n = length (hd l) in | |
(m,n),itern 1 l (fun v i -> itern 1 v (fun c j -> (i,j) |-> c)) undefined;; | |
(* ------------------------------------------------------------------------- *) | |
(* Monomials. *) | |
(* ------------------------------------------------------------------------- *) | |
let monomial_eval assig (m:monomial) = | |
foldl (fun a x k -> a */ power_num (apply assig x) (Int k)) | |
(Int 1) m;; | |
let monomial_1 = (undefined:monomial);; | |
let monomial_var x = (x |=> 1 :monomial);; | |
let (monomial_mul:monomial->monomial->monomial) = | |
combine (+) (fun x -> false);; | |
let monomial_pow (m:monomial) k = | |
if k = 0 then monomial_1 | |
else mapf (fun x -> k * x) m;; | |
let monomial_divides (m1:monomial) (m2:monomial) = | |
foldl (fun a x k -> tryapplyd m2 x 0 >= k && a) true m1;; | |
let monomial_div (m1:monomial) (m2:monomial) = | |
let m = combine (+) (fun x -> x = 0) m1 (mapf (fun x -> -x) m2) in | |
if foldl (fun a x k -> k >= 0 && a) true m then m | |
else failwith "monomial_div: non-divisible";; | |
let monomial_degree x (m:monomial) = tryapplyd m x 0;; | |
let monomial_lcm (m1:monomial) (m2:monomial) = | |
(itlist (fun x -> x |-> max (monomial_degree x m1) (monomial_degree x m2)) | |
(union (dom m1) (dom m2)) undefined :monomial);; | |
let monomial_multidegree (m:monomial) = foldl (fun a x k -> k + a) 0 m;; | |
let monomial_variables m = dom m;; | |
(* ------------------------------------------------------------------------- *) | |
(* Polynomials. *) | |
(* ------------------------------------------------------------------------- *) | |
let eval assig (p:poly) = | |
foldl (fun a m c -> a +/ c */ monomial_eval assig m) (Int 0) p;; | |
let poly_0 = (undefined:poly);; | |
let poly_isconst (p:poly) = foldl (fun a m c -> m = monomial_1 && a) true p;; | |
let poly_var x = ((monomial_var x) |=> Int 1 :poly);; | |
let poly_const c = | |
if c =/ Int 0 then poly_0 else (monomial_1 |=> c);; | |
let poly_cmul c (p:poly) = | |
if c =/ Int 0 then poly_0 | |
else mapf (fun x -> c */ x) p;; | |
let poly_neg (p:poly) = (mapf minus_num p :poly);; | |
let poly_add (p1:poly) (p2:poly) = | |
(combine (+/) (fun x -> x =/ Int 0) p1 p2 :poly);; | |
let poly_sub p1 p2 = poly_add p1 (poly_neg p2);; | |
let poly_cmmul (c,m) (p:poly) = | |
if c =/ Int 0 then poly_0 | |
else if m = monomial_1 then mapf (fun d -> c */ d) p | |
else foldl (fun a m' d -> (monomial_mul m m' |-> c */ d) a) poly_0 p;; | |
let poly_mul (p1:poly) (p2:poly) = | |
foldl (fun a m c -> poly_add (poly_cmmul (c,m) p2) a) poly_0 p1;; | |
let poly_div (p1:poly) (p2:poly) = | |
if not(poly_isconst p2) then failwith "poly_div: non-constant" else | |
let c = eval undefined p2 in | |
if c =/ Int 0 then failwith "poly_div: division by zero" | |
else poly_cmul (Int 1 // c) p1;; | |
let poly_square p = poly_mul p p;; | |
let rec poly_pow p k = | |
if k = 0 then poly_const (Int 1) | |
else if k = 1 then p | |
else let q = poly_square(poly_pow p (k / 2)) in | |
if k mod 2 = 1 then poly_mul p q else q;; | |
let poly_exp p1 p2 = | |
if not(poly_isconst p2) then failwith "poly_exp: not a constant" else | |
poly_pow p1 (Num.int_of_num (eval undefined p2));; | |
let degree x (p:poly) = foldl (fun a m c -> max (monomial_degree x m) a) 0 p;; | |
let multidegree (p:poly) = | |
foldl (fun a m c -> max (monomial_multidegree m) a) 0 p;; | |
let poly_variables (p:poly) = | |
foldr (fun m c -> union (monomial_variables m)) p [];; | |
(* ------------------------------------------------------------------------- *) | |
(* Order monomials for human presentation. *) | |
(* ------------------------------------------------------------------------- *) | |
let humanorder_varpow (x1,k1) (x2,k2) = x1 < x2 || x1 = x2 && k1 > k2;; | |
let humanorder_monomial = | |
let rec ord l1 l2 = match (l1,l2) with | |
_,[] -> true | |
| [],_ -> false | |
| h1::t1,h2::t2 -> humanorder_varpow h1 h2 || h1 = h2 && ord t1 t2 in | |
fun m1 m2 -> m1 = m2 || | |
ord (sort humanorder_varpow (graph m1)) | |
(sort humanorder_varpow (graph m2));; | |
(* ------------------------------------------------------------------------- *) | |
(* Conversions to strings. *) | |
(* ------------------------------------------------------------------------- *) | |
let string_of_vector min_size max_size (v:vector) = | |
let n_raw = vec_dim v in | |
if n_raw = 0 then "[]" else | |
let n = max min_size (min n_raw max_size) in | |
let xs = map (string_of_num o element v) (1--n) in | |
"[" ^ end_itlist (fun s t -> s ^ ", " ^ t) xs ^ | |
(if n_raw > max_size then ", ...]" else "]");; | |
let string_of_matrix max_size (m:matrix) = | |
let i_raw,j_raw = dimensions m in | |
let i = min max_size i_raw and j = min max_size j_raw in | |
let rstr = map (fun k -> string_of_vector j j (row k m)) (1--i) in | |
"["^end_itlist(fun s t -> s^";\n "^t) rstr ^ | |
(if j > max_size then "\n ...]" else "]");; | |
let rec string_of_term t = | |
if (is_comb t) then | |
let (a,b) = (dest_comb t) in | |
"("^(string_of_term a)^" "^(string_of_term b)^")" | |
else if (is_abs t) then | |
let (a,b) = (dest_abs t) in | |
"(\\"^(string_of_term a)^"."^(string_of_term b)^")" | |
else if (is_const t) then | |
let (a,_) = (dest_const t) in a | |
else if (is_var t) then | |
let (a,_) = (dest_var t) in a | |
else failwith "string_of_term";; | |
let string_of_varpow x k = | |
if k = 1 then string_of_term x else string_of_term x^"^"^string_of_int k;; | |
let string_of_monomial m = | |
if m = monomial_1 then "1" else | |
let vps = List.fold_right (fun (x,k) a -> string_of_varpow x k :: a) | |
(sort humanorder_varpow (graph m)) [] in | |
end_itlist (fun s t -> s^"*"^t) vps;; | |
let string_of_cmonomial (c,m) = | |
if m = monomial_1 then string_of_num c | |
else if c =/ Int 1 then string_of_monomial m | |
else string_of_num c ^ "*" ^ string_of_monomial m;; | |
let string_of_poly (p:poly) = | |
if p = poly_0 then "<<0>>" else | |
let cms = sort (fun (m1,_) (m2,_) -> humanorder_monomial m1 m2) (graph p) in | |
let s = | |
List.fold_left (fun a (m,c) -> | |
if c </ Int 0 then a ^ " - " ^ string_of_cmonomial(minus_num c,m) | |
else a ^ " + " ^ string_of_cmonomial(c,m)) | |
"" cms in | |
let s1 = String.sub s 0 3 | |
and s2 = String.sub s 3 (String.length s - 3) in | |
"<<" ^(if s1 = " + " then s2 else "-"^s2)^">>";; | |
(* ------------------------------------------------------------------------- *) | |
(* Printers. *) | |
(* ------------------------------------------------------------------------- *) | |
let print_vector v = Format.print_string(string_of_vector 0 20 v);; | |
let print_matrix m = Format.print_string(string_of_matrix 20 m);; | |
let print_monomial m = Format.print_string(string_of_monomial m);; | |
let print_poly m = Format.print_string(string_of_poly m);; | |
#install_printer print_vector;; | |
#install_printer print_matrix;; | |
#install_printer print_monomial;; | |
#install_printer print_poly;; | |
(* ------------------------------------------------------------------------- *) | |
(* Conversion from HOL term. *) | |
(* ------------------------------------------------------------------------- *) | |
let poly_of_term = | |
let neg_tm = `(--):real->real` | |
and add_tm = `(+):real->real->real` | |
and sub_tm = `(-):real->real->real` | |
and mul_tm = `(*):real->real->real` | |
and inv_tm = `(inv):real->real` | |
and div_tm = `(/):real->real->real` | |
and pow_tm = `(pow):real->num->real` | |
and zero_tm = `&0:real` | |
and real_ty = `:real` in | |
let rec poly_of_term tm = | |
if tm = zero_tm then poly_0 | |
else if is_ratconst tm then poly_const(rat_of_term tm) | |
else if not(is_comb tm) then poly_var tm else | |
let lop,r = dest_comb tm in | |
if lop = neg_tm then poly_neg(poly_of_term r) | |
else if lop = inv_tm then | |
let p = poly_of_term r in | |
if poly_isconst p then poly_const(Int 1 // eval undefined p) | |
else failwith "poly_of_term: inverse of non-constant polyomial" | |
else if not(is_comb lop) then poly_var tm else | |
let op,l = dest_comb lop in | |
if op = pow_tm && is_numeral r then | |
poly_pow (poly_of_term l) (dest_small_numeral r) | |
else if op = add_tm then poly_add (poly_of_term l) (poly_of_term r) | |
else if op = sub_tm then poly_sub (poly_of_term l) (poly_of_term r) | |
else if op = mul_tm then poly_mul (poly_of_term l) (poly_of_term r) | |
else if op = div_tm then | |
let p = poly_of_term l and q = poly_of_term r in | |
if poly_isconst q then poly_cmul (Int 1 // eval undefined q) p | |
else failwith "poly_of_term: division by non-constant polynomial" | |
else poly_var tm in | |
fun tm -> if type_of tm = real_ty then poly_of_term tm | |
else failwith "poly_of_term: term does not have real type";; | |
(* ------------------------------------------------------------------------- *) | |
(* String of vector (just a list of space-separated numbers). *) | |
(* ------------------------------------------------------------------------- *) | |
let sdpa_of_vector (v:vector) = | |
let n = vec_dim v in | |
let strs = map (decimalize 20 o element v) (1--n) in | |
end_itlist (fun x y -> x ^ " " ^ y) strs ^ "\n";; | |
(* ------------------------------------------------------------------------- *) | |
(* String for block diagonal matrix numbered k. *) | |
(* ------------------------------------------------------------------------- *) | |
let sdpa_of_blockdiagonal k m = | |
let pfx = string_of_int k ^" " in | |
let ents = | |
foldl (fun a (b,i,j) c -> if i > j then a else ((b,i,j),c)::a) [] m in | |
let entss = sort (increasing fst) ents in | |
itlist (fun ((b,i,j),c) a -> | |
pfx ^ string_of_int b ^ " " ^ string_of_int i ^ " " ^ string_of_int j ^ | |
" " ^ decimalize 20 c ^ "\n" ^ a) entss "";; | |
(* ------------------------------------------------------------------------- *) | |
(* String for a matrix numbered k, in SDPA sparse format. *) | |
(* ------------------------------------------------------------------------- *) | |
let sdpa_of_matrix k (m:matrix) = | |
let pfx = string_of_int k ^ " 1 " in | |
let ms = foldr (fun (i,j) c a -> if i > j then a else ((i,j),c)::a) | |
(snd m) [] in | |
let mss = sort (increasing fst) ms in | |
itlist (fun ((i,j),c) a -> | |
pfx ^ string_of_int i ^ " " ^ string_of_int j ^ | |
" " ^ decimalize 20 c ^ "\n" ^ a) mss "";; | |
(* ------------------------------------------------------------------------- *) | |
(* String in SDPA sparse format for standard SDP problem: *) | |
(* *) | |
(* X = v_1 * [M_1] + ... + v_m * [M_m] - [M_0] must be PSD *) | |
(* Minimize obj_1 * v_1 + ... obj_m * v_m *) | |
(* ------------------------------------------------------------------------- *) | |
let sdpa_of_problem comment obj mats = | |
let m = length mats - 1 | |
and n,_ = dimensions (hd mats) in | |
"\"" ^ comment ^ "\"\n" ^ | |
string_of_int m ^ "\n" ^ | |
"1\n" ^ | |
string_of_int n ^ "\n" ^ | |
sdpa_of_vector obj ^ | |
itlist2 (fun k m a -> sdpa_of_matrix (k - 1) m ^ a) | |
(1--length mats) mats "";; | |
(* ------------------------------------------------------------------------- *) | |
(* More parser basics. *) | |
(* ------------------------------------------------------------------------- *) | |
let word s = | |
end_itlist (fun p1 p2 -> (p1 ++ p2) >> (fun (s,t) -> s^t)) | |
(map a (explode s));; | |
let token s = | |
many (some isspace) ++ word s ++ many (some isspace) | |
>> (fun ((_,t),_) -> t);; | |
let decimal = | |
let numeral = some isnum in | |
let decimalint = atleast 1 numeral >> (Num.num_of_string o implode) in | |
let decimalfrac = atleast 1 numeral | |
>> (fun s -> Num.num_of_string(implode s) // pow10 (length s)) in | |
let decimalsig = | |
decimalint ++ possibly (a "." ++ decimalfrac >> snd) | |
>> (function (h,[]) -> h | (h,[x]) -> h +/ x) in | |
let signed prs = | |
a "-" ++ prs >> (minus_num o snd) | |
||| (a "+" ++ prs >> snd) | |
||| prs in | |
let exponent = (a "e" ||| a "E") ++ signed decimalint >> snd in | |
signed decimalsig ++ possibly exponent | |
>> (function (h,[]) -> h | (h,[x]) -> h */ power_num (Int 10) x);; | |
let mkparser p s = | |
let x,rst = p(explode s) in | |
if rst = [] then x else failwith "mkparser: unparsed input";; | |
let parse_decimal = mkparser decimal;; | |
(* ------------------------------------------------------------------------- *) | |
(* Parse back a vector. *) | |
(* ------------------------------------------------------------------------- *) | |
let parse_sdpaoutput,parse_csdpoutput = | |
let vector = | |
token "{" ++ listof decimal (token ",") "decimal" ++ token "}" | |
>> (fun ((_,v),_) -> vec_of_list v) in | |
let parse_vector = mkparser vector in | |
let rec skipupto dscr prs inp = | |
(dscr ++ prs >> snd | |
||| (some (fun c -> true) ++ skipupto dscr prs >> snd)) inp in | |
let ignore inp = (),[] in | |
let sdpaoutput = | |
skipupto (word "xVec" ++ token "=") | |
(vector ++ ignore >> fst) in | |
let csdpoutput = | |
(decimal ++ many(a " " ++ decimal >> snd) >> (fun (h,t) -> h::t)) ++ | |
(a " " ++ a "\n" ++ ignore) >> (vec_of_list o fst) in | |
mkparser sdpaoutput,mkparser csdpoutput;; | |
(* ------------------------------------------------------------------------- *) | |
(* Also parse the SDPA output to test success (CSDP yields a return code). *) | |
(* ------------------------------------------------------------------------- *) | |
let sdpa_run_succeeded = | |
let rec skipupto dscr prs inp = | |
(dscr ++ prs >> snd | |
||| (some (fun c -> true) ++ skipupto dscr prs >> snd)) inp in | |
let prs = skipupto (word "phase.value" ++ token "=") | |
(possibly (a "p") ++ possibly (a "d") ++ | |
(word "OPT" ||| word "FEAS")) in | |
fun s -> try prs (explode s); true with Noparse -> false;; | |
(* ------------------------------------------------------------------------- *) | |
(* The default parameters. Unfortunately this goes to a fixed file. *) | |
(* ------------------------------------------------------------------------- *) | |
let sdpa_default_parameters = | |
"100 unsigned int maxIteration; | |
1.0E-7 double 0.0 < epsilonStar; | |
1.0E2 double 0.0 < lambdaStar; | |
2.0 double 1.0 < omegaStar; | |
-1.0E5 double lowerBound; | |
1.0E5 double upperBound; | |
0.1 double 0.0 <= betaStar < 1.0; | |
0.2 double 0.0 <= betaBar < 1.0, betaStar <= betaBar; | |
0.9 double 0.0 < gammaStar < 1.0; | |
1.0E-7 double 0.0 < epsilonDash; | |
";; | |
(* ------------------------------------------------------------------------- *) | |
(* These were suggested by Makoto Yamashita for problems where we are *) | |
(* right at the edge of the semidefinite cone, as sometimes happens. *) | |
(* ------------------------------------------------------------------------- *) | |
let sdpa_alt_parameters = | |
"1000 unsigned int maxIteration; | |
1.0E-7 double 0.0 < epsilonStar; | |
1.0E4 double 0.0 < lambdaStar; | |
2.0 double 1.0 < omegaStar; | |
-1.0E5 double lowerBound; | |
1.0E5 double upperBound; | |
0.1 double 0.0 <= betaStar < 1.0; | |
0.2 double 0.0 <= betaBar < 1.0, betaStar <= betaBar; | |
0.9 double 0.0 < gammaStar < 1.0; | |
1.0E-7 double 0.0 < epsilonDash; | |
";; | |
let sdpa_params = sdpa_alt_parameters;; | |
(* ------------------------------------------------------------------------- *) | |
(* CSDP parameters; so far I'm sticking with the defaults. *) | |
(* ------------------------------------------------------------------------- *) | |
let csdp_default_parameters = | |
"axtol=1.0e-8 | |
atytol=1.0e-8 | |
objtol=1.0e-8 | |
pinftol=1.0e8 | |
dinftol=1.0e8 | |
maxiter=100 | |
minstepfrac=0.9 | |
maxstepfrac=0.97 | |
minstepp=1.0e-8 | |
minstepd=1.0e-8 | |
usexzgap=1 | |
tweakgap=0 | |
affine=0 | |
printlevel=1 | |
";; | |
let csdp_params = csdp_default_parameters;; | |
(* ------------------------------------------------------------------------- *) | |
(* Now call SDPA on a problem and parse back the output. *) | |
(* ------------------------------------------------------------------------- *) | |
let run_sdpa dbg obj mats = | |
let input_file = Filename.temp_file "sos" ".dat-s" in | |
let output_file = | |
String.sub input_file 0 (String.length input_file - 6) ^ ".out" | |
and params_file = Filename.concat (!temp_path) "param.sdpa" in | |
file_of_string input_file (sdpa_of_problem "" obj mats); | |
file_of_string params_file sdpa_params; | |
Sys.command("cd "^ !temp_path ^ | |
"; sdpa "^input_file ^ " " ^ output_file ^ | |
(if dbg then "" else "> /dev/null")); | |
let op = string_of_file output_file in | |
if not(sdpa_run_succeeded op) then failwith "sdpa: call failed" else | |
let res = parse_sdpaoutput op in | |
((if dbg then () | |
else (Sys.remove input_file; Sys.remove output_file)); | |
res);; | |
let sdpa obj mats = run_sdpa (!debugging) obj mats;; | |
(* ------------------------------------------------------------------------- *) | |
(* The same thing with CSDP. *) | |
(* ------------------------------------------------------------------------- *) | |
let run_csdp dbg obj mats = | |
let input_file = Filename.temp_file "sos" ".dat-s" in | |
let output_file = | |
String.sub input_file 0 (String.length input_file - 6) ^ ".out" | |
and params_file = Filename.concat (!temp_path) "param.csdp" in | |
file_of_string input_file (sdpa_of_problem "" obj mats); | |
file_of_string params_file csdp_params; | |
let rv = Sys.command("cd "^(!temp_path)^"; csdp "^input_file ^ | |
" " ^ output_file ^ | |
(if dbg then "" else "> /dev/null")) in | |
let op = string_of_file output_file in | |
let res = parse_csdpoutput op in | |
((if dbg then () | |
else (Sys.remove input_file; Sys.remove output_file)); | |
rv,res);; | |
let csdp obj mats = | |
let rv,res = run_csdp (!debugging) obj mats in | |
(if rv = 1 || rv = 2 then failwith "csdp: Problem is infeasible" | |
else if rv = 3 then | |
(Format.print_string "csdp warning: Reduced accuracy"; | |
Format.print_newline()) | |
else if rv <> 0 then failwith("csdp: error "^string_of_int rv) | |
else ()); | |
res;; | |
(* ------------------------------------------------------------------------- *) | |
(* Try some apparently sensible scaling first. Note that this is purely to *) | |
(* get a cleaner translation to floating-point, and doesn't affect any of *) | |
(* the results, in principle. In practice it seems a lot better when there *) | |
(* are extreme numbers in the original problem. *) | |
(* ------------------------------------------------------------------------- *) | |
let scale_then = | |
let common_denominator amat acc = | |
foldl (fun a m c -> lcm_num (denominator c) a) acc amat | |
and maximal_element amat acc = | |
foldl (fun maxa m c -> max_num maxa (abs_num c)) acc amat in | |
fun solver obj mats -> | |
let cd1 = itlist common_denominator mats (Int 1) | |
and cd2 = common_denominator (snd obj) (Int 1) in | |
let mats' = map (mapf (fun x -> cd1 */ x)) mats | |
and obj' = vec_cmul cd2 obj in | |
let max1 = itlist maximal_element mats' (Int 0) | |
and max2 = maximal_element (snd obj') (Int 0) in | |
let scal1 = pow2 (20-int_of_float(log(float_of_num max1) /. log 2.0)) | |
and scal2 = pow2 (20-int_of_float(log(float_of_num max2) /. log 2.0)) in | |
let mats'' = map (mapf (fun x -> x */ scal1)) mats' | |
and obj'' = vec_cmul scal2 obj' in | |
solver obj'' mats'';; | |
(* ------------------------------------------------------------------------- *) | |
(* Round a vector to "nice" rationals. *) | |
(* ------------------------------------------------------------------------- *) | |
let nice_rational n x = round_num (n */ x) // n;; | |
let nice_vector n = mapa (nice_rational n);; | |
(* ------------------------------------------------------------------------- *) | |
(* Reduce linear program to SDP (diagonal matrices) and test with CSDP. This *) | |
(* one tests A [-1;x1;..;xn] >= 0 (i.e. left column is negated constants). *) | |
(* ------------------------------------------------------------------------- *) | |
let linear_program_basic a = | |
let m,n = dimensions a in | |
let mats = map (fun j -> diagonal (column j a)) (1--n) | |
and obj = vec_const (Int 1) m in | |
let rv,res = run_csdp false obj mats in | |
if rv = 1 || rv = 2 then false | |
else if rv = 0 then true | |
else failwith "linear_program: An error occurred in the SDP solver";; | |
(* ------------------------------------------------------------------------- *) | |
(* Alternative interface testing A x >= b for matrix A, vector b. *) | |
(* ------------------------------------------------------------------------- *) | |
let linear_program a b = | |
let m,n = dimensions a in | |
if vec_dim b <> m then failwith "linear_program: incompatible dimensions" else | |
let mats = diagonal b :: map (fun j -> diagonal (column j a)) (1--n) | |
and obj = vec_const (Int 1) m in | |
let rv,res = run_csdp false obj mats in | |
if rv = 1 || rv = 2 then false | |
else if rv = 0 then true | |
else failwith "linear_program: An error occurred in the SDP solver";; | |
(* ------------------------------------------------------------------------- *) | |
(* Test whether a point is in the convex hull of others. Rather than use *) | |
(* computational geometry, express as linear inequalities and call CSDP. *) | |
(* This is a bit lazy of me, but it's easy and not such a bottleneck so far. *) | |
(* ------------------------------------------------------------------------- *) | |
let in_convex_hull pts pt = | |
let pts1 = (1::pt) :: map (fun x -> 1::x) pts in | |
let pts2 = map (fun p -> map (fun x -> -x) p @ p) pts1 in | |
let n = length pts + 1 | |
and v = 2 * (length pt + 1) in | |
let m = v + n - 1 in | |
let mat = | |
(m,n), | |
itern 1 pts2 (fun pts j -> itern 1 pts (fun x i -> (i,j) |-> Int x)) | |
(iter (1,n) (fun i -> (v + i,i+1) |-> Int 1) undefined) in | |
linear_program_basic mat;; | |
(* ------------------------------------------------------------------------- *) | |
(* Filter down a set of points to a minimal set with the same convex hull. *) | |
(* ------------------------------------------------------------------------- *) | |
let minimal_convex_hull = | |
let augment1 (m::ms) = if in_convex_hull ms m then ms else ms@[m] in | |
let augment m ms = funpow 3 augment1 (m::ms) in | |
fun mons -> | |
let mons' = itlist augment (tl mons) [hd mons] in | |
funpow (length mons') augment1 mons';; | |
(* ------------------------------------------------------------------------- *) | |
(* Stuff for "equations" (generic A->num functions). *) | |
(* ------------------------------------------------------------------------- *) | |
let equation_cmul c eq = | |
if c =/ Int 0 then undefined else mapf (fun d -> c */ d) eq;; | |
let equation_add eq1 eq2 = combine (+/) (fun x -> x =/ Int 0) eq1 eq2;; | |
let equation_eval assig eq = | |
let value v = apply assig v in | |
foldl (fun a v c -> a +/ value(v) */ c) (Int 0) eq;; | |
(* ------------------------------------------------------------------------- *) | |
(* Eliminate among linear equations: return unconstrained variables and *) | |
(* assignments for the others in terms of them. We give one pseudo-variable *) | |
(* "one" that's used for a constant term. *) | |
(* ------------------------------------------------------------------------- *) | |
let eliminate_equations = | |
let rec extract_first p l = | |
match l with | |
[] -> failwith "extract_first" | |
| h::t -> if p(h) then h,t else | |
let k,s = extract_first p t in | |
k,h::s in | |
let rec eliminate vars dun eqs = | |
match vars with | |
[] -> if forall is_undefined eqs then dun | |
else raise Unsolvable | |
| v::vs -> | |
try let eq,oeqs = extract_first (fun e -> defined e v) eqs in | |
let a = apply eq v in | |
let eq' = equation_cmul (Int(-1) // a) (undefine v eq) in | |
let elim e = | |
let b = tryapplyd e v (Int 0) in | |
if b =/ Int 0 then e else | |
equation_add e (equation_cmul (minus_num b // a) eq) in | |
eliminate vs ((v |-> eq') (mapf elim dun)) (map elim oeqs) | |
with Failure _ -> eliminate vs dun eqs in | |
fun one vars eqs -> | |
let assig = eliminate vars undefined eqs in | |
let vs = foldl (fun a x f -> subtract (dom f) [one] @ a) [] assig in | |
setify vs,assig;; | |
(* ------------------------------------------------------------------------- *) | |
(* Eliminate all variables, in an essentially arbitrary order. *) | |
(* ------------------------------------------------------------------------- *) | |
let eliminate_all_equations one = | |
let choose_variable eq = | |
let (v,_) = choose eq in | |
if v = one then | |
let eq' = undefine v eq in | |
if is_undefined eq' then failwith "choose_variable" else | |
let (w,_) = choose eq' in w | |
else v in | |
let rec eliminate dun eqs = | |
match eqs with | |
[] -> dun | |
| eq::oeqs -> | |
if is_undefined eq then eliminate dun oeqs else | |
let v = choose_variable eq in | |
let a = apply eq v in | |
let eq' = equation_cmul (Int(-1) // a) (undefine v eq) in | |
let elim e = | |
let b = tryapplyd e v (Int 0) in | |
if b =/ Int 0 then e else | |
equation_add e (equation_cmul (minus_num b // a) eq) in | |
eliminate ((v |-> eq') (mapf elim dun)) (map elim oeqs) in | |
fun eqs -> | |
let assig = eliminate undefined eqs in | |
let vs = foldl (fun a x f -> subtract (dom f) [one] @ a) [] assig in | |
setify vs,assig;; | |
(* ------------------------------------------------------------------------- *) | |
(* Solve equations by assigning arbitrary numbers. *) | |
(* ------------------------------------------------------------------------- *) | |
let solve_equations one eqs = | |
let vars,assigs = eliminate_all_equations one eqs in | |
let vfn = itlist (fun v -> (v |-> Int 0)) vars (one |=> Int(-1)) in | |
let ass = | |
combine (+/) (fun c -> false) (mapf (equation_eval vfn) assigs) vfn in | |
if forall (fun e -> equation_eval ass e =/ Int 0) eqs | |
then undefine one ass else raise Sanity;; | |
(* ------------------------------------------------------------------------- *) | |
(* Hence produce the "relevant" monomials: those whose squares lie in the *) | |
(* Newton polytope of the monomials in the input. (This is enough according *) | |
(* to Reznik: "Extremal PSD forms with few terms", Duke Math. Journal, *) | |
(* vol 45, pp. 363--374, 1978. *) | |
(* *) | |
(* These are ordered in sort of decreasing degree. In particular the *) | |
(* constant monomial is last; this gives an order in diagonalization of the *) | |
(* quadratic form that will tend to display constants. *) | |
(* ------------------------------------------------------------------------- *) | |
let newton_polytope pol = | |
let vars = poly_variables pol in | |
let mons = map (fun m -> map (fun x -> monomial_degree x m) vars) (dom pol) | |
and ds = map (fun x -> (degree x pol + 1) / 2) vars in | |
let all = itlist (fun n -> allpairs (fun h t -> h::t) (0--n)) ds [[]] | |
and mons' = minimal_convex_hull mons in | |
let all' = | |
filter (fun m -> in_convex_hull mons' (map (fun x -> 2 * x) m)) all in | |
map (fun m -> itlist2 (fun v i a -> if i = 0 then a else (v |-> i) a) | |
vars m monomial_1) (rev all');; | |
(* ------------------------------------------------------------------------- *) | |
(* Diagonalize (Cholesky/LDU) the matrix corresponding to a quadratic form. *) | |
(* ------------------------------------------------------------------------- *) | |
let diag m = | |
let nn = dimensions m in | |
let n = fst nn in | |
if snd nn <> n then failwith "diagonalize: non-square matrix" else | |
let rec diagonalize i m = | |
if is_zero m then [] else | |
let a11 = element m (i,i) in | |
if a11 </ Int 0 then failwith "diagonalize: not PSD" | |
else if a11 =/ Int 0 then | |
if is_zero(row i m) then diagonalize (i + 1) m | |
else failwith "diagonalize: not PSD" | |
else | |
let v = row i m in | |
let v' = mapa (fun a1k -> a1k // a11) v in | |
let m' = | |
(n,n), | |
iter (i+1,n) (fun j -> | |
iter (i+1,n) (fun k -> | |
((j,k) |--> (element m (j,k) -/ element v j */ element v' k)))) | |
undefined in | |
(a11,v')::diagonalize (i + 1) m' in | |
diagonalize 1 m;; | |
(* ------------------------------------------------------------------------- *) | |
(* Adjust a diagonalization to collect rationals at the start. *) | |
(* ------------------------------------------------------------------------- *) | |
let deration d = | |
if d = [] then Int 0,d else | |
let adj(c,l) = | |
let a = foldl (fun a i c -> lcm_num a (denominator c)) (Int 1) (snd l) // | |
foldl (fun a i c -> gcd_num a (numerator c)) (Int 0) (snd l) in | |
(c // (a */ a)),mapa (fun x -> a */ x) l in | |
let d' = map adj d in | |
let a = itlist (lcm_num o denominator o fst) d' (Int 1) // | |
itlist (gcd_num o numerator o fst) d' (Int 0) in | |
(Int 1 // a),map (fun (c,l) -> (a */ c,l)) d';; | |
(* ------------------------------------------------------------------------- *) | |
(* Enumeration of monomials with given multidegree bound. *) | |
(* ------------------------------------------------------------------------- *) | |
let rec enumerate_monomials d vars = | |
if d < 0 then [] | |
else if d = 0 then [undefined] | |
else if vars = [] then [monomial_1] else | |
let alts = | |
map (fun k -> let oths = enumerate_monomials (d - k) (tl vars) in | |
map (fun ks -> if k = 0 then ks else (hd vars |-> k) ks) oths) | |
(0--d) in | |
end_itlist (@) alts;; | |
(* ------------------------------------------------------------------------- *) | |
(* Enumerate products of distinct input polys with degree <= d. *) | |
(* We ignore any constant input polynomials. *) | |
(* Give the output polynomial and a record of how it was derived. *) | |
(* ------------------------------------------------------------------------- *) | |
let rec enumerate_products d pols = | |
if d = 0 then [poly_const num_1,Rational_lt num_1] else if d < 0 then [] else | |
match pols with | |
[] -> [poly_const num_1,Rational_lt num_1] | |
| (p,b)::ps -> let e = multidegree p in | |
if e = 0 then enumerate_products d ps else | |
enumerate_products d ps @ | |
map (fun (q,c) -> poly_mul p q,Product(b,c)) | |
(enumerate_products (d - e) ps);; | |
(* ------------------------------------------------------------------------- *) | |
(* Multiply equation-parametrized poly by regular poly and add accumulator. *) | |
(* ------------------------------------------------------------------------- *) | |
let epoly_pmul p q acc = | |
foldl (fun a m1 c -> | |
foldl (fun b m2 e -> | |
let m = monomial_mul m1 m2 in | |
let es = tryapplyd b m undefined in | |
(m |-> equation_add (equation_cmul c e) es) b) | |
a q) acc p;; | |
(* ------------------------------------------------------------------------- *) | |
(* Usual operations on equation-parametrized poly. *) | |
(* ------------------------------------------------------------------------- *) | |
let epoly_cmul c l = | |
if c =/ Int 0 then undefined else mapf (equation_cmul c) l;; | |
(* ------------------------------------------------------------------------- *) | |
(* Convert regular polynomial. Note that we treat (0,0,0) as -1. *) | |
(* ------------------------------------------------------------------------- *) | |
let epoly_of_poly p = | |
foldl (fun a m c -> (m |-> ((0,0,0) |=> minus_num c)) a) undefined p;; | |
(* ------------------------------------------------------------------------- *) | |
(* String for block diagonal matrix numbered k. *) | |
(* ------------------------------------------------------------------------- *) | |
let sdpa_of_blockdiagonal k m = | |
let pfx = string_of_int k ^" " in | |
let ents = | |
foldl (fun a (b,i,j) c -> if i > j then a else ((b,i,j),c)::a) [] m in | |
let entss = sort (increasing fst) ents in | |
itlist (fun ((b,i,j),c) a -> | |
pfx ^ string_of_int b ^ " " ^ string_of_int i ^ " " ^ string_of_int j ^ | |
" " ^ decimalize 20 c ^ "\n" ^ a) entss "";; | |
(* ------------------------------------------------------------------------- *) | |
(* SDPA for problem using block diagonal (i.e. multiple SDPs) *) | |
(* ------------------------------------------------------------------------- *) | |
let sdpa_of_blockproblem comment nblocks blocksizes obj mats = | |
let m = length mats - 1 in | |
"\"" ^ comment ^ "\"\n" ^ | |
string_of_int m ^ "\n" ^ | |
string_of_int nblocks ^ "\n" ^ | |
(end_itlist (fun s t -> s^" "^t) (map string_of_int blocksizes)) ^ | |
"\n" ^ | |
sdpa_of_vector obj ^ | |
itlist2 (fun k m a -> sdpa_of_blockdiagonal (k - 1) m ^ a) | |
(1--length mats) mats "";; | |
(* ------------------------------------------------------------------------- *) | |
(* Hence run CSDP on a problem in block diagonal form. *) | |
(* ------------------------------------------------------------------------- *) | |
let run_csdp dbg nblocks blocksizes obj mats = | |
let input_file = Filename.temp_file "sos" ".dat-s" in | |
let output_file = | |
String.sub input_file 0 (String.length input_file - 6) ^ ".out" | |
and params_file = Filename.concat (!temp_path) "param.csdp" in | |
file_of_string input_file | |
(sdpa_of_blockproblem "" nblocks blocksizes obj mats); | |
file_of_string params_file csdp_params; | |
let rv = Sys.command("cd "^(!temp_path)^"; csdp "^input_file ^ | |
" " ^ output_file ^ | |
(if dbg then "" else "> /dev/null")) in | |
let op = string_of_file output_file in | |
let res = parse_csdpoutput op in | |
((if dbg then () | |
else (Sys.remove input_file; Sys.remove output_file)); | |
rv,res);; | |
let csdp nblocks blocksizes obj mats = | |
let rv,res = run_csdp (!debugging) nblocks blocksizes obj mats in | |
(if rv = 1 || rv = 2 then failwith "csdp: Problem is infeasible" | |
else if rv = 3 then | |
(Format.print_string "csdp warning: Reduced accuracy"; | |
Format.print_newline()) | |
else if rv <> 0 then failwith("csdp: error "^string_of_int rv) | |
else ()); | |
res;; | |
(* ------------------------------------------------------------------------- *) | |
(* 3D versions of matrix operations to consider blocks separately. *) | |
(* ------------------------------------------------------------------------- *) | |
let bmatrix_add = combine (+/) (fun x -> x =/ Int 0);; | |
let bmatrix_cmul c bm = | |
if c =/ Int 0 then undefined | |
else mapf (fun x -> c */ x) bm;; | |
let bmatrix_neg = bmatrix_cmul (Int(-1));; | |
let bmatrix_sub m1 m2 = bmatrix_add m1 (bmatrix_neg m2);; | |
(* ------------------------------------------------------------------------- *) | |
(* Smash a block matrix into components. *) | |
(* ------------------------------------------------------------------------- *) | |
let blocks blocksizes bm = | |
map (fun (bs,b0) -> | |
let m = foldl | |
(fun a (b,i,j) c -> if b = b0 then ((i,j) |-> c) a else a) | |
undefined bm in | |
let d = foldl (fun a (i,j) c -> max a (max i j)) 0 m in | |
(((bs,bs),m):matrix)) | |
(zip blocksizes (1--length blocksizes));; | |
(* ------------------------------------------------------------------------- *) | |
(* Positiv- and Nullstellensatz. Flag "linf" forces a linear representation. *) | |
(* ------------------------------------------------------------------------- *) | |
let real_positivnullstellensatz_general linf d eqs leqs pol = | |
let vars = itlist (union o poly_variables) (pol::eqs @ map fst leqs) [] in | |
let monoid = | |
if linf then | |
(poly_const num_1,Rational_lt num_1):: | |
(filter (fun (p,c) -> multidegree p <= d) leqs) | |
else enumerate_products d leqs in | |
let nblocks = length monoid in | |
let mk_idmultiplier k p = | |
let e = d - multidegree p in | |
let mons = enumerate_monomials e vars in | |
let nons = zip mons (1--length mons) in | |
mons, | |
itlist (fun (m,n) -> (m |-> ((-k,-n,n) |=> Int 1))) nons undefined in | |
let mk_sqmultiplier k (p,c) = | |
let e = (d - multidegree p) / 2 in | |
let mons = enumerate_monomials e vars in | |
let nons = zip mons (1--length mons) in | |
mons, | |
itlist (fun (m1,n1) -> | |
itlist (fun (m2,n2) a -> | |
let m = monomial_mul m1 m2 in | |
if n1 > n2 then a else | |
let c = if n1 = n2 then Int 1 else Int 2 in | |
let e = tryapplyd a m undefined in | |
(m |-> equation_add ((k,n1,n2) |=> c) e) a) | |
nons) | |
nons undefined in | |
let sqmonlist,sqs = unzip(map2 mk_sqmultiplier (1--length monoid) monoid) | |
and idmonlist,ids = unzip(map2 mk_idmultiplier (1--length eqs) eqs) in | |
let blocksizes = map length sqmonlist in | |
let bigsum = | |
itlist2 (fun p q a -> epoly_pmul p q a) eqs ids | |
(itlist2 (fun (p,c) s a -> epoly_pmul p s a) monoid sqs | |
(epoly_of_poly(poly_neg pol))) in | |
let eqns = foldl (fun a m e -> e::a) [] bigsum in | |
let pvs,assig = eliminate_all_equations (0,0,0) eqns in | |
let qvars = (0,0,0)::pvs in | |
let allassig = itlist (fun v -> (v |-> (v |=> Int 1))) pvs assig in | |
let mk_matrix v = | |
foldl (fun m (b,i,j) ass -> if b < 0 then m else | |
let c = tryapplyd ass v (Int 0) in | |
if c =/ Int 0 then m else | |
((b,j,i) |-> c) (((b,i,j) |-> c) m)) | |
undefined allassig in | |
let diagents = foldl | |
(fun a (b,i,j) e -> if b > 0 && i = j then equation_add e a else a) | |
undefined allassig in | |
let mats = map mk_matrix qvars | |
and obj = length pvs, | |
itern 1 pvs (fun v i -> (i |--> tryapplyd diagents v (Int 0))) | |
undefined in | |
let raw_vec = if pvs = [] then vec_0 0 | |
else scale_then (csdp nblocks blocksizes) obj mats in | |
let find_rounding d = | |
(if !debugging then | |
(Format.print_string("Trying rounding with limit "^string_of_num d); | |
Format.print_newline()) | |
else ()); | |
let vec = nice_vector d raw_vec in | |
let blockmat = iter (1,vec_dim vec) | |
(fun i a -> bmatrix_add (bmatrix_cmul (element vec i) (el i mats)) a) | |
(bmatrix_neg (el 0 mats)) in | |
let allmats = blocks blocksizes blockmat in | |
vec,map diag allmats in | |
let vec,ratdias = | |
if pvs = [] then find_rounding num_1 | |
else tryfind find_rounding (map Num.num_of_int (1--31) @ | |
map pow2 (5--66)) in | |
let newassigs = | |
itlist (fun k -> el (k - 1) pvs |-> element vec k) | |
(1--vec_dim vec) ((0,0,0) |=> Int(-1)) in | |
let finalassigs = | |
foldl (fun a v e -> (v |-> equation_eval newassigs e) a) newassigs | |
allassig in | |
let poly_of_epoly p = | |
foldl (fun a v e -> (v |--> equation_eval finalassigs e) a) | |
undefined p in | |
let mk_sos mons = | |
let mk_sq (c,m) = | |
c,itlist (fun k a -> (el (k - 1) mons |--> element m k) a) | |
(1--length mons) undefined in | |
map mk_sq in | |
let sqs = map2 mk_sos sqmonlist ratdias | |
and cfs = map poly_of_epoly ids in | |
let msq = filter (fun (a,b) -> b <> []) (map2 (fun a b -> a,b) monoid sqs) in | |
let eval_sq sqs = itlist | |
(fun (c,q) -> poly_add (poly_cmul c (poly_mul q q))) sqs poly_0 in | |
let sanity = | |
itlist (fun ((p,c),s) -> poly_add (poly_mul p (eval_sq s))) msq | |
(itlist2 (fun p q -> poly_add (poly_mul p q)) cfs eqs | |
(poly_neg pol)) in | |
if not(is_undefined sanity) then raise Sanity else | |
cfs,map (fun (a,b) -> snd a,b) msq;; | |
(* ------------------------------------------------------------------------- *) | |
(* Iterative deepening. *) | |
(* ------------------------------------------------------------------------- *) | |
let rec deepen f n = | |
try print_string "Searching with depth limit "; | |
print_int n; print_newline(); f n | |
with Failure _ -> deepen f (n + 1);; | |
(* ------------------------------------------------------------------------- *) | |
(* The ordering so we can create canonical HOL polynomials. *) | |
(* ------------------------------------------------------------------------- *) | |
let dest_monomial mon = sort (increasing fst) (graph mon);; | |
let monomial_order = | |
let rec lexorder l1 l2 = | |
match (l1,l2) with | |
[],[] -> true | |
| vps,[] -> false | |
| [],vps -> true | |
| ((x1,n1)::vs1),((x2,n2)::vs2) -> | |
if x1 < x2 then true | |
else if x2 < x1 then false | |
else if n1 < n2 then false | |
else if n2 < n1 then true | |
else lexorder vs1 vs2 in | |
fun m1 m2 -> | |
if m2 = monomial_1 then true else if m1 = monomial_1 then false else | |
let mon1 = dest_monomial m1 and mon2 = dest_monomial m2 in | |
let deg1 = itlist ((+) o snd) mon1 0 | |
and deg2 = itlist ((+) o snd) mon2 0 in | |
if deg1 < deg2 then false else if deg1 > deg2 then true | |
else lexorder mon1 mon2;; | |
let dest_poly p = | |
map (fun (m,c) -> c,dest_monomial m) | |
(sort (fun (m1,_) (m2,_) -> monomial_order m1 m2) (graph p));; | |
(* ------------------------------------------------------------------------- *) | |
(* Map back polynomials and their composites to HOL. *) | |
(* ------------------------------------------------------------------------- *) | |
let term_of_varpow = | |
let pow_tm = `(pow):real->num->real` in | |
fun x k -> | |
if k = 1 then x else mk_comb(mk_comb(pow_tm,x),mk_small_numeral k);; | |
let term_of_monomial = | |
let one_tm = `&1:real` | |
and mul_tm = `(*):real->real->real` in | |
fun m -> if m = monomial_1 then one_tm else | |
let m' = dest_monomial m in | |
let vps = itlist (fun (x,k) a -> term_of_varpow x k :: a) m' [] in | |
end_itlist (fun s t -> mk_comb(mk_comb(mul_tm,s),t)) vps;; | |
let term_of_cmonomial = | |
let mul_tm = `(*):real->real->real` in | |
fun (m,c) -> | |
if m = monomial_1 then term_of_rat c | |
else if c =/ num_1 then term_of_monomial m | |
else mk_comb(mk_comb(mul_tm,term_of_rat c),term_of_monomial m);; | |
let term_of_poly = | |
let zero_tm = `&0:real` | |
and add_tm = `(+):real->real->real` in | |
fun p -> | |
if p = poly_0 then zero_tm else | |
let cms = map term_of_cmonomial | |
(sort (fun (m1,_) (m2,_) -> monomial_order m1 m2) (graph p)) in | |
end_itlist (fun t1 t2 -> mk_comb(mk_comb(add_tm,t1),t2)) cms;; | |
let term_of_sqterm (c,p) = | |
Product(Rational_lt c,Square(term_of_poly p));; | |
let term_of_sos (pr,sqs) = | |
if sqs = [] then pr | |
else Product(pr,end_itlist (fun a b -> Sum(a,b)) (map term_of_sqterm sqs));; | |
(* ------------------------------------------------------------------------- *) | |
(* Interface to HOL. *) | |
(* ------------------------------------------------------------------------- *) | |
let REAL_NONLINEAR_PROVER translator (eqs,les,lts) = | |
let eq0 = map (poly_of_term o lhand o concl) eqs | |
and le0 = map (poly_of_term o lhand o concl) les | |
and lt0 = map (poly_of_term o lhand o concl) lts in | |
let eqp0 = map (fun (t,i) -> t,Axiom_eq i) (zip eq0 (0--(length eq0 - 1))) | |
and lep0 = map (fun (t,i) -> t,Axiom_le i) (zip le0 (0--(length le0 - 1))) | |
and ltp0 = map (fun (t,i) -> t,Axiom_lt i) (zip lt0 (0--(length lt0 - 1))) in | |
let keq,eq = partition (fun (p,_) -> multidegree p = 0) eqp0 | |
and klep,lep = partition (fun (p,_) -> multidegree p = 0) lep0 | |
and kltp,ltp = partition (fun (p,_) -> multidegree p = 0) ltp0 in | |
let trivial_axiom (p,ax) = | |
match ax with | |
Axiom_eq n when eval undefined p <>/ num_0 -> el n eqs | |
| Axiom_le n when eval undefined p </ num_0 -> el n les | |
| Axiom_lt n when eval undefined p <=/ num_0 -> el n lts | |
| _ -> failwith "not a trivial axiom" in | |
try let th = tryfind trivial_axiom (keq @ klep @ kltp) in | |
CONV_RULE (LAND_CONV REAL_POLY_CONV THENC REAL_RAT_RED_CONV) th | |
with Failure _ -> | |
let pol = itlist poly_mul (map fst ltp) (poly_const num_1) in | |
let leq = lep @ ltp in | |
let tryall d = | |
let e = multidegree pol in | |
let k = if e = 0 then 0 else d / e in | |
let eq' = map fst eq in | |
tryfind (fun i -> d,i,real_positivnullstellensatz_general false d eq' leq | |
(poly_neg(poly_pow pol i))) | |
(0--k) in | |
let d,i,(cert_ideal,cert_cone) = deepen tryall 0 in | |
let proofs_ideal = | |
map2 (fun q (p,ax) -> Eqmul(term_of_poly q,ax)) cert_ideal eq | |
and proofs_cone = map term_of_sos cert_cone | |
and proof_ne = | |
if ltp = [] then Rational_lt num_1 else | |
let p = end_itlist (fun s t -> Product(s,t)) (map snd ltp) in | |
funpow i (fun q -> Product(p,q)) (Rational_lt num_1) in | |
let proof = end_itlist (fun s t -> Sum(s,t)) | |
(proof_ne :: proofs_ideal @ proofs_cone) in | |
print_string("Translating proof certificate to HOL"); | |
print_newline(); | |
translator (eqs,les,lts) proof;; | |
(* ------------------------------------------------------------------------- *) | |
(* A wrapper that tries to substitute away variables first. *) | |
(* ------------------------------------------------------------------------- *) | |
let REAL_NONLINEAR_SUBST_PROVER = | |
let zero = `&0:real` | |
and mul_tm = `( * ):real->real->real` | |
and shuffle1 = | |
CONV_RULE(REWR_CONV(REAL_ARITH `a + x = (y:real) <=> x = y - a`)) | |
and shuffle2 = | |
CONV_RULE(REWR_CONV(REAL_ARITH `x + a = (y:real) <=> x = y - a`)) in | |
let rec substitutable_monomial fvs tm = | |
match tm with | |
Var(_,Tyapp("real",[])) when not (mem tm fvs) -> Int 1,tm | |
| Comb(Comb(Const("real_mul",_),c),(Var(_,_) as t)) | |
when is_ratconst c && not (mem t fvs) | |
-> rat_of_term c,t | |
| Comb(Comb(Const("real_add",_),s),t) -> | |
(try substitutable_monomial (union (frees t) fvs) s | |
with Failure _ -> substitutable_monomial (union (frees s) fvs) t) | |
| _ -> failwith "substitutable_monomial" | |
and isolate_variable v th = | |
match lhs(concl th) with | |
x when x = v -> th | |
| Comb(Comb(Const("real_add",_),(Var(_,Tyapp("real",[])) as x)),t) | |
when x = v -> shuffle2 th | |
| Comb(Comb(Const("real_add",_),s),t) -> | |
isolate_variable v(shuffle1 th) in | |
let make_substitution th = | |
let (c,v) = substitutable_monomial [] (lhs(concl th)) in | |
let th1 = AP_TERM (mk_comb(mul_tm,term_of_rat(Int 1 // c))) th in | |
let th2 = CONV_RULE(BINOP_CONV REAL_POLY_MUL_CONV) th1 in | |
CONV_RULE (RAND_CONV REAL_POLY_CONV) (isolate_variable v th2) in | |
fun translator -> | |
let rec substfirst(eqs,les,lts) = | |
try let eth = tryfind make_substitution eqs in | |
let modify = | |
CONV_RULE(LAND_CONV(SUBS_CONV[eth] THENC REAL_POLY_CONV)) in | |
substfirst(filter (fun t -> lhand(concl t) <> zero) (map modify eqs), | |
map modify les,map modify lts) | |
with Failure _ -> REAL_NONLINEAR_PROVER translator (eqs,les,lts) in | |
substfirst;; | |
(* ------------------------------------------------------------------------- *) | |
(* Overall function. *) | |
(* ------------------------------------------------------------------------- *) | |
let REAL_SOS = | |
let init = GEN_REWRITE_CONV ONCE_DEPTH_CONV [DECIMAL] | |
and pure = GEN_REAL_ARITH REAL_NONLINEAR_SUBST_PROVER in | |
fun tm -> let th = init tm in EQ_MP (SYM th) (pure(rand(concl th)));; | |
(* ------------------------------------------------------------------------- *) | |
(* Add hacks for division. *) | |
(* ------------------------------------------------------------------------- *) | |
let REAL_SOSFIELD = | |
let inv_tm = `inv:real->real` in | |
let prenex_conv = | |
TOP_DEPTH_CONV BETA_CONV THENC | |
PURE_REWRITE_CONV[FORALL_SIMP; EXISTS_SIMP; real_div; | |
REAL_INV_INV; REAL_INV_MUL; GSYM REAL_POW_INV] THENC | |
NNFC_CONV THENC DEPTH_BINOP_CONV `(/\)` CONDS_CELIM_CONV THENC | |
PRENEX_CONV | |
and setup_conv = NNF_CONV THENC WEAK_CNF_CONV THENC CONJ_CANON_CONV | |
and core_rule t = | |
try REAL_ARITH t | |
with Failure _ -> try REAL_RING t | |
with Failure _ -> REAL_SOS t | |
and is_inv = | |
let is_div = is_binop `(/):real->real->real` in | |
fun tm -> (is_div tm || (is_comb tm && rator tm = inv_tm)) && | |
not(is_ratconst(rand tm)) in | |
let BASIC_REAL_FIELD tm = | |
let is_freeinv t = is_inv t && free_in t tm in | |
let itms = setify(map rand (find_terms is_freeinv tm)) in | |
let hyps = map (fun t -> SPEC t REAL_MUL_RINV) itms in | |
let tm' = itlist (fun th t -> mk_imp(concl th,t)) hyps tm in | |
let itms' = map (curry mk_comb inv_tm) itms in | |
let gvs = map (genvar o type_of) itms' in | |
let tm'' = subst (zip gvs itms') tm' in | |
let th1 = setup_conv tm'' in | |
let cjs = conjuncts(rand(concl th1)) in | |
let ths = map core_rule cjs in | |
let th2 = EQ_MP (SYM th1) (end_itlist CONJ ths) in | |
rev_itlist (C MP) hyps (INST (zip itms' gvs) th2) in | |
fun tm -> | |
let th0 = prenex_conv tm in | |
let tm0 = rand(concl th0) in | |
let avs,bod = strip_forall tm0 in | |
let th1 = setup_conv bod in | |
let ths = map BASIC_REAL_FIELD (conjuncts(rand(concl th1))) in | |
EQ_MP (SYM th0) (GENL avs (EQ_MP (SYM th1) (end_itlist CONJ ths)));; | |
(* ------------------------------------------------------------------------- *) | |
(* Integer version. *) | |
(* ------------------------------------------------------------------------- *) | |
let INT_SOS = | |
let atom_CONV = | |
let pth = prove | |
(`(~(x <= y) <=> y + &1 <= x:int) /\ | |
(~(x < y) <=> y <= x) /\ | |
(~(x = y) <=> x + &1 <= y \/ y + &1 <= x) /\ | |
(x < y <=> x + &1 <= y)`, | |
REWRITE_TAC[INT_NOT_LE; INT_NOT_LT; INT_NOT_EQ; INT_LT_DISCRETE]) in | |
GEN_REWRITE_CONV I [pth] | |
and bub_CONV = GEN_REWRITE_CONV TOP_SWEEP_CONV | |
[int_eq; int_le; int_lt; int_ge; int_gt; | |
int_of_num_th; int_neg_th; int_add_th; int_mul_th; | |
int_sub_th; int_pow_th; int_abs_th; int_max_th; int_min_th] in | |
let base_CONV = TRY_CONV atom_CONV THENC bub_CONV in | |
let NNF_NORM_CONV = GEN_NNF_CONV false | |
(base_CONV,fun t -> base_CONV t,base_CONV(mk_neg t)) in | |
let init_CONV = | |
GEN_REWRITE_CONV DEPTH_CONV [FORALL_SIMP; EXISTS_SIMP] THENC | |
GEN_REWRITE_CONV DEPTH_CONV [INT_GT; INT_GE] THENC | |
CONDS_ELIM_CONV THENC NNF_NORM_CONV in | |
let p_tm = `p:bool` | |
and not_tm = `(~)` in | |
let pth = TAUT(mk_eq(mk_neg(mk_neg p_tm),p_tm)) in | |
fun tm -> | |
let th0 = INST [tm,p_tm] pth | |
and th1 = NNF_NORM_CONV(mk_neg tm) in | |
let th2 = REAL_SOS(mk_neg(rand(concl th1))) in | |
EQ_MP th0 (EQ_MP (AP_TERM not_tm (SYM th1)) th2);; | |
(* ------------------------------------------------------------------------- *) | |
(* Natural number version. *) | |
(* ------------------------------------------------------------------------- *) | |
let SOS_RULE tm = | |
let avs = frees tm in | |
let tm' = list_mk_forall(avs,tm) in | |
let th1 = NUM_TO_INT_CONV tm' in | |
let th2 = INT_SOS (rand(concl th1)) in | |
SPECL avs (EQ_MP (SYM th1) th2);; | |
(* ------------------------------------------------------------------------- *) | |
(* Now pure SOS stuff. *) | |
(* ------------------------------------------------------------------------- *) | |
prioritize_real();; | |
(* ------------------------------------------------------------------------- *) | |
(* Some combinatorial helper functions. *) | |
(* ------------------------------------------------------------------------- *) | |
let rec allpermutations l = | |
if l = [] then [[]] else | |
itlist (fun h acc -> map (fun t -> h::t) | |
(allpermutations (subtract l [h])) @ acc) l [];; | |
let allvarorders l = | |
map (fun vlis x -> index x vlis) (allpermutations l);; | |
let changevariables_monomial zoln (m:monomial) = | |
foldl (fun a x k -> (assoc x zoln |-> k) a) monomial_1 m;; | |
let changevariables zoln pol = | |
foldl (fun a m c -> (changevariables_monomial zoln m |-> c) a) | |
poly_0 pol;; | |
(* ------------------------------------------------------------------------- *) | |
(* Return to original non-block matrices. *) | |
(* ------------------------------------------------------------------------- *) | |
let sdpa_of_vector (v:vector) = | |
let n = vec_dim v in | |
let strs = map (decimalize 20 o element v) (1--n) in | |
end_itlist (fun x y -> x ^ " " ^ y) strs ^ "\n";; | |
let sdpa_of_blockdiagonal k m = | |
let pfx = string_of_int k ^" " in | |
let ents = | |
foldl (fun a (b,i,j) c -> if i > j then a else ((b,i,j),c)::a) [] m in | |
let entss = sort (increasing fst) ents in | |
itlist (fun ((b,i,j),c) a -> | |
pfx ^ string_of_int b ^ " " ^ string_of_int i ^ " " ^ string_of_int j ^ | |
" " ^ decimalize 20 c ^ "\n" ^ a) entss "";; | |
let sdpa_of_matrix k (m:matrix) = | |
let pfx = string_of_int k ^ " 1 " in | |
let ms = foldr (fun (i,j) c a -> if i > j then a else ((i,j),c)::a) | |
(snd m) [] in | |
let mss = sort (increasing fst) ms in | |
itlist (fun ((i,j),c) a -> | |
pfx ^ string_of_int i ^ " " ^ string_of_int j ^ | |
" " ^ decimalize 20 c ^ "\n" ^ a) mss "";; | |
let sdpa_of_problem comment obj mats = | |
let m = length mats - 1 | |
and n,_ = dimensions (hd mats) in | |
"\"" ^ comment ^ "\"\n" ^ | |
string_of_int m ^ "\n" ^ | |
"1\n" ^ | |
string_of_int n ^ "\n" ^ | |
sdpa_of_vector obj ^ | |
itlist2 (fun k m a -> sdpa_of_matrix (k - 1) m ^ a) | |
(1--length mats) mats "";; | |
let run_sdpa dbg obj mats = | |
let input_file = Filename.temp_file "sos" ".dat-s" in | |
let output_file = | |
String.sub input_file 0 (String.length input_file - 6) ^ ".out" | |
and params_file = Filename.concat (!temp_path) "param.sdpa" in | |
file_of_string input_file (sdpa_of_problem "" obj mats); | |
file_of_string params_file sdpa_params; | |
Sys.command("cd "^(!temp_path)^"; sdpa "^input_file ^ " " ^ output_file ^ | |
(if dbg then "" else "> /dev/null")); | |
let op = string_of_file output_file in | |
if not(sdpa_run_succeeded op) then failwith "sdpa: call failed" else | |
let res = parse_sdpaoutput op in | |
((if dbg then () | |
else (Sys.remove input_file; Sys.remove output_file)); | |
res);; | |
let sdpa obj mats = run_sdpa (!debugging) obj mats;; | |
let run_csdp dbg obj mats = | |
let input_file = Filename.temp_file "sos" ".dat-s" in | |
let output_file = | |
String.sub input_file 0 (String.length input_file - 6) ^ ".out" | |
and params_file = Filename.concat (!temp_path) "param.csdp" in | |
file_of_string input_file (sdpa_of_problem "" obj mats); | |
file_of_string params_file csdp_params; | |
let rv = Sys.command("cd "^(!temp_path)^"; csdp "^input_file ^ | |
" " ^ output_file ^ | |
(if dbg then "" else "> /dev/null")) in | |
let op = string_of_file output_file in | |
let res = parse_csdpoutput op in | |
((if dbg then () | |
else (Sys.remove input_file; Sys.remove output_file)); | |
rv,res);; | |
let csdp obj mats = | |
let rv,res = run_csdp (!debugging) obj mats in | |
(if rv = 1 || rv = 2 then failwith "csdp: Problem is infeasible" | |
else if rv = 3 then | |
(Format.print_string "csdp warning: Reduced accuracy"; | |
Format.print_newline()) | |
else if rv <> 0 then failwith("csdp: error "^string_of_int rv) | |
else ()); | |
res;; | |
(* ------------------------------------------------------------------------- *) | |
(* Sum-of-squares function with some lowbrow symmetry reductions. *) | |
(* ------------------------------------------------------------------------- *) | |
let sumofsquares_general_symmetry tool pol = | |
let vars = poly_variables pol | |
and lpps = newton_polytope pol in | |
let n = length lpps in | |
let sym_eqs = | |
let invariants = filter | |
(fun vars' -> | |
is_undefined(poly_sub pol (changevariables (zip vars vars') pol))) | |
(allpermutations vars) in | |
let lpps2 = allpairs monomial_mul lpps lpps in | |
let lpp2_classes = | |
setify(map (fun m -> | |
setify(map (fun vars' -> changevariables_monomial (zip vars vars') m) | |
invariants)) lpps2) in | |
let lpns = zip lpps (1--length lpps) in | |
let lppcs = | |
filter (fun (m,(n1,n2)) -> n1 <= n2) | |
(allpairs | |
(fun (m1,n1) (m2,n2) -> (m1,m2),(n1,n2)) lpns lpns) in | |
let clppcs = end_itlist (@) | |
(map (fun ((m1,m2),(n1,n2)) -> | |
map (fun vars' -> | |
(changevariables_monomial (zip vars vars') m1, | |
changevariables_monomial (zip vars vars') m2),(n1,n2)) | |
invariants) | |
lppcs) in | |
let clppcs_dom = setify(map fst clppcs) in | |
let clppcs_cls = map (fun d -> filter (fun (e,_) -> e = d) clppcs) | |
clppcs_dom in | |
let eqvcls = map (setify o map snd) clppcs_cls in | |
let mk_eq cls acc = | |
match cls with | |
[] -> raise Sanity | |
| [h] -> acc | |
| h::t -> map (fun k -> (k |-> Int(-1)) (h |=> Int 1)) t @ acc in | |
itlist mk_eq eqvcls [] in | |
let eqs = foldl (fun a x y -> y::a) [] | |
(itern 1 lpps (fun m1 n1 -> | |
itern 1 lpps (fun m2 n2 f -> | |
let m = monomial_mul m1 m2 in | |
if n1 > n2 then f else | |
let c = if n1 = n2 then Int 1 else Int 2 in | |
(m |-> ((n1,n2) |-> c) (tryapplyd f m undefined)) f)) | |
(foldl (fun a m c -> (m |-> ((0,0)|=>c)) a) | |
undefined pol)) @ | |
sym_eqs in | |
let pvs,assig = eliminate_all_equations (0,0) eqs in | |
let allassig = itlist (fun v -> (v |-> (v |=> Int 1))) pvs assig in | |
let qvars = (0,0)::pvs in | |
let diagents = | |
end_itlist equation_add (map (fun i -> apply allassig (i,i)) (1--n)) in | |
let mk_matrix v = | |
((n,n), | |
foldl (fun m (i,j) ass -> let c = tryapplyd ass v (Int 0) in | |
if c =/ Int 0 then m else | |
((j,i) |-> c) (((i,j) |-> c) m)) | |
undefined allassig :matrix) in | |
let mats = map mk_matrix qvars | |
and obj = length pvs, | |
itern 1 pvs (fun v i -> (i |--> tryapplyd diagents v (Int 0))) | |
undefined in | |
let raw_vec = if pvs = [] then vec_0 0 else tool obj mats in | |
let find_rounding d = | |
(if !debugging then | |
(Format.print_string("Trying rounding with limit "^string_of_num d); | |
Format.print_newline()) | |
else ()); | |
let vec = nice_vector d raw_vec in | |
let mat = iter (1,vec_dim vec) | |
(fun i a -> matrix_add (matrix_cmul (element vec i) (el i mats)) a) | |
(matrix_neg (el 0 mats)) in | |
deration(diag mat) in | |
let rat,dia = | |
if pvs = [] then | |
let mat = matrix_neg (el 0 mats) in | |
deration(diag mat) | |
else | |
tryfind find_rounding (map Num.num_of_int (1--31) @ | |
map pow2 (5--66)) in | |
let poly_of_lin(d,v) = | |
d,foldl(fun a i c -> (el (i - 1) lpps |-> c) a) undefined (snd v) in | |
let lins = map poly_of_lin dia in | |
let sqs = map (fun (d,l) -> poly_mul (poly_const d) (poly_pow l 2)) lins in | |
let sos = poly_cmul rat (end_itlist poly_add sqs) in | |
if is_undefined(poly_sub sos pol) then rat,lins else raise Sanity;; | |
let sumofsquares = sumofsquares_general_symmetry csdp;; | |
(* ------------------------------------------------------------------------- *) | |
(* Pure HOL SOS conversion. *) | |
(* ------------------------------------------------------------------------- *) | |
let SOS_CONV = | |
let mk_square = | |
let pow_tm = `(pow)` and two_tm = `2` in | |
fun tm -> mk_comb(mk_comb(pow_tm,tm),two_tm) | |
and mk_prod = mk_binop `(*)` | |
and mk_sum = mk_binop `(+)` in | |
fun tm -> | |
let k,sos = sumofsquares(poly_of_term tm) in | |
let mk_sqtm(c,p) = | |
mk_prod (term_of_rat(k */ c)) (mk_square(term_of_poly p)) in | |
let tm' = end_itlist mk_sum (map mk_sqtm sos) in | |
let th = REAL_POLY_CONV tm and th' = REAL_POLY_CONV tm' in | |
TRANS th (SYM th');; | |
(* ------------------------------------------------------------------------- *) | |
(* Attempt to prove &0 <= x by direct SOS decomposition. *) | |
(* ------------------------------------------------------------------------- *) | |
let PURE_SOS_TAC = | |
let tac = | |
MATCH_ACCEPT_TAC(REWRITE_RULE[GSYM REAL_POW_2] REAL_LE_SQUARE) ORELSE | |
MATCH_ACCEPT_TAC REAL_LE_SQUARE ORELSE | |
(MATCH_MP_TAC REAL_LE_ADD THEN CONJ_TAC) ORELSE | |
(MATCH_MP_TAC REAL_LE_MUL THEN CONJ_TAC) ORELSE | |
CONV_TAC(RAND_CONV REAL_RAT_REDUCE_CONV THENC REAL_RAT_LE_CONV) in | |
REPEAT GEN_TAC THEN REWRITE_TAC[real_ge] THEN | |
GEN_REWRITE_TAC I [GSYM REAL_SUB_LE] THEN | |
CONV_TAC(RAND_CONV SOS_CONV) THEN | |
REPEAT tac THEN NO_TAC;; | |
let PURE_SOS tm = prove(tm,PURE_SOS_TAC);; | |
(* ------------------------------------------------------------------------- *) | |
(* Examples. *) | |
(* ------------------------------------------------------------------------- *) | |
(***** | |
time REAL_SOS | |
`a1 >= &0 /\ a2 >= &0 /\ | |
(a1 * a1 + a2 * a2 = b1 * b1 + b2 * b2 + &2) /\ | |
(a1 * b1 + a2 * b2 = &0) | |
==> a1 * a2 - b1 * b2 >= &0`;; | |
time REAL_SOS `&3 * x + &7 * a < &4 /\ &3 < &2 * x ==> a < &0`;; | |
time REAL_SOS | |
`b pow 2 < &4 * a * c ==> ~(a * x pow 2 + b * x + c = &0)`;; | |
time REAL_SOS | |
`(a * x pow 2 + b * x + c = &0) ==> b pow 2 >= &4 * a * c`;; | |
time REAL_SOS | |
`&0 <= x /\ x <= &1 /\ &0 <= y /\ y <= &1 | |
==> x pow 2 + y pow 2 < &1 \/ | |
(x - &1) pow 2 + y pow 2 < &1 \/ | |
x pow 2 + (y - &1) pow 2 < &1 \/ | |
(x - &1) pow 2 + (y - &1) pow 2 < &1`;; | |
time REAL_SOS | |
`&0 <= b /\ &0 <= c /\ &0 <= x /\ &0 <= y /\ | |
(x pow 2 = c) /\ (y pow 2 = a pow 2 * c + b) | |
==> a * c <= y * x`;; | |
time REAL_SOS | |
`&0 <= x /\ &0 <= y /\ &0 <= z /\ x + y + z <= &3 | |
==> x * y + x * z + y * z >= &3 * x * y * z`;; | |
time REAL_SOS | |
`(x pow 2 + y pow 2 + z pow 2 = &1) ==> (x + y + z) pow 2 <= &3`;; | |
time REAL_SOS | |
`(w pow 2 + x pow 2 + y pow 2 + z pow 2 = &1) | |
==> (w + x + y + z) pow 2 <= &4`;; | |
time REAL_SOS | |
`x >= &1 /\ y >= &1 ==> x * y >= x + y - &1`;; | |
time REAL_SOS | |
`x > &1 /\ y > &1 ==> x * y > x + y - &1`;; | |
time REAL_SOS | |
`abs(x) <= &1 | |
==> abs(&64 * x pow 7 - &112 * x pow 5 + &56 * x pow 3 - &7 * x) <= &1`;; | |
time REAL_SOS | |
`abs(x - z) <= e /\ abs(y - z) <= e /\ &0 <= u /\ &0 <= v /\ (u + v = &1) | |
==> abs((u * x + v * y) - z) <= e`;; | |
(* ------------------------------------------------------------------------- *) | |
(* One component of denominator in dodecahedral example. *) | |
(* ------------------------------------------------------------------------- *) | |
time REAL_SOS | |
`&2 <= x /\ x <= &125841 / &50000 /\ | |
&2 <= y /\ y <= &125841 / &50000 /\ | |
&2 <= z /\ z <= &125841 / &50000 | |
==> &2 * (x * z + x * y + y * z) - (x * x + y * y + z * z) >= &0`;; | |
(* ------------------------------------------------------------------------- *) | |
(* Over a larger but simpler interval. *) | |
(* ------------------------------------------------------------------------- *) | |
time REAL_SOS | |
`&2 <= x /\ x <= &4 /\ &2 <= y /\ y <= &4 /\ &2 <= z /\ z <= &4 | |
==> &0 <= &2 * (x * z + x * y + y * z) - (x * x + y * y + z * z)`;; | |
(* ------------------------------------------------------------------------- *) | |
(* We can do 12. I think 12 is a sharp bound; see PP's certificate. *) | |
(* ------------------------------------------------------------------------- *) | |
time REAL_SOS | |
`&2 <= x /\ x <= &4 /\ &2 <= y /\ y <= &4 /\ &2 <= z /\ z <= &4 | |
==> &12 <= &2 * (x * z + x * y + y * z) - (x * x + y * y + z * z)`;; | |
(* ------------------------------------------------------------------------- *) | |
(* Gloptipoly example. *) | |
(* ------------------------------------------------------------------------- *) | |
(*** This works but normalization takes minutes | |
time REAL_SOS | |
`(x - y - &2 * x pow 4 = &0) /\ &0 <= x /\ x <= &2 /\ &0 <= y /\ y <= &3 | |
==> y pow 2 - &7 * y - &12 * x + &17 >= &0`;; | |
***) | |
(* ------------------------------------------------------------------------- *) | |
(* Inequality from sci.math (see "Leon-Sotelo, por favor"). *) | |
(* ------------------------------------------------------------------------- *) | |
time REAL_SOS | |
`&0 <= x /\ &0 <= y /\ (x * y = &1) | |
==> x + y <= x pow 2 + y pow 2`;; | |
time REAL_SOS | |
`&0 <= x /\ &0 <= y /\ (x * y = &1) | |
==> x * y * (x + y) <= x pow 2 + y pow 2`;; | |
time REAL_SOS | |
`&0 <= x /\ &0 <= y ==> x * y * (x + y) pow 2 <= (x pow 2 + y pow 2) pow 2`;; | |
(* ------------------------------------------------------------------------- *) | |
(* Some examples over integers and natural numbers. *) | |
(* ------------------------------------------------------------------------- *) | |
time SOS_RULE `!m n. 2 * m + n = (n + m) + m`;; | |
time SOS_RULE `!n. ~(n = 0) ==> (0 MOD n = 0)`;; | |
time SOS_RULE `!m n. m < n ==> (m DIV n = 0)`;; | |
time SOS_RULE `!n:num. n <= n * n`;; | |
time SOS_RULE `!m n. n * (m DIV n) <= m`;; | |
time SOS_RULE `!n. ~(n = 0) ==> (0 DIV n = 0)`;; | |
time SOS_RULE `!m n p. ~(p = 0) /\ m <= n ==> m DIV p <= n DIV p`;; | |
time SOS_RULE `!a b n. ~(a = 0) ==> (n <= b DIV a <=> a * n <= b)`;; | |
(* ------------------------------------------------------------------------- *) | |
(* This is particularly gratifying --- cf hideous manual proof in arith.ml *) | |
(* ------------------------------------------------------------------------- *) | |
(*** This doesn't now seem to work as well as it did; what changed? | |
time SOS_RULE | |
`!a b c d. ~(b = 0) /\ b * c < (a + 1) * d ==> c DIV d <= a DIV b`;; | |
***) | |
(* ------------------------------------------------------------------------- *) | |
(* Key lemma for injectivity of Cantor-type pairing functions. *) | |
(* ------------------------------------------------------------------------- *) | |
time SOS_RULE | |
`!x1 y1 x2 y2. ((x1 + y1) EXP 2 + x1 + 1 = (x2 + y2) EXP 2 + x2 + 1) | |
==> (x1 + y1 = x2 + y2)`;; | |
time SOS_RULE | |
`!x1 y1 x2 y2. ((x1 + y1) EXP 2 + x1 + 1 = (x2 + y2) EXP 2 + x2 + 1) /\ | |
(x1 + y1 = x2 + y2) | |
==> (x1 = x2) /\ (y1 = y2)`;; | |
time SOS_RULE | |
`!x1 y1 x2 y2. | |
(((x1 + y1) EXP 2 + 3 * x1 + y1) DIV 2 = | |
((x2 + y2) EXP 2 + 3 * x2 + y2) DIV 2) | |
==> (x1 + y1 = x2 + y2)`;; | |
time SOS_RULE | |
`!x1 y1 x2 y2. | |
(((x1 + y1) EXP 2 + 3 * x1 + y1) DIV 2 = | |
((x2 + y2) EXP 2 + 3 * x2 + y2) DIV 2) /\ | |
(x1 + y1 = x2 + y2) | |
==> (x1 = x2) /\ (y1 = y2)`;; | |
(* ------------------------------------------------------------------------- *) | |
(* Reciprocal multiplication (actually just ARITH_RULE does these). *) | |
(* ------------------------------------------------------------------------- *) | |
time SOS_RULE `x <= 127 ==> ((86 * x) DIV 256 = x DIV 3)`;; | |
time SOS_RULE `x < 2 EXP 16 ==> ((104858 * x) DIV (2 EXP 20) = x DIV 10)`;; | |
(* ------------------------------------------------------------------------- *) | |
(* This is more impressive since it's really nonlinear. See REMAINDER_DECODE *) | |
(* ------------------------------------------------------------------------- *) | |
time SOS_RULE `0 < m /\ m < n ==> ((m * ((n * x) DIV m + 1)) DIV n = x)`;; | |
(* ------------------------------------------------------------------------- *) | |
(* Some conversion examples. *) | |
(* ------------------------------------------------------------------------- *) | |
time SOS_CONV | |
`&2 * x pow 4 + &2 * x pow 3 * y - x pow 2 * y pow 2 + &5 * y pow 4`;; | |
time SOS_CONV | |
`x pow 4 - (&2 * y * z + &1) * x pow 2 + | |
(y pow 2 * z pow 2 + &2 * y * z + &2)`;; | |
time SOS_CONV `&4 * x pow 4 + | |
&4 * x pow 3 * y - &7 * x pow 2 * y pow 2 - &2 * x * y pow 3 + | |
&10 * y pow 4`;; | |
time SOS_CONV `&4 * x pow 4 * y pow 6 + x pow 2 - x * y pow 2 + y pow 2`;; | |
time SOS_CONV | |
`&4096 * (x pow 4 + x pow 2 + z pow 6 - &3 * x pow 2 * z pow 2) + &729`;; | |
time SOS_CONV | |
`&120 * x pow 2 - &63 * x pow 4 + &10 * x pow 6 + | |
&30 * x * y - &120 * y pow 2 + &120 * y pow 4 + &31`;; | |
time SOS_CONV | |
`&9 * x pow 2 * y pow 4 + &9 * x pow 2 * z pow 4 + &36 * x pow 2 * y pow 3 + | |
&36 * x pow 2 * y pow 2 - &48 * x * y * z pow 2 + &4 * y pow 4 + | |
&4 * z pow 4 - &16 * y pow 3 + &16 * y pow 2`;; | |
time SOS_CONV | |
`(x pow 2 + y pow 2 + z pow 2) * | |
(x pow 4 * y pow 2 + x pow 2 * y pow 4 + | |
z pow 6 - &3 * x pow 2 * y pow 2 * z pow 2)`;; | |
time SOS_CONV | |
`x pow 4 + y pow 4 + z pow 4 - &4 * x * y * z + x + y + z + &3`;; | |
(*** I think this will work, but normalization is slow | |
time SOS_CONV | |
`&100 * (x pow 4 + y pow 4 + z pow 4 - &4 * x * y * z + x + y + z) + &212`;; | |
***) | |
time SOS_CONV | |
`&100 * ((&2 * x - &2) pow 2 + (x pow 3 - &8 * x - &2) pow 2) - &588`;; | |
time SOS_CONV | |
`x pow 2 * (&120 - &63 * x pow 2 + &10 * x pow 4) + &30 * x * y + | |
&30 * y pow 2 * (&4 * y pow 2 - &4) + &31`;; | |
(* ------------------------------------------------------------------------- *) | |
(* Example of basic rule. *) | |
(* ------------------------------------------------------------------------- *) | |
time PURE_SOS | |
`!x. x pow 4 + y pow 4 + z pow 4 - &4 * x * y * z + x + y + z + &3 | |
>= &1 / &7`;; | |
time PURE_SOS | |
`&0 <= &98 * x pow 12 + | |
-- &980 * x pow 10 + | |
&3038 * x pow 8 + | |
-- &2968 * x pow 6 + | |
&1022 * x pow 4 + | |
-- &84 * x pow 2 + | |
&2`;; | |
time PURE_SOS | |
`!x. &0 <= &2 * x pow 14 + | |
-- &84 * x pow 12 + | |
&1022 * x pow 10 + | |
-- &2968 * x pow 8 + | |
&3038 * x pow 6 + | |
-- &980 * x pow 4 + | |
&98 * x pow 2`;; | |
(* ------------------------------------------------------------------------- *) | |
(* From Zeng et al, JSC vol 37 (2004), p83-99. *) | |
(* All of them work nicely with pure SOS_CONV, except (maybe) the one noted. *) | |
(* ------------------------------------------------------------------------- *) | |
PURE_SOS | |
`x pow 6 + y pow 6 + z pow 6 - &3 * x pow 2 * y pow 2 * z pow 2 >= &0`;; | |
PURE_SOS `x pow 4 + y pow 4 + z pow 4 + &1 - &4*x*y*z >= &0`;; | |
PURE_SOS `x pow 4 + &2*x pow 2*z + x pow 2 - &2*x*y*z + &2*y pow 2*z pow 2 + | |
&2*y*z pow 2 + &2*z pow 2 - &2*x + &2* y*z + &1 >= &0`;; | |
(**** This is harder. Interestingly, this fails the pure SOS test, it seems. | |
Yet only on rounding(!?) Poor Newton polytope optimization or something? | |
But REAL_SOS does finally converge on the second run at level 12! | |
REAL_SOS | |
`x pow 4*y pow 4 - &2*x pow 5*y pow 3*z pow 2 + x pow 6*y pow 2*z pow 4 + &2*x | |
pow 2*y pow 3*z - &4* x pow 3*y pow 2*z pow 3 + &2*x pow 4*y*z pow 5 + z pow | |
2*y pow 2 - &2*z pow 4*y*x + z pow 6*x pow 2 >= &0`;; | |
****) | |
PURE_SOS | |
`x pow 4 + &4*x pow 2*y pow 2 + &2*x*y*z pow 2 + &2*x*y*w pow 2 + y pow 4 + z | |
pow 4 + w pow 4 + &2*z pow 2*w pow 2 + &2*x pow 2*w + &2*y pow 2*w + &2*x*y + | |
&3*w pow 2 + &2*z pow 2 + &1 >= &0`;; | |
PURE_SOS | |
`w pow 6 + &2*z pow 2*w pow 3 + x pow 4 + y pow 4 + z pow 4 + &2*x pow 2*w + | |
&2*x pow 2*z + &3*x pow 2 + w pow 2 + &2*z*w + z pow 2 + &2*z + &2*w + &1 >= | |
&0`;; | |
*****) | |