Datasets:
Tasks:
Text Generation
Modalities:
Text
Sub-tasks:
language-modeling
Languages:
English
Size:
100K - 1M
License:
(* ========================================================================= *) | |
(* Simple WHILE-language with relational semantics. *) | |
(* ========================================================================= *) | |
prioritize_num();; | |
parse_as_infix("refined",(12,"right"));; | |
(* ------------------------------------------------------------------------- *) | |
(* Logical operations "lifted" to predicates, for readability. *) | |
(* ------------------------------------------------------------------------- *) | |
parse_as_infix("AND",(20,"right"));; | |
parse_as_infix("OR",(16,"right"));; | |
parse_as_infix("IMP",(13,"right"));; | |
parse_as_infix("IMPLIES",(12,"right"));; | |
let FALSE = new_definition | |
`FALSE = \x:S. F`;; | |
let TRUE = new_definition | |
`TRUE = \x:S. T`;; | |
let NOT = new_definition | |
`NOT p = \x:S. ~(p x)`;; | |
let AND = new_definition | |
`p AND q = \x:S. p x /\ q x`;; | |
let OR = new_definition | |
`p OR q = \x:S. p x \/ q x`;; | |
let ANDS = new_definition | |
`ANDS P = \x:S. !p. P p ==> p x`;; | |
let ORS = new_definition | |
`ORS P = \x:S. ?p. P p /\ p x`;; | |
let IMP = new_definition | |
`p IMP q = \x:S. p x ==> q x`;; | |
(* ------------------------------------------------------------------------- *) | |
(* This one is different, corresponding to "subset". *) | |
(* ------------------------------------------------------------------------- *) | |
let IMPLIES = new_definition | |
`p IMPLIES q <=> !x:S. p x ==> q x`;; | |
(* ------------------------------------------------------------------------- *) | |
(* Simple procedure to prove tautologies at the predicate level. *) | |
(* ------------------------------------------------------------------------- *) | |
let PRED_TAUT = | |
let tac = | |
REWRITE_TAC[FALSE; TRUE; NOT; AND; OR; ANDS; ORS; IMP; | |
IMPLIES; FUN_EQ_THM] THEN MESON_TAC[] in | |
fun tm -> prove(tm,tac);; | |
(* ------------------------------------------------------------------------- *) | |
(* Some applications. *) | |
(* ------------------------------------------------------------------------- *) | |
let IMPLIES_TRANS = PRED_TAUT | |
`!p q r. p IMPLIES q /\ q IMPLIES r ==> p IMPLIES r`;; | |
(* ------------------------------------------------------------------------- *) | |
(* Enumerated type of basic commands, and other derived commands. *) | |
(* ------------------------------------------------------------------------- *) | |
parse_as_infix("Seq",(26,"right"));; | |
let command_INDUCTION,command_RECURSION = define_type | |
"command = Assign (S->S) | |
| Seq command command | |
| Ite (S->bool) command command | |
| While (S->bool) command";; | |
let SKIP = new_definition | |
`SKIP = Assign I`;; | |
let ABORT = new_definition | |
`ABORT = While TRUE SKIP`;; | |
let IF = new_definition | |
`IF e c = Ite e c SKIP`;; | |
let DO = new_definition | |
`DO c e = c Seq (While e c)`;; | |
let ASSERT = new_definition | |
`ASSERT g = Ite g SKIP ABORT`;; | |
(* ------------------------------------------------------------------------- *) | |
(* Annotation commands, to allow insertion of loop (in)variants. *) | |
(* ------------------------------------------------------------------------- *) | |
let AWHILE = new_definition | |
`AWHILE (i:S->bool) (v:S->S->bool) (e:S->bool) c = While e c`;; | |
let ADO = new_definition | |
`ADO (i:S->bool) (v:S->S->bool) c (e:S->bool) = DO c e`;; | |
(* ------------------------------------------------------------------------- *) | |
(* Useful properties of type constructors for commands. *) | |
(* ------------------------------------------------------------------------- *) | |
let command_DISTINCT = | |
distinctness "command";; | |
let command_INJECTIVE = | |
injectivity "command";; | |
(* ------------------------------------------------------------------------- *) | |
(* Relational semantics of commands. *) | |
(* ------------------------------------------------------------------------- *) | |
let sem_RULES,sem_INDUCT,sem_CASES = new_inductive_definition | |
`(!f s. sem(Assign f) s (f s)) /\ | |
(!c1 c2 s s' s''. sem(c1) s s' /\ sem(c2) s' s'' | |
==> sem(c1 Seq c2) s s'') /\ | |
(!e c1 c2 s s'. e s /\ sem(c1) s s' ==> sem(Ite e c1 c2) s s') /\ | |
(!e c1 c2 s s'. ~(e s) /\ sem(c2) s s' ==> sem(Ite e c1 c2) s s') /\ | |
(!e c s. ~(e s) ==> sem(While e c) s s) /\ | |
(!e c s s' s''. e s /\ sem(c) s s' /\ sem(While e c) s' s'' | |
==> sem(While e c) s s'')`;; | |
(* ------------------------------------------------------------------------- *) | |
(* A more "denotational" view of the semantics. *) | |
(* ------------------------------------------------------------------------- *) | |
let SEM_ASSIGN = prove | |
(`sem(Assign f) s s' <=> (s' = f s)`, | |
GEN_REWRITE_TAC LAND_CONV [sem_CASES] THEN | |
REWRITE_TAC[command_DISTINCT; command_INJECTIVE] THEN MESON_TAC[]);; | |
let SEM_SEQ = prove | |
(`sem(c1 Seq c2) s s' <=> ?s''. sem c1 s s'' /\ sem c2 s'' s'`, | |
GEN_REWRITE_TAC LAND_CONV [sem_CASES] THEN | |
REWRITE_TAC[command_DISTINCT; command_INJECTIVE] THEN MESON_TAC[]);; | |
let SEM_ITE = prove | |
(`sem(Ite e c1 c2) s s' <=> e s /\ sem c1 s s' \/ | |
~(e s) /\ sem c2 s s'`, | |
GEN_REWRITE_TAC LAND_CONV [sem_CASES] THEN | |
REWRITE_TAC[command_DISTINCT; command_INJECTIVE] THEN MESON_TAC[]);; | |
let SEM_SKIP = prove | |
(`sem(SKIP) s s' <=> (s' = s)`, | |
REWRITE_TAC[SKIP; SEM_ASSIGN; I_THM]);; | |
let SEM_IF = prove | |
(`sem(IF e c) s s' <=> e s /\ sem c s s' \/ ~(e s) /\ (s = s')`, | |
REWRITE_TAC[IF; SEM_ITE; SEM_SKIP; EQ_SYM_EQ]);; | |
let SEM_WHILE = prove | |
(`sem(While e c) s s' <=> sem(IF e (c Seq While e c)) s s'`, | |
GEN_REWRITE_TAC LAND_CONV [sem_CASES] THEN | |
REWRITE_TAC[FUN_EQ_THM; SEM_IF; SEM_SEQ] THEN REPEAT GEN_TAC THEN | |
REWRITE_TAC[command_DISTINCT; command_INJECTIVE] THEN MESON_TAC[]);; | |
let SEM_ABORT = prove | |
(`sem(ABORT) s s' <=> F`, | |
let lemma = prove | |
(`!c s s'. sem c s s' ==> ~(c = ABORT)`, | |
MATCH_MP_TAC sem_INDUCT THEN | |
REWRITE_TAC[command_DISTINCT; command_INJECTIVE; ABORT] THEN | |
REWRITE_TAC[FUN_EQ_THM; TRUE] THEN MESON_TAC[]) in | |
MESON_TAC[lemma]);; | |
let SEM_DO = prove | |
(`sem(DO c e) s s' <=> sem(c Seq IF e (DO c e)) s s'`, | |
REWRITE_TAC[DO; SEM_SEQ; GSYM SEM_WHILE]);; | |
let SEM_ASSERT = prove | |
(`sem(ASSERT g) s s' <=> g s /\ (s' = s)`, | |
REWRITE_TAC[ASSERT; SEM_ITE; SEM_SKIP; SEM_ABORT]);; | |
(* ------------------------------------------------------------------------- *) | |
(* Proofs that all commands are deterministic. *) | |
(* ------------------------------------------------------------------------- *) | |
let deterministic = new_definition | |
`deterministic r <=> !s s1 s2. r s s1 /\ r s s2 ==> (s1 = s2)`;; | |
let DETERMINISM = prove | |
(`!c:(S)command. deterministic(sem c)`, | |
REWRITE_TAC[deterministic] THEN SUBGOAL_THEN | |
`!c s s1. sem c s s1 ==> !s2:S. sem c s s2 ==> (s1 = s2)` | |
(fun th -> MESON_TAC[th]) THEN | |
MATCH_MP_TAC sem_INDUCT THEN CONJ_TAC THENL | |
[ALL_TAC; REPEAT CONJ_TAC THEN REPEAT GEN_TAC THEN DISCH_TAC] THEN | |
REPEAT GEN_TAC THEN ONCE_REWRITE_TAC[sem_CASES] THEN | |
REWRITE_TAC[command_DISTINCT; command_INJECTIVE] THEN | |
ASM_MESON_TAC[]);; | |
(* ------------------------------------------------------------------------- *) | |
(* Termination, weakest liberal precondition and weakest precondition. *) | |
(* ------------------------------------------------------------------------- *) | |
let terminates = new_definition | |
`terminates c s <=> ?s'. sem c s s'`;; | |
let wlp = new_definition | |
`wlp c q s <=> !s'. sem c s s' ==> q s'`;; | |
let wp = new_definition | |
`wp c q s <=> terminates c s /\ wlp c q s`;; | |
(* ------------------------------------------------------------------------- *) | |
(* Dijkstra's healthiness conditions (the last because of determinism). *) | |
(* ------------------------------------------------------------------------- *) | |
let WP_TOTAL = prove | |
(`!c. (wp c FALSE = FALSE)`, | |
REWRITE_TAC[FUN_EQ_THM; wp; wlp; terminates; FALSE] THEN MESON_TAC[]);; | |
let WP_MONOTONIC = prove | |
(`q IMPLIES r ==> wp c q IMPLIES wp c r`, | |
REWRITE_TAC[IMPLIES; wp; wlp; terminates] THEN MESON_TAC[]);; | |
let WP_CONJUNCTIVE = prove | |
(`(wp c q) AND (wp c r) = wp c (q AND r)`, | |
REWRITE_TAC[FUN_EQ_THM; wp; wlp; terminates; AND] THEN MESON_TAC[]);; | |
let WP_DISJUNCTIVE = prove | |
(`(wp c p) OR (wp c q) = wp c (p OR q)`, | |
REWRITE_TAC[FUN_EQ_THM; wp; wlp; OR; terminates] THEN | |
MESON_TAC[REWRITE_RULE[deterministic] DETERMINISM]);; | |
(* ------------------------------------------------------------------------- *) | |
(* Weakest preconditions for the primitive and derived commands. *) | |
(* ------------------------------------------------------------------------- *) | |
let WP_ASSIGN = prove | |
(`!f q. wp (Assign f) q = q o f`, | |
REWRITE_TAC[wp; wlp; terminates; o_THM; FUN_EQ_THM; SEM_ASSIGN] THEN | |
MESON_TAC[]);; | |
let WP_SEQ = prove | |
(`!c1 c2 q. wp (c1 Seq c2) q = wp c1 (wp c2 q)`, | |
REWRITE_TAC[wp; wlp; terminates; SEM_SEQ; FUN_EQ_THM] THEN | |
MESON_TAC[REWRITE_RULE[deterministic] DETERMINISM]);; | |
let WP_ITE = prove | |
(`!e c1 c2 q. wp (Ite e c1 c2) q = (e AND wp c1 q) OR (NOT e AND wp c2 q)`, | |
REWRITE_TAC[wp; wlp; terminates; SEM_ITE; FUN_EQ_THM; AND; OR; NOT] THEN | |
MESON_TAC[]);; | |
let WP_WHILE = prove | |
(`!e c. wp (IF e (c Seq While e c)) q = wp (While e c) q`, | |
REWRITE_TAC[FUN_EQ_THM; wp; wlp; terminates; GSYM SEM_WHILE]);; | |
let WP_SKIP = prove | |
(`!q. wp SKIP q = q`, | |
REWRITE_TAC[FUN_EQ_THM; SKIP; WP_ASSIGN; I_THM; o_THM]);; | |
let WP_ABORT = prove | |
(`!q. wp ABORT q = FALSE`, | |
REWRITE_TAC[FUN_EQ_THM; wp; wlp; terminates; SEM_ABORT; FALSE]);; | |
let WP_IF = prove | |
(`!e c q. wp (IF e c) q = (e AND wp c q) OR (NOT e AND q)`, | |
REWRITE_TAC[IF; WP_ITE; WP_SKIP]);; | |
let WP_DO = prove | |
(`!e c. wp (c Seq IF e (DO c e)) q = wp (DO c e) q`, | |
REWRITE_TAC[FUN_EQ_THM; wp; wlp; terminates; GSYM SEM_DO]);; | |
let WP_ASSERT = prove | |
(`!g q. wp (ASSERT g) q = g AND q`, | |
REWRITE_TAC[wp; wlp; terminates; SEM_ASSERT; FUN_EQ_THM; AND] THEN | |
MESON_TAC[]);; | |
(* ------------------------------------------------------------------------- *) | |
(* Rules for total correctness. *) | |
(* ------------------------------------------------------------------------- *) | |
let correct = new_definition | |
`correct p c q <=> p IMPLIES (wp c q)`;; | |
let CORRECT_PRESTRENGTH = prove | |
(`!p p' c q. p IMPLIES p' /\ correct p' c q ==> correct p c q`, | |
REWRITE_TAC[correct; IMPLIES_TRANS]);; | |
let CORRECT_POSTWEAK = prove | |
(`!p c q q'. correct p c q' /\ q' IMPLIES q ==> correct p c q`, | |
REWRITE_TAC[correct] THEN MESON_TAC[WP_MONOTONIC; IMPLIES_TRANS]);; | |
let CORRECT_ASSIGN = prove | |
(`!p f q. (p IMPLIES (\s. q(f s))) ==> correct p (Assign f) q`, | |
REWRITE_TAC[correct; WP_ASSIGN; IMPLIES; o_THM]);; | |
let CORRECT_SEQ = prove | |
(`!p q r c1 c2. | |
correct p c1 r /\ correct r c2 q ==> correct p (c1 Seq c2) q`, | |
REWRITE_TAC[correct; WP_SEQ; o_THM] THEN | |
MESON_TAC[WP_MONOTONIC; IMPLIES_TRANS]);; | |
let CORRECT_ITE = prove | |
(`!p e c1 c2 q. | |
correct (p AND e) c1 q /\ correct (p AND (NOT e)) c2 q | |
==> correct p (Ite e c1 c2) q`, | |
REWRITE_TAC[correct; WP_ITE; AND; NOT; IMPLIES; OR] THEN MESON_TAC[]);; | |
let CORRECT_WHILE = prove | |
(`! (<<) p c q e invariant. | |
WF(<<) /\ | |
p IMPLIES invariant /\ | |
(NOT e) AND invariant IMPLIES q /\ | |
(!X:S. correct | |
(invariant AND e AND (\s. X = s)) c (invariant AND (\s. s << X))) | |
==> correct p (While e c) q`, | |
REWRITE_TAC[correct; IMPLIES; IN; AND; NOT] THEN REPEAT STRIP_TAC THEN | |
SUBGOAL_THEN `!s:S. invariant s ==> wp (While e c) q s` MP_TAC THENL | |
[ALL_TAC; ASM_MESON_TAC[]] THEN | |
FIRST_ASSUM(MATCH_MP_TAC o REWRITE_RULE[WF_IND]) THEN | |
X_GEN_TAC `s:S` THEN REPEAT DISCH_TAC THEN | |
ONCE_REWRITE_TAC[GSYM WP_WHILE] THEN | |
REWRITE_TAC[WP_IF; WP_SEQ; AND; OR; NOT; o_THM] THEN | |
ASM_CASES_TAC `(e:S->bool) s` THEN ASM_REWRITE_TAC[] THENL | |
[ALL_TAC; ASM_MESON_TAC[]] THEN | |
SUBGOAL_THEN `wp c (\x:S. invariant x /\ x << s) (s:S) :bool` MP_TAC THENL | |
[FIRST_ASSUM MATCH_MP_TAC THEN ASM_REWRITE_TAC[]; ALL_TAC] THEN | |
SUBGOAL_THEN `(\x:S. invariant x /\ x << (s:S)) IMPLIES wp (While e c) q` | |
MP_TAC THENL [REWRITE_TAC[IMPLIES] THEN ASM_MESON_TAC[]; ALL_TAC] THEN | |
MESON_TAC[WP_MONOTONIC; IMPLIES]);; | |
let CORRECT_SKIP = prove | |
(`!p q. (p IMPLIES q) ==> correct p SKIP q`, | |
REWRITE_TAC[correct; WP_SKIP]);; | |
let CORRECT_ABORT = prove | |
(`!p q. F ==> correct p ABORT q`, | |
REWRITE_TAC[]);; | |
let CORRECT_IF = prove | |
(`!p e c q. | |
correct (p AND e) c q /\ (p AND (NOT e)) IMPLIES q | |
==> correct p (IF e c) q`, | |
REWRITE_TAC[correct; WP_IF; AND; NOT; IMPLIES; OR] THEN MESON_TAC[]);; | |
let CORRECT_DO = prove | |
(`! (<<) p q c invariant. | |
WF(<<) /\ | |
(e AND invariant) IMPLIES p /\ | |
((NOT e) AND invariant) IMPLIES q /\ | |
(!X:S. correct | |
(p AND (\s. X = s)) c (invariant AND (\s. s << X))) | |
==> correct p (DO c e) q`, | |
REPEAT STRIP_TAC THEN REWRITE_TAC[DO] THEN | |
MATCH_MP_TAC CORRECT_SEQ THEN EXISTS_TAC `invariant:S->bool` THEN | |
ASM_REWRITE_TAC[] THEN CONJ_TAC THENL | |
[POP_ASSUM_LIST(MP_TAC o end_itlist CONJ) THEN | |
REWRITE_TAC[correct; GSYM WP_CONJUNCTIVE] THEN | |
REWRITE_TAC[AND; IMPLIES] THEN MESON_TAC[]; | |
MATCH_MP_TAC CORRECT_WHILE THEN | |
MAP_EVERY EXISTS_TAC [`(<<) :S->S->bool`; `invariant:S->bool`] THEN | |
ASM_REWRITE_TAC[IMPLIES] THEN X_GEN_TAC `X:S` THEN | |
MATCH_MP_TAC CORRECT_PRESTRENGTH THEN | |
EXISTS_TAC `p AND (\s:S. X = s)` THEN ASM_REWRITE_TAC[] THEN | |
UNDISCH_TAC `(e:S->bool) AND invariant IMPLIES p` THEN | |
REWRITE_TAC[AND; IMPLIES] THEN MESON_TAC[]]);; | |
let CORRECT_ASSERT = prove | |
(`!p g q. p IMPLIES (g AND q) ==> correct p (ASSERT g) q`, | |
REWRITE_TAC[correct; WP_ASSERT]);; | |
(* ------------------------------------------------------------------------- *) | |
(* VCs for the basic commands (in fact only assign should be needed). *) | |
(* ------------------------------------------------------------------------- *) | |
let VC_ASSIGN = prove | |
(`p IMPLIES (q o f) ==> correct p (Assign f) q`, | |
REWRITE_TAC[o_DEF; CORRECT_ASSIGN]);; | |
let VC_SKIP = prove | |
(`p IMPLIES q ==> correct p SKIP q`, | |
REWRITE_TAC[CORRECT_SKIP]);; | |
let VC_ABORT = prove | |
(`F ==> correct p ABORT q`, | |
MATCH_ACCEPT_TAC CORRECT_ABORT);; | |
let VC_ASSERT = prove | |
(`p IMPLIES (b AND q) ==> correct p (ASSERT b) q`, | |
REWRITE_TAC[CORRECT_ASSERT]);; | |
(* ------------------------------------------------------------------------- *) | |
(* VCs for composite commands other than sequences. *) | |
(* ------------------------------------------------------------------------- *) | |
let VC_ITE = prove | |
(`correct (p AND e) c1 q /\ correct (p AND NOT e) c2 q | |
==> correct p (Ite e c1 c2) q`, | |
REWRITE_TAC[CORRECT_ITE]);; | |
let VC_IF = prove | |
(`correct (p AND e) c q /\ p AND NOT e IMPLIES q | |
==> correct p (IF e c) q`, | |
REWRITE_TAC[CORRECT_IF]);; | |
let VC_AWHILE_VARIANT = prove | |
(`WF(<<) /\ | |
p IMPLIES invariant /\ | |
(NOT e) AND invariant IMPLIES q /\ | |
(!X. correct | |
(invariant AND e AND (\s. X = s)) c (invariant AND (\s. s << X))) | |
==> correct p (AWHILE invariant (<<) e c) q`, | |
REWRITE_TAC[AWHILE; CORRECT_WHILE]);; | |
let VC_AWHILE_MEASURE = prove | |
(`p IMPLIES invariant /\ | |
(NOT e) AND invariant IMPLIES q /\ | |
(!X. correct | |
(invariant AND e AND (\s:S. X = m(s))) | |
c | |
(invariant AND (\s. m(s) < X))) | |
==> correct p (AWHILE invariant (MEASURE m) e c) q`, | |
STRIP_TAC THEN MATCH_MP_TAC VC_AWHILE_VARIANT THEN | |
ASM_REWRITE_TAC[WF_MEASURE] THEN | |
X_GEN_TAC `X:S` THEN FIRST_ASSUM(MP_TAC o SPEC `(m:S->num) X`) THEN | |
REWRITE_TAC[correct; AND; IMPLIES; MEASURE] THEN MESON_TAC[]);; | |
let VC_ADO_VARIANT = prove | |
(`WF(<<) /\ | |
(e AND invariant) IMPLIES p /\ | |
((NOT e) AND invariant) IMPLIES q /\ | |
(!X. correct | |
(p AND (\s. X = s)) c (invariant AND (\s. s << X))) | |
==> correct p (ADO invariant (<<) c e) q`, | |
REWRITE_TAC[ADO; CORRECT_DO]);; | |
let VC_ADO_MEASURE = prove | |
(`(e AND invariant) IMPLIES p /\ | |
((NOT e) AND invariant) IMPLIES q /\ | |
(!X. correct | |
(p AND (\s:S. X = m(s))) c (invariant AND (\s. m(s) < X))) | |
==> correct p (ADO invariant (MEASURE m) c e) q`, | |
STRIP_TAC THEN MATCH_MP_TAC VC_ADO_VARIANT THEN | |
ASM_REWRITE_TAC[WF_MEASURE] THEN | |
X_GEN_TAC `X:S` THEN FIRST_ASSUM(MP_TAC o SPEC `(m:S->num) X`) THEN | |
REWRITE_TAC[correct; AND; IMPLIES; MEASURE] THEN MESON_TAC[]);; | |
(* ------------------------------------------------------------------------- *) | |
(* VCs for sequences of commands, using intelligence where possible. *) | |
(* ------------------------------------------------------------------------- *) | |
let VC_SEQ_ASSERT_LEFT = prove | |
(`p IMPLIES b /\ correct b c q ==> correct p (ASSERT b Seq c) q`, | |
MESON_TAC[CORRECT_SEQ; CORRECT_ASSERT; CORRECT_PRESTRENGTH; | |
PRED_TAUT `(p IMPLIES b) ==> (p IMPLIES b AND p)`]);; | |
let VC_SEQ_ASSERT_RIGHT = prove | |
(`correct p c b /\ b IMPLIES q ==> correct p (c Seq (ASSERT b)) q`, | |
MESON_TAC[CORRECT_SEQ; CORRECT_ASSERT; | |
PRED_TAUT `(p IMPLIES b) ==> (p IMPLIES p AND b)`]);; | |
let VC_SEQ_ASSERT_MIDDLE = prove | |
(`correct p c b /\ correct b c' q | |
==> correct p (c Seq (ASSERT b) Seq c') q`, | |
MESON_TAC[CORRECT_SEQ; CORRECT_ASSERT; PRED_TAUT `b IMPLIES b AND b`]);; | |
let VC_SEQ_ASSIGN_LEFT = prove | |
(`(p o f = p) /\ (f o f = f) /\ | |
correct (p AND (\s:S. s = f s)) c q | |
==> correct p ((Assign f) Seq c) q`, | |
REWRITE_TAC[FUN_EQ_THM; o_THM] THEN STRIP_TAC THEN | |
MATCH_MP_TAC CORRECT_SEQ THEN EXISTS_TAC `p AND (\s:S. s = f s)` THEN | |
ASM_REWRITE_TAC[] THEN MATCH_MP_TAC VC_ASSIGN THEN | |
ASM_REWRITE_TAC[IMPLIES; AND; o_THM]);; | |
let VC_SEQ_ASSIGN_RIGHT = prove | |
(`correct p c (q o f) ==> correct p (c Seq (Assign f)) q`, | |
MESON_TAC[CORRECT_SEQ; VC_ASSIGN; PRED_TAUT `(p:S->bool) IMPLIES p`]);; | |
(* ------------------------------------------------------------------------- *) | |
(* Parser for correctness assertions. *) | |
(* ------------------------------------------------------------------------- *) | |
let rec dive_to_var ptm = | |
match ptm with | |
Varp(_,_) as vp -> vp | Typing(t,_) -> dive_to_var t | _ -> fail();; | |
let reserve_program_words,unreserve_program_words = | |
let words = ["var"; "end"; "skip"; "abort"; | |
":="; "if"; "then"; "else"; "while"; "do"] in | |
(fun () -> reserve_words words), | |
(fun () -> unreserve_words words);; | |
reserve_program_words();; | |
let parse_program,parse_program_assertion = | |
let assign_ptm = Varp("Assign",dpty) | |
and seq_ptm = Varp("Seq",dpty) | |
and ite_ptm = Varp("Ite",dpty) | |
and while_ptm = Varp("While",dpty) | |
and skip_ptm = Varp("SKIP",dpty) | |
and abort_ptm = Varp("ABORT",dpty) | |
and if_ptm = Varp("IF",dpty) | |
and do_ptm = Varp("DO",dpty) | |
and assert_ptm = Varp("ASSERT",dpty) | |
and awhile_ptm = Varp("AWHILE",dpty) | |
and ado_ptm = Varp("ADO",dpty) in | |
let pmk_pair(ptm1,ptm2) = Combp(Combp(Varp(",",dpty),ptm1),ptm2) in | |
let varname ptm = | |
match dive_to_var ptm with Varp(n,_) -> n | _ -> fail() in | |
let rec assign s v e = | |
match s with | |
Combp(Combp(pop,lptm),rptm) -> | |
if varname pop = "," then | |
Combp(Combp(pop,assign lptm v e),assign rptm v e) | |
else fail() | |
| _ -> if varname s = v then e else s in | |
let lmk_assign s v e = Combp(assign_ptm,Absp(s,assign s v e)) | |
and lmk_seq c cs = | |
if cs = [] then c else Combp(Combp(seq_ptm,c),hd cs) | |
and lmk_ite e c1 c2 = Combp(Combp(Combp(ite_ptm,e),c1),c2) | |
and lmk_while e c = Combp(Combp(while_ptm,e),c) | |
and lmk_skip _ = skip_ptm | |
and lmk_abort _ = abort_ptm | |
and lmk_if e c = Combp(Combp(if_ptm,e),c) | |
and lmk_do c e = Combp(Combp(do_ptm,c),e) | |
and lmk_assert e = Combp(assert_ptm,e) | |
and lmk_awhile i v e c = Combp(Combp(Combp(Combp(awhile_ptm,i),v),e),c) | |
and lmk_ado i v c e = Combp(Combp(Combp(Combp(ado_ptm,i),v),c),e) in | |
let lmk_gwhile al e c = | |
if al = [] then lmk_while e c | |
else lmk_awhile (fst(hd al)) (snd(hd al)) e c | |
and lmk_gdo al c e = | |
if al = [] then lmk_do c e | |
else lmk_ado (fst(hd al)) (snd(hd al)) c e in | |
let expression s = parse_preterm >> (fun p -> Absp(s,p)) in | |
let identifier = | |
function ((Ident n)::rest) -> n,rest | |
| _ -> raise Noparse in | |
let variant s = | |
(a (Ident "variant") ++ parse_preterm | |
>> snd) | |
||| (a (Ident "measure") ++ expression s | |
>> fun (_,m) -> Combp(Varp("MEASURE",dpty),m)) in | |
let annotation s = | |
a (Resword "[") ++ a (Ident "invariant") ++ expression s ++ | |
a (Resword ";") ++ variant s ++ a (Resword "]") | |
>> fun (((((_,_),i),_),v),_) -> (i,v) in | |
let rec command s i = | |
( (a (Resword "(") ++ commands s ++ a (Resword ")") | |
>> (fun ((_,c),_) -> c)) | |
||| (a (Resword "skip") | |
>> lmk_skip) | |
||| (a (Resword "abort") | |
>> lmk_abort) | |
||| (a (Resword "if") ++ expression s ++ a (Resword "then") ++ command s ++ | |
possibly (a (Resword "else") ++ command s >> snd) | |
>> (fun ((((_,e),_),c),cs) -> if cs = [] then lmk_if e c | |
else lmk_ite e c (hd cs))) | |
||| (a (Resword "while") ++ expression s ++ a (Resword "do") ++ | |
possibly (annotation s) ++ command s | |
>> (fun ((((_,e),_),al),c) -> lmk_gwhile al e c)) | |
||| (a (Resword "do") ++ possibly (annotation s) ++ | |
command s ++ a (Resword "while") ++ expression s | |
>> (fun ((((_,al),c),_),e) -> lmk_gdo al c e)) | |
||| (a (Resword "{") ++ expression s ++ a (Resword "}") | |
>> (fun ((_,e),_) -> lmk_assert e)) | |
||| (identifier ++ a (Resword ":=") ++ parse_preterm | |
>> (fun ((v,_),e) -> lmk_assign s v e))) i | |
and commands s i = | |
(command s ++ possibly (a (Resword ";") ++ commands s >> snd) | |
>> (fun (c,cs) -> lmk_seq c cs)) i in | |
let program i = | |
let ((_,s),_),r = | |
(a (Resword "var") ++ parse_preterm ++ a (Resword ";")) i in | |
let c,r' = (commands s ++ a (Resword "end") >> fst) r in | |
(s,c),r' in | |
let assertion = | |
a (Ident "correct") ++ parse_preterm ++ program ++ parse_preterm | |
>> fun (((_,p),(s,c)),q) -> | |
Combp(Combp(Combp(Varp("correct",dpty),Absp(s,p)),c),Absp(s,q)) in | |
(program >> snd),assertion;; | |
(* ------------------------------------------------------------------------- *) | |
(* Introduce the variables in the VCs. *) | |
(* ------------------------------------------------------------------------- *) | |
let STATE_GEN_TAC = | |
let PAIR_CONV = REWR_CONV(GSYM PAIR) in | |
let rec repair vs v acc = | |
try let l,r = dest_pair vs in | |
let th = PAIR_CONV v in | |
let tm = rand(concl th) in | |
let rtm = rator tm in | |
let lth,acc1 = repair l (rand rtm) acc in | |
let rth,acc2 = repair r (rand tm) acc1 in | |
TRANS th (MK_COMB(AP_TERM (rator rtm) lth,rth)),acc2 | |
with Failure _ -> REFL v,((v,vs)::acc) in | |
fun (asl,w) -> | |
let abstm = find_term (fun t -> not (is_abs t) && is_gabs t) w in | |
let vs = fst(dest_gabs abstm) in | |
let v = genvar(type_of(fst(dest_forall w))) in | |
let th,gens = repair vs v [] in | |
(X_GEN_TAC v THEN SUBST1_TAC th THEN | |
MAP_EVERY SPEC_TAC gens THEN REPEAT GEN_TAC) (asl,w);; | |
let STATE_GEN_TAC' = | |
let PAIR_CONV = REWR_CONV(GSYM PAIR) in | |
let rec repair vs v acc = | |
try let l,r = dest_pair vs in | |
let th = PAIR_CONV v in | |
let tm = rand(concl th) in | |
let rtm = rator tm in | |
let lth,acc1 = repair l (rand rtm) acc in | |
let rth,acc2 = repair r (rand tm) acc1 in | |
TRANS th (MK_COMB(AP_TERM (rator rtm) lth,rth)),acc2 | |
with Failure _ -> REFL v,((v,vs)::acc) in | |
fun (asl,w) -> | |
let abstm = find_term (fun t -> not (is_abs t) && is_gabs t) w in | |
let vs0 = fst(dest_gabs abstm) in | |
let vl0 = striplist dest_pair vs0 in | |
let vl = map (variant (variables (list_mk_conj(w::map (concl o snd) asl)))) | |
vl0 in | |
let vs = end_itlist (curry mk_pair) vl in | |
let v = genvar(type_of(fst(dest_forall w))) in | |
let th,gens = repair vs v [] in | |
(X_GEN_TAC v THEN SUBST1_TAC th THEN | |
MAP_EVERY SPEC_TAC gens THEN REPEAT GEN_TAC) (asl,w);; | |
(* ------------------------------------------------------------------------- *) | |
(* Tidy up a verification condition. *) | |
(* ------------------------------------------------------------------------- *) | |
let VC_UNPACK_TAC = | |
REWRITE_TAC[IMPLIES; o_THM; FALSE; TRUE; AND; OR; NOT; IMP] THEN | |
STATE_GEN_TAC THEN CONV_TAC(REDEPTH_CONV GEN_BETA_CONV) THEN | |
REWRITE_TAC[PAIR_EQ; GSYM CONJ_ASSOC];; | |
(* ------------------------------------------------------------------------- *) | |
(* Calculate a (pseudo-) weakest precondition for command. *) | |
(* ------------------------------------------------------------------------- *) | |
let find_pwp = | |
let wptms = | |
(map (snd o strip_forall o concl) | |
[WP_ASSIGN; WP_ITE; WP_SKIP; WP_ABORT; WP_IF; WP_ASSERT]) @ | |
[`wp (AWHILE i v e c) q = i`; `wp (ADO i v c e) q = i`] in | |
let conv tm = | |
tryfind (fun t -> rand (instantiate (term_match [] (lhand t) tm) t)) | |
wptms in | |
fun tm q -> conv(mk_comb(list_mk_icomb "wp" [tm],q));; | |
(* ------------------------------------------------------------------------- *) | |
(* Tools for automatic VC generation from annotated program. *) | |
(* ------------------------------------------------------------------------- *) | |
let VC_SEQ_TAC = | |
let is_seq = is_binary "Seq" | |
and strip_seq = striplist (dest_binary "Seq") | |
and is_assert tm = | |
try fst(dest_const(rator tm)) = "ASSERT" with Failure _ -> false | |
and is_assign tm = | |
try fst(dest_const(rator tm)) = "Assign" with Failure _ -> false | |
and SIDE_TAC = | |
GEN_REWRITE_TAC I [FUN_EQ_THM] THEN STATE_GEN_TAC THEN | |
PURE_REWRITE_TAC[IMPLIES; o_THM; FALSE; TRUE; AND; OR; NOT; IMP] THEN | |
CONV_TAC(REDEPTH_CONV GEN_BETA_CONV) THEN | |
REWRITE_TAC[PAIR_EQ] THEN NO_TAC in | |
let ADJUST_TAC ptm ptm' ((_,w) as gl) = | |
let w' = subst [ptm',ptm] w in | |
let th = EQT_ELIM(REWRITE_CONV[correct; WP_SEQ] (mk_eq(w,w'))) in | |
GEN_REWRITE_TAC I [th] gl in | |
fun (asl,w) -> | |
let cptm,q = dest_comb w in | |
let cpt,ptm = dest_comb cptm in | |
let ctm,p = dest_comb cpt in | |
let ptms = strip_seq ptm in | |
let seq = rator(rator ptm) in | |
try let atm = find is_assert ptms in | |
let i = index atm ptms in | |
if i = 0 then | |
let ptm' = mk_binop seq (hd ptms) (list_mk_binop seq (tl ptms)) in | |
(ADJUST_TAC ptm ptm' THEN | |
MATCH_MP_TAC VC_SEQ_ASSERT_LEFT THEN CONJ_TAC THENL | |
[VC_UNPACK_TAC; ALL_TAC]) (asl,w) | |
else if i = length ptms - 1 then | |
let ptm' = mk_binop seq (list_mk_binop seq (butlast ptms)) | |
(last ptms) in | |
(ADJUST_TAC ptm ptm' THEN | |
MATCH_MP_TAC VC_SEQ_ASSERT_RIGHT THEN CONJ_TAC THENL | |
[ALL_TAC; VC_UNPACK_TAC]) (asl,w) | |
else | |
let l,mr = chop_list (index atm ptms) ptms in | |
let ptm' = mk_binop seq (list_mk_binop seq l) | |
(mk_binop seq (hd mr) (list_mk_binop seq (tl mr))) in | |
(ADJUST_TAC ptm ptm' THEN | |
MATCH_MP_TAC VC_SEQ_ASSERT_MIDDLE THEN CONJ_TAC) (asl,w) | |
with Failure "find" -> try | |
if is_assign (hd ptms) then | |
let ptm' = mk_binop seq (hd ptms) (list_mk_binop seq (tl ptms)) in | |
(ADJUST_TAC ptm ptm' THEN | |
MATCH_MP_TAC VC_SEQ_ASSIGN_LEFT THEN REPEAT CONJ_TAC THENL | |
[SIDE_TAC; SIDE_TAC; ALL_TAC]) (asl,w) | |
else fail() | |
with Failure _ -> | |
let ptm' = mk_binop seq | |
(list_mk_binop seq (butlast ptms)) (last ptms) in | |
let pwp = find_pwp (rand ptm') q in | |
(ADJUST_TAC ptm ptm' THEN MATCH_MP_TAC CORRECT_SEQ THEN | |
EXISTS_TAC pwp THEN CONJ_TAC) | |
(asl,w);; | |
(* ------------------------------------------------------------------------- *) | |
(* Tactic to apply a 1-step VC generation. *) | |
(* ------------------------------------------------------------------------- *) | |
let VC_STEP_TAC = | |
let tacnet = | |
itlist (enter []) | |
[`correct p SKIP q`, | |
MATCH_MP_TAC VC_SKIP THEN VC_UNPACK_TAC; | |
`correct p (ASSERT b) q`, | |
MATCH_MP_TAC VC_ASSERT THEN VC_UNPACK_TAC; | |
`correct p (Assign f) q`, | |
MATCH_MP_TAC VC_ASSIGN THEN VC_UNPACK_TAC; | |
`correct p (Ite e c1 c2) q`, | |
MATCH_MP_TAC VC_ITE THEN CONJ_TAC; | |
`correct p (IF e c) q`, | |
MATCH_MP_TAC VC_IF THEN CONJ_TAC THENL [ALL_TAC; VC_UNPACK_TAC]; | |
`correct p (AWHILE i (MEASURE m) e c) q`, | |
MATCH_MP_TAC VC_AWHILE_MEASURE THEN REPEAT CONJ_TAC THENL | |
[VC_UNPACK_TAC; VC_UNPACK_TAC; GEN_TAC]; | |
`correct p (AWHILE i v e c) q`, | |
MATCH_MP_TAC VC_AWHILE_VARIANT THEN REPEAT CONJ_TAC THENL | |
[ALL_TAC; VC_UNPACK_TAC; VC_UNPACK_TAC; STATE_GEN_TAC']; | |
`correct p (ADO i (MEASURE m) c e) q`, | |
MATCH_MP_TAC VC_ADO_MEASURE THEN REPEAT CONJ_TAC THENL | |
[VC_UNPACK_TAC; VC_UNPACK_TAC; STATE_GEN_TAC']; | |
`correct p (ADO i v c e) q`, | |
MATCH_MP_TAC VC_ADO_VARIANT THEN REPEAT CONJ_TAC THENL | |
[ALL_TAC; VC_UNPACK_TAC; VC_UNPACK_TAC; STATE_GEN_TAC']; | |
`correct p (c1 Seq c2) q`, | |
VC_SEQ_TAC] empty_net in | |
fun (asl,w) -> FIRST(lookup w tacnet) (asl,w);; | |
(* ------------------------------------------------------------------------- *) | |
(* Final packaging to strip away the program completely. *) | |
(* ------------------------------------------------------------------------- *) | |
let VC_TAC = REPEAT VC_STEP_TAC;; | |
(* ------------------------------------------------------------------------- *) | |
(* Some examples. *) | |
(* ------------------------------------------------------------------------- *) | |
install_parser ("correct",parse_program_assertion);; | |
let EXAMPLE_FACTORIAL = prove | |
(`correct | |
T | |
var x,y,n; | |
x := 0; | |
y := 1; | |
while x < n do [invariant x <= n /\ (y = FACT x); measure n - x] | |
(x := x + 1; | |
y := y * x) | |
end | |
y = FACT n`, | |
VC_TAC THENL | |
[STRIP_TAC THEN ASM_REWRITE_TAC[FACT; LE_0]; | |
REWRITE_TAC[CONJ_ASSOC; NOT_LT; LE_ANTISYM] THEN MESON_TAC[]; | |
REWRITE_TAC[GSYM ADD1; FACT] THEN STRIP_TAC THEN | |
ASM_REWRITE_TAC[MULT_AC] THEN UNDISCH_TAC `x < n` THEN ARITH_TAC]);; | |
delete_parser "correct";; | |