Datasets:
Tasks:
Text Generation
Modalities:
Text
Sub-tasks:
language-modeling
Languages:
English
Size:
100K - 1M
License:
(* ========================================================================= *) | |
(* Part 1: Background theories. *) | |
(* ========================================================================= *) | |
let EMPTY_IS_FINITE = prove | |
(`!s. (s = EMPTY) ==> FINITE s`, | |
SIMP_TAC[FINITE_RULES]);; | |
let SING_IS_FINITE = prove | |
(`!s a. (s = {a}) ==> FINITE s`, | |
SIMP_TAC[FINITE_INSERT; FINITE_RULES]);; | |
let UNION_NONZERO = prove | |
(`{a | ~(f a + g a = 0)} = {a | ~(f a = 0)} UNION {a | ~(g a = 0)}`, | |
REWRITE_TAC[ADD_EQ_0; EXTENSION; IN_UNION; IN_ELIM_THM; DE_MORGAN_THM]);; | |
(* ------------------------------------------------------------------------- *) | |
(* Definition of type of finite multisets with a few basic operations. *) | |
(* ------------------------------------------------------------------------- *) | |
parse_as_infix("mmember",(11,"right"));; | |
parse_as_infix("munion",(16,"right"));; | |
parse_as_infix("mdiff",(18,"left"));; | |
let multiset_tybij_th = prove | |
(`?f. FINITE {a:A | ~(f a = 0)}`, | |
EXISTS_TAC `\a:A. 0` THEN | |
SIMP_TAC[EMPTY_IS_FINITE; EXTENSION; IN_ELIM_THM; NOT_IN_EMPTY]);; | |
let multiset_tybij = new_type_definition | |
"multiset" ("multiset","multiplicity") multiset_tybij_th;; | |
let mempty = new_definition | |
`mempty = multiset (\b. 0)`;; | |
let mmember = new_definition | |
`a mmember M <=> ~(multiplicity M a = 0)`;; | |
let msing = new_definition | |
`msing a = multiset (\b. if b = a then 1 else 0)`;; | |
let munion = new_definition | |
`M munion N = multiset(\b. multiplicity M b + multiplicity N b)`;; | |
let mdiff = new_definition | |
`M mdiff N = multiset(\b. multiplicity M b - multiplicity N b)`;; | |
(* ------------------------------------------------------------------------- *) | |
(* Extensionality for multisets. *) | |
(* ------------------------------------------------------------------------- *) | |
let MEXTENSION = prove | |
(`(M = N) = !a. multiplicity M a = multiplicity N a`, | |
REWRITE_TAC[GSYM FUN_EQ_THM] THEN CONV_TAC(ONCE_DEPTH_CONV ETA_CONV) THEN | |
MESON_TAC[multiset_tybij]);; | |
(* ------------------------------------------------------------------------- *) | |
(* Basic properties of multisets. *) | |
(* ------------------------------------------------------------------------- *) | |
let MULTIPLICITY_MULTISET = prove | |
(`FINITE {a | ~(f a = 0)} /\ (f a = y) ==> (multiplicity(multiset f) a = y)`, | |
SIMP_TAC[multiset_tybij]);; | |
let MEMPTY = prove | |
(`multiplicity mempty a = 0`, | |
REWRITE_TAC[mempty] THEN MATCH_MP_TAC MULTIPLICITY_MULTISET THEN | |
SIMP_TAC[EMPTY_IS_FINITE; EXTENSION; IN_ELIM_THM; NOT_IN_EMPTY]);; | |
let MSING = prove | |
(`multiplicity (msing (a:A)) b = if b = a then 1 else 0`, | |
REWRITE_TAC[msing] THEN MATCH_MP_TAC MULTIPLICITY_MULTISET THEN | |
REWRITE_TAC[] THEN MATCH_MP_TAC SING_IS_FINITE THEN EXISTS_TAC `a:A` THEN | |
REWRITE_TAC[EXTENSION; IN_ELIM_THM; IN_INSERT; NOT_IN_EMPTY] THEN | |
GEN_TAC THEN COND_CASES_TAC THEN REWRITE_TAC[ARITH_EQ]);; | |
let MUNION = prove | |
(`multiplicity (M munion N) a = multiplicity M a + multiplicity N a`, | |
REWRITE_TAC[munion] THEN MATCH_MP_TAC MULTIPLICITY_MULTISET THEN | |
REWRITE_TAC[UNION_NONZERO; FINITE_UNION] THEN SIMP_TAC[multiset_tybij] THEN | |
CONV_TAC(ONCE_DEPTH_CONV ETA_CONV) THEN REWRITE_TAC[multiset_tybij]);; | |
let MDIFF = prove | |
(`multiplicity (M mdiff N) (a:A) = multiplicity M a - multiplicity N a`, | |
REWRITE_TAC[mdiff] THEN MATCH_MP_TAC MULTIPLICITY_MULTISET THEN | |
REWRITE_TAC[] THEN MATCH_MP_TAC FINITE_SUBSET THEN | |
EXISTS_TAC `{a:A | ~(multiplicity M a = 0)}` THEN | |
SIMP_TAC[SUBSET; IN_ELIM_THM; multiset_tybij] THEN | |
CONV_TAC(ONCE_DEPTH_CONV ETA_CONV) THEN REWRITE_TAC[multiset_tybij] THEN | |
ARITH_TAC);; | |
(* ------------------------------------------------------------------------- *) | |
(* Some trivial properties of multisets that we use later. *) | |
(* ------------------------------------------------------------------------- *) | |
let MUNION_MEMPTY = prove | |
(`~(M munion (msing(a:A)) = mempty)`, | |
REWRITE_TAC[MEXTENSION; MEMPTY; MSING; MUNION] THEN | |
DISCH_THEN(MP_TAC o SPEC `a:A`) THEN | |
REWRITE_TAC[ADD_EQ_0; ARITH_EQ]);; | |
let MMEMBER_MUNION = prove | |
(`x mmember (M munion N) <=> x mmember M \/ x mmember N`, | |
REWRITE_TAC[mmember; MUNION; ADD_EQ_0; DE_MORGAN_THM]);; | |
let MMEMBER_MSING = prove | |
(`x mmember (msing a) <=> (x = a)`, | |
REWRITE_TAC[mmember; MSING] THEN COND_CASES_TAC THEN REWRITE_TAC[ARITH_EQ]);; | |
let MUNION_EMPTY = prove | |
(`M munion mempty = M`, | |
REWRITE_TAC[MEXTENSION; MUNION; MEMPTY; ADD_CLAUSES]);; | |
let MUNION_ASSOC = prove | |
(`M1 munion (M2 munion M3) = (M1 munion M2) munion M3`, | |
REWRITE_TAC[MEXTENSION; MUNION; ADD_ASSOC]);; | |
let MUNION_AC = prove | |
(`(M1 munion M2 = M2 munion M1) /\ | |
((M1 munion M2) munion M3 = M1 munion M2 munion M3) /\ | |
(M1 munion M2 munion M3 = M2 munion M1 munion M3)`, | |
REWRITE_TAC[MEXTENSION; MUNION; ADD_AC]);; | |
let MUNION_11 = prove | |
(`(M1 munion N = M2 munion N) <=> (M1 = M2)`, | |
REWRITE_TAC[MEXTENSION; MUNION; EQ_ADD_RCANCEL]);; | |
let MUNION_INUNION = prove | |
(`a mmember (M munion (msing b)) /\ ~(b = a) ==> a mmember M`, | |
REWRITE_TAC[mmember; MUNION; MSING; ADD_EQ_0] THEN | |
COND_CASES_TAC THEN ASM_REWRITE_TAC[ARITH_EQ]);; | |
let MMEMBER_MDIFF = prove | |
(`(a:A) mmember M ==> (M = (M mdiff (msing a)) munion (msing a))`, | |
REWRITE_TAC[mmember; MEXTENSION; MUNION; MDIFF; MSING] THEN | |
REPEAT STRIP_TAC THEN COND_CASES_TAC THEN ASM_REWRITE_TAC[] THEN | |
UNDISCH_TAC `~(multiplicity M (a:A) = 0)` THEN ARITH_TAC);; | |
(* ------------------------------------------------------------------------- *) | |
(* Induction principle for multisets. *) | |
(* ------------------------------------------------------------------------- *) | |
let MULTISET_INDUCT_LEMMA1 = prove | |
(`(!M. ({a | ~(multiplicity M a = 0)} SUBSET s) ==> P M) /\ | |
(!a:A M. P M ==> P (M munion (msing a))) | |
==> !n M. (multiplicity M a = n) /\ | |
{a:A | ~(multiplicity M a = 0)} SUBSET (a INSERT s) | |
==> P M`, | |
STRIP_TAC THEN INDUCT_TAC THEN REPEAT STRIP_TAC THENL | |
[FIRST_X_ASSUM MATCH_MP_TAC THEN | |
UNDISCH_TAC `{a:A | ~(multiplicity M a = 0)} SUBSET (a INSERT s)` THEN | |
REWRITE_TAC[SUBSET; IN_ELIM_THM; IN_INSERT] THEN ASM_MESON_TAC[]; | |
SUBGOAL_THEN `M = (M mdiff (msing(a:A))) munion (msing a)` SUBST1_TAC THENL | |
[MATCH_MP_TAC MMEMBER_MDIFF THEN ASM_REWRITE_TAC[mmember; NOT_SUC]; | |
ALL_TAC] THEN | |
MAP_EVERY (MATCH_MP_TAC o ASSUME) | |
[`!a:A M. P M ==> P (M munion msing a)`; | |
`!M. (multiplicity M a = n) /\ | |
{a:A | ~(multiplicity M a = 0)} SUBSET (a INSERT s) | |
==> P M`] THEN | |
ASM_REWRITE_TAC[MDIFF; MSING; ARITH_RULE `SUC n - 1 = n`] THEN | |
MATCH_MP_TAC SUBSET_TRANS THEN | |
EXISTS_TAC `{a:A | ~(multiplicity M a = 0)}` THEN | |
ASM_SIMP_TAC[SUBSET; IN_ELIM_THM; CONTRAPOS_THM; SUB_0]]);; | |
let MULTISET_INDUCT_LEMMA2 = prove | |
(`P mempty /\ | |
(!a:A M. P M ==> P (M munion (msing a))) | |
==> !s. FINITE s ==> !M. {a:A | ~(multiplicity M a = 0)} SUBSET s ==> P M`, | |
STRIP_TAC THEN MATCH_MP_TAC FINITE_INDUCT THEN CONJ_TAC THENL | |
[REWRITE_TAC[SUBSET; IN_ELIM_THM; NOT_IN_EMPTY] THEN | |
REPEAT STRIP_TAC THEN | |
SUBGOAL_THEN `M:(A)multiset = mempty` (fun th -> ASM_REWRITE_TAC[th]) THEN | |
ASM_REWRITE_TAC[MEXTENSION; MEMPTY]; X_GEN_TAC `a:A`] THEN | |
REPEAT STRIP_TAC THEN MP_TAC MULTISET_INDUCT_LEMMA1 THEN | |
ASM_REWRITE_TAC[] THEN DISCH_THEN MATCH_MP_TAC THEN | |
ASM_REWRITE_TAC[GSYM EXISTS_REFL]);; | |
let MULTISET_INDUCT = prove | |
(`P mempty /\ | |
(!a:A M. P M ==> P (M munion (msing a))) | |
==> !M. P M`, | |
DISCH_THEN(MP_TAC o MATCH_MP MULTISET_INDUCT_LEMMA2) THEN | |
REWRITE_TAC[RIGHT_IMP_FORALL_THM] THEN | |
REWRITE_TAC[IMP_IMP] THEN | |
GEN_TAC THEN DISCH_THEN MATCH_MP_TAC THEN | |
EXISTS_TAC `{a:A | ~(multiplicity M a = 0)}` THEN | |
REWRITE_TAC[SUBSET_REFL; multiset_tybij] THEN | |
CONV_TAC(ONCE_DEPTH_CONV ETA_CONV) THEN REWRITE_TAC[multiset_tybij]);; | |
(* ========================================================================= *) | |
(* Part 2: Transcription of Tobias's paper. *) | |
(* ========================================================================= *) | |
parse_as_infix("<<",(12,"right"));; | |
(* ------------------------------------------------------------------------- *) | |
(* Wellfounded part of a relation. *) | |
(* ------------------------------------------------------------------------- *) | |
let WFP_RULES,WFP_INDUCT,WFP_CASES = new_inductive_definition | |
`!x. (!y. y << x ==> WFP(<<) y) ==> WFP(<<) x`;; | |
(* ------------------------------------------------------------------------- *) | |
(* Wellfounded part induction. *) | |
(* ------------------------------------------------------------------------- *) | |
let WFP_PART_INDUCT = prove | |
(`!P. (!x. x IN WFP(<<) /\ (!y. y << x ==> P(y)) ==> P(x)) | |
==> !x:A. x IN WFP(<<) ==> P(x)`, | |
GEN_TAC THEN REWRITE_TAC[IN] THEN STRIP_TAC THEN | |
ONCE_REWRITE_TAC[TAUT `a ==> b <=> a ==> a /\ b`] THEN | |
MATCH_MP_TAC WFP_INDUCT THEN ASM_MESON_TAC[WFP_RULES]);; | |
(* ------------------------------------------------------------------------- *) | |
(* A relation is wellfounded iff WFP is the whole universe. *) | |
(* ------------------------------------------------------------------------- *) | |
let WFP_WF = prove | |
(`WF(<<) <=> (WFP(<<) = UNIV:A->bool)`, | |
EQ_TAC THENL | |
[REWRITE_TAC[WF_IND; EXTENSION; IN; UNIV] THEN MESON_TAC[WFP_RULES]; | |
DISCH_TAC THEN MP_TAC WFP_PART_INDUCT THEN | |
ASM_REWRITE_TAC[IN; UNIV; WF_IND]]);; | |
(* ------------------------------------------------------------------------- *) | |
(* This isn't needed for the result as such, but formalizes the last *) | |
(* remarks in section 3 that the WFP is exactly those elements that cannot *) | |
(* start infinite descending chains. *) | |
(* ------------------------------------------------------------------------- *) | |
let WFP_DCHAIN = prove | |
(`!(<<):A->A->bool. | |
WFP(<<) = {a | !x. (!n. x(SUC n) << x n) ==> ~(x 0 = a)}`, | |
GEN_TAC THEN MATCH_MP_TAC SUBSET_ANTISYM THEN | |
REWRITE_TAC[SUBSET; IN_ELIM_THM] THEN REWRITE_TAC[IN] THEN CONJ_TAC THENL | |
[MATCH_MP_TAC WFP_INDUCT THEN X_GEN_TAC `a:A` THEN DISCH_TAC THEN | |
X_GEN_TAC `x:num->A` THEN DISCH_TAC THEN DISCH_TAC THEN | |
FIRST_X_ASSUM(MP_TAC o SPEC `(x:num->A) (SUC 0)`) THEN | |
REWRITE_TAC[NOT_IMP] THEN CONJ_TAC THENL [ASM_MESON_TAC[]; ALL_TAC] THEN | |
DISCH_THEN(MP_TAC o SPEC `(x:num->A) o SUC`) THEN | |
ASM_REWRITE_TAC[o_THM]; | |
X_GEN_TAC `a:A` THEN GEN_REWRITE_TAC I [GSYM CONTRAPOS_THM] THEN | |
DISCH_TAC THEN MP_TAC(ISPECL | |
[`\(n:num) (x:A). ~WFP(<<) x`; `\(n:num) x y. ((<<):A->A->bool) y x`; | |
`a:A`] DEPENDENT_CHOICE_FIXED) THEN | |
ASM_REWRITE_TAC[] THEN ANTS_TAC THENL [ALL_TAC; MESON_TAC[]] THEN | |
GEN_TAC THEN GEN_REWRITE_TAC (LAND_CONV o RAND_CONV) [WFP_CASES] THEN | |
MESON_TAC[]]);; | |
(* ------------------------------------------------------------------------- *) | |
(* The multiset order. *) | |
(* ------------------------------------------------------------------------- *) | |
let morder = new_definition | |
`morder(<<) N M <=> ?M0 a K. (M = M0 munion (msing a)) /\ | |
(N = M0 munion K) /\ | |
(!b. b mmember K ==> b << a)`;; | |
(* ------------------------------------------------------------------------- *) | |
(* We separate off this part from the proof of LEMMA_2_1. *) | |
(* ------------------------------------------------------------------------- *) | |
let LEMMA_2_0 = prove | |
(`morder(<<) N (M0 munion (msing a)) | |
==> (?M. morder(<<) M M0 /\ (N = M munion (msing a))) \/ | |
(?K. (N = M0 munion K) /\ (!b:A. b mmember K ==> b << a))`, | |
GEN_REWRITE_TAC LAND_CONV [morder] THEN | |
DISCH_THEN(EVERY_TCL (map X_CHOOSE_THEN | |
[`M1:(A)multiset`; `b:A`; `K:(A)multiset`]) STRIP_ASSUME_TAC) THEN | |
ASM_CASES_TAC `b:A = a` THENL | |
[DISJ2_TAC THEN UNDISCH_THEN `b:A = a` SUBST_ALL_TAC THEN | |
EXISTS_TAC `K:(A)multiset` THEN ASM_MESON_TAC[MUNION_11]; DISJ1_TAC] THEN | |
SUBGOAL_THEN `?M2. M1 = M2 munion (msing(a:A))` STRIP_ASSUME_TAC THENL | |
[EXISTS_TAC `M1 mdiff (msing(a:A))` THEN | |
MAP_EVERY MATCH_MP_TAC [MMEMBER_MDIFF; MUNION_INUNION] THEN | |
UNDISCH_TAC `M0 munion (msing a) = M1 munion (msing(b:A))` THEN | |
ASM_REWRITE_TAC[MEXTENSION; MUNION; MSING; mmember] THEN | |
DISCH_THEN(MP_TAC o SPEC `a:A`) THEN ASM_REWRITE_TAC[] THEN | |
ARITH_TAC; ALL_TAC] THEN | |
EXISTS_TAC `M2 munion K:(A)multiset` THEN ASM_REWRITE_TAC[MUNION_AC] THEN | |
REWRITE_TAC[morder] THEN | |
MAP_EVERY EXISTS_TAC [`M2:(A)multiset`; `b:A`; `K:(A)multiset`] THEN | |
UNDISCH_TAC `M0 munion msing (a:A) = M1 munion msing b` THEN | |
ASM_REWRITE_TAC[MUNION_AC] THEN MESON_TAC[MUNION_AC; MUNION_11]);; | |
(* ------------------------------------------------------------------------- *) | |
(* The sequence of lemmas from Tobias's paper. *) | |
(* ------------------------------------------------------------------------- *) | |
let LEMMA_2_1 = prove | |
(`(!M b:A. b << a /\ M IN WFP(morder(<<)) | |
==> (M munion (msing b)) IN WFP(morder(<<))) /\ | |
M0 IN WFP(morder(<<)) /\ | |
(!M. morder(<<) M M0 ==> (M munion (msing a)) IN WFP(morder(<<))) | |
==> (M0 munion (msing a)) IN WFP(morder(<<))`, | |
STRIP_TAC THEN REWRITE_TAC[IN] THEN MATCH_MP_TAC WFP_RULES THEN | |
X_GEN_TAC `N:(A)multiset` THEN | |
DISCH_THEN(DISJ_CASES_THEN MP_TAC o MATCH_MP LEMMA_2_0) THENL | |
[ASM_MESON_TAC[IN]; REWRITE_TAC[LEFT_IMP_EXISTS_THM]] THEN | |
SPEC_TAC(`N:(A)multiset`,`N:(A)multiset`) THEN | |
ONCE_REWRITE_TAC[SWAP_FORALL_THM] THEN | |
MATCH_MP_TAC MULTISET_INDUCT THEN REPEAT STRIP_TAC THEN | |
RULE_ASSUM_TAC(REWRITE_RULE[MUNION_ASSOC; MMEMBER_MUNION; MMEMBER_MSING]) THEN | |
ASM_MESON_TAC[IN; MUNION_EMPTY]);; | |
let LEMMA_2_2 = prove | |
(`(!M b. b << a /\ M IN WFP(morder(<<)) | |
==> (M munion (msing b)) IN WFP(morder(<<))) | |
==> !M. M IN WFP(morder(<<)) ==> (M munion (msing a)) IN WFP(morder(<<))`, | |
STRIP_TAC THEN MATCH_MP_TAC WFP_PART_INDUCT THEN | |
REPEAT STRIP_TAC THEN MATCH_MP_TAC LEMMA_2_1 THEN ASM_REWRITE_TAC[]);; | |
let LEMMA_2_3 = prove | |
(`WF(<<) | |
==> !a M. M IN WFP(morder(<<)) ==> (M munion (msing a)) IN WFP(morder(<<))`, | |
REWRITE_TAC[WF_IND] THEN DISCH_THEN MATCH_MP_TAC THEN MESON_TAC[LEMMA_2_2]);; | |
let LEMMA_2_4 = prove | |
(`WF(<<) ==> !M. M IN WFP(morder(<<))`, | |
DISCH_TAC THEN MATCH_MP_TAC MULTISET_INDUCT THEN CONJ_TAC THENL | |
[REWRITE_TAC[IN] THEN MATCH_MP_TAC WFP_RULES THEN | |
REWRITE_TAC[morder; MUNION_MEMPTY]; | |
ASM_SIMP_TAC[LEMMA_2_3]]);; | |
(* ------------------------------------------------------------------------- *) | |
(* Hence the final result. *) | |
(* ------------------------------------------------------------------------- *) | |
let MORDER_WF = prove | |
(`WF(<<) ==> WF(morder(<<))`, | |
SIMP_TAC[WFP_WF; EXTENSION; IN_UNIV; LEMMA_2_4]);; | |