Datasets:
Tasks:
Text Generation
Modalities:
Text
Sub-tasks:
language-modeling
Languages:
English
Size:
100K - 1M
License:
(* ========================================================================= *) | |
(* Miller-Rabin strong pseudoprimes / probable primes. *) | |
(* ========================================================================= *) | |
needs "Library/primitive.ml";; | |
prioritize_num();; | |
(* ------------------------------------------------------------------------- *) | |
(* Miller-Rabin compositeness witnesses and pseudoprimes (including primes). *) | |
(* We treat even numbers as degenerately composite to any pseudoprime base, *) | |
(* except for n = 2, which is considered a pseudoprime. This seems to give *) | |
(* the cleanest relationhships, though we mainly care about the odd case. *) | |
(* ------------------------------------------------------------------------- *) | |
let miller_rabin_composite = new_definition | |
`miller_rabin_composite a n <=> | |
if EVEN n then ~(n = 2) else | |
let e = index 2 (n - 1) in | |
let k = (n - 1) DIV 2 EXP e in | |
~(a EXP k == 1) (mod n) /\ | |
!i. i < e ==> ~((a EXP (2 EXP i * k) == n - 1) (mod n))`;; | |
let miller_rabin_pseudoprime = new_definition | |
`miller_rabin_pseudoprime a n <=> | |
n = 2 \/ | |
ODD n /\ | |
let e = index 2 (n - 1) in | |
let k = (n - 1) DIV 2 EXP e in | |
(a EXP k == 1) (mod n) \/ | |
?i. i < e /\ (a EXP (2 EXP i * k) == n - 1) (mod n)`;; | |
let NOT_MILLER_RABIN_COMPOSITE = prove | |
(`!a n. ~(miller_rabin_composite a n) <=> miller_rabin_pseudoprime a n`, | |
REWRITE_TAC[miller_rabin_composite; miller_rabin_pseudoprime] THEN | |
REPEAT GEN_TAC THEN ASM_CASES_TAC `n = 2` THEN ASM_REWRITE_TAC[ARITH] THEN | |
ASM_CASES_TAC `ODD n` THEN ASM_REWRITE_TAC[GSYM NOT_ODD] THEN | |
CONV_TAC(TOP_DEPTH_CONV let_CONV) THEN MESON_TAC[]);; | |
let NOT_MILLER_RABIN_PSEUDOPRIME = prove | |
(`!a n. ~(miller_rabin_pseudoprime a n) <=> miller_rabin_composite a n`, | |
REWRITE_TAC[GSYM NOT_MILLER_RABIN_COMPOSITE]);; | |
(* ------------------------------------------------------------------------- *) | |
(* Primes are Miller-Rabin pseudoprimes to any coprime base. *) | |
(* An odd Miller-Rabin pseudoprime is a Fermat pseodoprime, and for an odd *) | |
(* prime power the reverse is true (not more generally). *) | |
(* ------------------------------------------------------------------------- *) | |
let MILLER_RABIN_IMP_FERMAT_PSEUDOPRIME_EXPLICIT = prove | |
(`!a q. miller_rabin_pseudoprime a q /\ ~(q = 2) | |
==> (a EXP (q - 1) == 1) (mod q)`, | |
REPEAT GEN_TAC THEN DISCH_THEN(CONJUNCTS_THEN2 MP_TAC ASSUME_TAC) THEN | |
ASM_CASES_TAC `q = 0` THEN ASM_REWRITE_TAC[SUB_0; EXP; CONG_REFL] THEN | |
ASM_REWRITE_TAC[miller_rabin_pseudoprime] THEN | |
CONV_TAC(TOP_DEPTH_CONV let_CONV) THEN STRIP_TAC THENL | |
[FIRST_X_ASSUM(MP_TAC o | |
SPEC `2 EXP (index 2 (q - 1))` o MATCH_MP CONG_EXP_1) THEN | |
MATCH_MP_TAC(REWRITE_RULE[IMP_CONJ] CONG_TRANS) THEN | |
MATCH_MP_TAC EQ_IMP_CONG THEN CONV_TAC SYM_CONV THEN | |
REWRITE_TAC[EXP_EXP] THEN AP_TERM_TAC THEN | |
REWRITE_TAC[GSYM DIVIDES_DIV_MULT; EXP_INDEX_DIVIDES]; | |
FIRST_X_ASSUM(MP_TAC o GEN_REWRITE_RULE I [CONG_MINUS1]) THEN | |
ASM_REWRITE_TAC[] THEN DISCH_THEN(MP_TAC o MATCH_MP (NUMBER_RULE | |
`q divides (a + 1) ==> (a EXP 2 == 1) (mod q)`)) THEN | |
REWRITE_TAC[EXP_EXP] THEN DISCH_THEN(MP_TAC o | |
SPEC `2 EXP (index 2 (q - 1) - (i + 1))` o | |
MATCH_MP CONG_EXP_1) THEN | |
MATCH_MP_TAC(REWRITE_RULE[IMP_CONJ] CONG_TRANS) THEN | |
MATCH_MP_TAC EQ_IMP_CONG THEN CONV_TAC SYM_CONV THEN | |
REWRITE_TAC[EXP_EXP] THEN AP_TERM_TAC THEN | |
REWRITE_TAC[ARITH_RULE `((e * d) * 2) * f = ((2 * e) * f) * d`] THEN | |
REWRITE_TAC[GSYM(CONJUNCT2 EXP); GSYM EXP_ADD] THEN | |
ASM_SIMP_TAC[ARITH_RULE `i < j ==> SUC i + j - (i + 1) = j`] THEN | |
ONCE_REWRITE_TAC[MULT_SYM] THEN | |
REWRITE_TAC[GSYM DIVIDES_DIV_MULT; EXP_INDEX_DIVIDES]]);; | |
let MILLER_RABIN_EQ_FERMAT_PSEUDOPRIME_EXPLICIT = prove | |
(`!a q. (?p k. prime p /\ ODD p /\ p EXP k = q) | |
==> (miller_rabin_pseudoprime a q <=> (a EXP (q - 1) == 1) (mod q))`, | |
REPEAT GEN_TAC THEN DISCH_TAC THEN EQ_TAC THENL | |
[MATCH_MP_TAC(REWRITE_RULE[IMP_CONJ_ALT] | |
MILLER_RABIN_IMP_FERMAT_PSEUDOPRIME_EXPLICIT) THEN | |
ASM_MESON_TAC[ODD_EXP; REWRITE_CONV[ARITH] `ODD 2`]; | |
REWRITE_TAC[miller_rabin_pseudoprime] THEN | |
REPEAT LET_TAC THEN DISCH_TAC] THEN | |
DISJ2_TAC THEN CONJ_TAC THENL [ASM_MESON_TAC[ODD_EXP]; ALL_TAC] THEN | |
MP_TAC(fst(EQ_IMP_RULE | |
(SPEC `\i. i <= e /\ (a EXP (2 EXP i * k) == 1) (mod q)` num_WOP))) THEN | |
REWRITE_TAC[] THEN ANTS_TAC THENL | |
[EXISTS_TAC `e:num` THEN REWRITE_TAC[LE_REFL] THEN | |
MP_TAC(ISPECL [`q - 1`; `2`] INDEX_DECOMPOSITION) THEN | |
ASM_REWRITE_TAC[] THEN | |
DISCH_THEN(X_CHOOSE_THEN `m:num` (ASSUME_TAC o SYM o CONJUNCT1)) THEN | |
UNDISCH_TAC `(q - 1) DIV 2 EXP e = k` THEN | |
ASM_SIMP_TAC[DIV_MULT; EXP_EQ_0; ARITH_EQ] THEN ASM_MESON_TAC[]; | |
REWRITE_TAC[LEFT_IMP_EXISTS_THM]] THEN | |
X_GEN_TAC `n:num` THEN ASM_CASES_TAC `n = 0` THEN | |
ASM_SIMP_TAC[EXP; MULT_CLAUSES] THEN STRIP_TAC THEN | |
DISJ2_TAC THEN EXISTS_TAC `n - 1` THEN | |
CONJ_TAC THENL [ASM_ARITH_TAC; ALL_TAC] THEN | |
FIRST_X_ASSUM(MP_TAC o SPEC `n - 1`) THEN | |
ANTS_TAC THENL [ASM_ARITH_TAC; ALL_TAC] THEN | |
MATCH_MP_TAC(TAUT `p /\ (q \/ r) ==> ~(p /\ q) ==> r`) THEN | |
CONJ_TAC THENL [ASM_ARITH_TAC; ALL_TAC] THEN | |
FIRST_X_ASSUM(X_CHOOSE_THEN `p:num` (X_CHOOSE_THEN `j:num` MP_TAC)) THEN | |
ASM_CASES_TAC `p = 2` THEN ASM_REWRITE_TAC[ARITH] THEN | |
REPEAT(DISCH_THEN(CONJUNCTS_THEN2 ASSUME_TAC MP_TAC)) THEN | |
DISCH_THEN(SUBST_ALL_TAC o SYM) THEN | |
ASM_SIMP_TAC[GSYM CONG_SQUARE_1_PRIME_POWER] THEN | |
REWRITE_TAC[EXP_EXP; ARITH_RULE `(e * k) * 2 = (2 * e) * k`] THEN | |
REWRITE_TAC[GSYM(CONJUNCT2 EXP)] THEN | |
ASM_SIMP_TAC[ARITH_RULE `~(n = 0) ==> SUC(n - 1) = n`]);; | |
let PRIME_IMP_MILLER_RABIN_PSEUDOPRIME = prove | |
(`!a p. prime p /\ coprime(a,p) ==> miller_rabin_pseudoprime a p`, | |
REPEAT GEN_TAC THEN ASM_CASES_TAC `p = 2` THENL | |
[ASM_REWRITE_TAC[miller_rabin_pseudoprime]; STRIP_TAC] THEN | |
W(MP_TAC o PART_MATCH (lhand o rand) | |
MILLER_RABIN_EQ_FERMAT_PSEUDOPRIME_EXPLICIT o snd) THEN | |
ASM_SIMP_TAC[FERMAT_LITTLE_PRIME] THEN DISCH_THEN MATCH_MP_TAC THEN | |
MAP_EVERY EXISTS_TAC [`p:num`; `1`] THEN | |
ASM_MESON_TAC[PRIME_ODD; EXP_1]);; | |
let PRIME_IMP_MILLER_RABIN_PSEUDOPRIME_ALT = prove | |
(`!a p. prime p /\ ~(p divides a) ==> miller_rabin_pseudoprime a p`, | |
ASM_MESON_TAC[PRIME_COPRIME_EQ; COPRIME_SYM; | |
PRIME_IMP_MILLER_RABIN_PSEUDOPRIME]);; | |
let MILLER_RABIN_COMPOSITE_IMP_COMPOSITE = prove | |
(`!a p. coprime(a,p) /\ miller_rabin_composite a p ==> ~(prime p)`, | |
REWRITE_TAC[GSYM NOT_MILLER_RABIN_PSEUDOPRIME] THEN | |
MESON_TAC[PRIME_IMP_MILLER_RABIN_PSEUDOPRIME]);; | |
let MILLER_RABIN_COMPOSITE_IMP_COMPOSITE_ALT = prove | |
(`!a p. ~(p divides a) /\ miller_rabin_composite a p ==> ~(prime p)`, | |
ASM_MESON_TAC[PRIME_COPRIME_EQ; COPRIME_SYM; | |
MILLER_RABIN_COMPOSITE_IMP_COMPOSITE]);; | |
(* ------------------------------------------------------------------------- *) | |
(* Other miscellaneous properties. *) | |
(* ------------------------------------------------------------------------- *) | |
let MILLER_RABIN_PSEUDOPRIME_IMP_COPRIME = prove | |
(`!a p. miller_rabin_pseudoprime a p ==> p = 2 \/ coprime(a,p)`, | |
REPEAT GEN_TAC THEN ASM_CASES_TAC `p = 2` THEN ASM_REWRITE_TAC[] THEN | |
ASM_CASES_TAC `p = 1` THEN ASM_REWRITE_TAC[COPRIME_1] THEN | |
ASM_CASES_TAC `p = 0` THENL | |
[ASM_REWRITE_TAC[miller_rabin_pseudoprime; ARITH]; ALL_TAC] THEN | |
DISCH_THEN(MP_TAC o MATCH_MP | |
(REWRITE_RULE[IMP_CONJ] MILLER_RABIN_IMP_FERMAT_PSEUDOPRIME_EXPLICIT)) THEN | |
ASM_REWRITE_TAC[] THEN | |
DISCH_THEN(MP_TAC o MATCH_MP (NUMBER_RULE | |
`(a == 1) (mod n) ==> coprime(a,n)`)) THEN | |
REWRITE_TAC[COPRIME_LEXP] THEN | |
ASM_CASES_TAC `p = 1` THEN ASM_REWRITE_TAC[NUMBER_RULE `coprime(a,1)`] THEN | |
STRIP_TAC THEN ASM_REWRITE_TAC[] THEN ASM_ARITH_TAC);; | |
let MILLER_RABIN_PSEUDOPRIME_CONG = prove | |
(`!a b p. | |
(a == b) (mod p) | |
==> (miller_rabin_pseudoprime a p <=> miller_rabin_pseudoprime b p)`, | |
REWRITE_TAC[FORALL_AND_THM; TAUT | |
`p ==> (q <=> r) <=> (p ==> q ==> r) /\ (p ==> r ==> q)`]THEN | |
GEN_REWRITE_TAC (LAND_CONV o ONCE_DEPTH_CONV) [CONG_SYM] THEN | |
GEN_REWRITE_TAC RAND_CONV [SWAP_FORALL_THM] THEN REWRITE_TAC[] THEN | |
MAP_EVERY X_GEN_TAC [`a:num`; `b:num`; `p:num`] THEN DISCH_TAC THEN | |
REWRITE_TAC[miller_rabin_pseudoprime] THEN REPEAT LET_TAC THEN | |
MATCH_MP_TAC MONO_OR THEN CONJ_TAC THEN REWRITE_TAC[] THEN | |
ASM_CASES_TAC `ODD p` THEN ASM_REWRITE_TAC[] THEN | |
MATCH_MP_TAC MONO_OR THEN CONJ_TAC THENL | |
[ALL_TAC; | |
MATCH_MP_TAC MONO_EXISTS THEN X_GEN_TAC `i:num` THEN | |
MATCH_MP_TAC MONO_AND THEN REWRITE_TAC[]] THEN | |
MATCH_MP_TAC(REWRITE_RULE[IMP_CONJ] CONG_TRANS) THEN | |
ASM_SIMP_TAC[CONG_EXP]);; | |
let MILLER_RABIN_PSEUDOPRIME_1 = prove | |
(`!p. ODD p ==> miller_rabin_pseudoprime 1 p`, | |
REWRITE_TAC[miller_rabin_pseudoprime; EXP_ONE; CONG_REFL] THEN | |
CONV_TAC(TOP_DEPTH_CONV let_CONV) THEN SIMP_TAC[]);; | |
let MILLER_RABIN_PSEUDOPRIME_MOD_1 = prove | |
(`!a. miller_rabin_pseudoprime a 1`, | |
REWRITE_TAC[miller_rabin_pseudoprime; CONG_MOD_1] THEN | |
CONV_TAC(TOP_DEPTH_CONV let_CONV) THEN REWRITE_TAC[ARITH]);; | |
let MILLER_RABIN_PSEUDOPRIME_INVERSE_MOD = prove | |
(`!a p. miller_rabin_pseudoprime a p | |
==> miller_rabin_pseudoprime (inverse_mod p a) p`, | |
REPEAT GEN_TAC THEN | |
ASM_CASES_TAC `p = 0` THENL | |
[ASM_REWRITE_TAC[inverse_mod; miller_rabin_pseudoprime; ARITH]; | |
ALL_TAC] THEN | |
ASM_CASES_TAC `p = 2` THENL | |
[ASM_REWRITE_TAC[inverse_mod; miller_rabin_pseudoprime; ARITH]; | |
ALL_TAC] THEN | |
ASM_CASES_TAC `coprime(a:num,p)` THENL | |
[ALL_TAC; ASM_MESON_TAC[MILLER_RABIN_PSEUDOPRIME_IMP_COPRIME]] THEN | |
ASM_REWRITE_TAC[miller_rabin_pseudoprime] THEN REPEAT LET_TAC THEN | |
ASM_CASES_TAC `ODD p` THEN ASM_REWRITE_TAC[] THEN | |
MATCH_MP_TAC MONO_OR THEN CONJ_TAC THENL | |
[MATCH_MP_TAC(NUMBER_RULE | |
`(x * y == 1) (mod p) ==> (x == 1) (mod p) ==> (y == 1) (mod p)`) THEN | |
ASM_REWRITE_TAC[GSYM MULT_EXP] THEN | |
MATCH_MP_TAC CONG_EXP_1 THEN REWRITE_TAC[INVERSE_MOD_RMUL_EQ] THEN | |
ASM_MESON_TAC[COPRIME_SYM]; | |
MATCH_MP_TAC MONO_EXISTS THEN X_GEN_TAC `i:num` THEN | |
MATCH_MP_TAC MONO_AND THEN REWRITE_TAC[] THEN | |
MATCH_MP_TAC(NUMBER_RULE | |
`(a EXP 2 == 1) (mod p) /\ (x * y == 1) (mod p) | |
==> (x == a) (mod p) ==> (y == a) (mod p)`) THEN | |
ASM_REWRITE_TAC[CONG_MINUS1_SQUARED] THEN | |
ASM_REWRITE_TAC[GSYM MULT_EXP] THEN | |
SUBST1_TAC(SYM(SPEC `2 EXP i * k` EXP_ONE)) THEN | |
MATCH_MP_TAC CONG_EXP THEN REWRITE_TAC[INVERSE_MOD_RMUL_EQ] THEN | |
ASM_MESON_TAC[COPRIME_SYM]]);; | |
(* ------------------------------------------------------------------------- *) | |
(* Simple bound on number of k'th powers with a given residue a. *) | |
(* ------------------------------------------------------------------------- *) | |
let BOUND_POWER_RESIDUES_MODULO_ODD_COPRIME = prove | |
(`!n a k. | |
ODD n /\ coprime(k,n) /\ coprime(n,a) | |
==> CARD {x | x < n /\ (x EXP k == a) (mod n)} | |
<= nproduct {p | prime p /\ p divides n} (\p. gcd(k,p - 1))`, | |
REPEAT GEN_TAC THEN ASM_CASES_TAC `k = 0` THENL | |
[ASM_REWRITE_TAC[COPRIME_0] THEN STRIP_TAC THEN | |
ASM_REWRITE_TAC[MESON[PRIME_1; DIVIDES_ONE] | |
`~(prime p /\ p divides 1)`] THEN | |
ASM_REWRITE_TAC[EMPTY_GSPEC; NPRODUCT_CLAUSES] THEN | |
REWRITE_TAC[CONG_MOD_1; CARD_NUMSEG_LT; LE_REFL]; | |
STRIP_TAC] THEN | |
MP_TAC(ISPECL [`n:num`; `a:num`; `k:num`] | |
COUNT_ROOTS_MODULO_ODD_GEN) THEN | |
REWRITE_TAC[GSYM nproduct] THEN | |
ASM_SIMP_TAC[HAS_SIZE] THEN DISCH_THEN(fun th -> REWRITE_TAC[th]) THEN | |
COND_CASES_TAC THEN ASM_REWRITE_TAC[LE_0] THEN MATCH_MP_TAC EQ_IMP_LE THEN | |
MATCH_MP_TAC NPRODUCT_EQ THEN | |
X_GEN_TAC `p:num` THEN REWRITE_TAC[IN_ELIM_THM] THEN STRIP_TAC THEN | |
MATCH_MP_TAC(NUMBER_RULE `coprime(k:num,a) ==> gcd(k,a * b) = gcd(k,b)`) THEN | |
REWRITE_TAC[COPRIME_REXP] THEN DISJ1_TAC THEN | |
MAP_EVERY UNDISCH_TAC [`(p:num) divides n`; `coprime(k:num,n)`] THEN | |
CONV_TAC NUMBER_RULE);; | |
(* ------------------------------------------------------------------------- *) | |
(* General upper bound expression for the number of pseudoprime bases. *) | |
(* ------------------------------------------------------------------------- *) | |
let MILLER_RABIN_PSEUDOPRIME_BOUND_GEN = prove | |
(`!n s t v. | |
~(prime n) /\ 2 EXP s * t = n - 1 /\ ODD t /\ | |
(?p. prime p /\ p divides n /\ ~(2 EXP (v + 2) divides (p - 1))) | |
==> CARD {a | a < n /\ miller_rabin_pseudoprime a n} | |
<= 2 * nproduct {p | prime p /\ p divides n} | |
(\p. 2 EXP v * gcd(t,p - 1))`, | |
REPEAT GEN_TAC THEN DISJ_CASES_TAC(SPEC `n:num` EVEN_OR_ODD) THENL | |
[ASM_CASES_TAC `n = 2` THEN | |
ASM_REWRITE_TAC[PRIME_2; miller_rabin_pseudoprime; GSYM NOT_EVEN] THEN | |
REWRITE_TAC[EMPTY_GSPEC; CARD_CLAUSES; LE_0]; | |
UNDISCH_TAC `ODD n` THEN REWRITE_TAC[IMP_IMP]] THEN | |
ASM_CASES_TAC `n = 0` THEN ASM_REWRITE_TAC[ODD] THEN | |
ASM_CASES_TAC `n = 2` THEN ASM_REWRITE_TAC[ARITH] THEN | |
ASM_CASES_TAC `t = 0` THEN ASM_REWRITE_TAC[ODD] THEN | |
DISCH_THEN(REPEAT_TCL CONJUNCTS_THEN ASSUME_TAC) THEN | |
TRANS_TAC LE_TRANS | |
`CARD {a | a < n /\ (a EXP (2 EXP v * t) == 1) (mod n)} + | |
CARD {a | a < n /\ (a EXP (2 EXP v * t) == n - 1) (mod n)}` THEN | |
CONJ_TAC THENL | |
[FIRST_X_ASSUM(X_CHOOSE_THEN `p:num` STRIP_ASSUME_TAC) THEN | |
W(MP_TAC o PART_MATCH (rand o rand) CARD_UNION o rand o snd) THEN | |
ANTS_TAC THENL | |
[ONCE_REWRITE_TAC[SET_RULE | |
`{x | P x /\ Q x} = {x | x IN {y | P y} /\ Q x}`] THEN | |
SIMP_TAC[FINITE_RESTRICT; FINITE_NUMSEG_LT] THEN | |
MATCH_MP_TAC(SET_RULE | |
`(!x. ~(Q x /\ R x)) | |
==> {x | P x /\ Q x} INTER {x | P x /\ R x} = {}`) THEN | |
X_GEN_TAC `a:num` THEN ASM_REWRITE_TAC[CONG_MINUS1] THEN | |
DISCH_THEN(MP_TAC o SPEC `p:num` o MATCH_MP (NUMBER_RULE | |
`!p. (a == 1) (mod n) /\ n divides (a + 1) | |
==> p divides n ==> p divides 2`)) THEN | |
ASM_SIMP_TAC[DIVIDES_PRIME_PRIME; PRIME_2] THEN | |
ASM_MESON_TAC[DIVIDES_2; NOT_ODD]; | |
DISCH_THEN(SUBST1_TAC o SYM)] THEN | |
MATCH_MP_TAC CARD_SUBSET THEN | |
ONCE_REWRITE_TAC[SET_RULE | |
`{x | P x /\ Q x} = {x | x IN {y | P y} /\ Q x}`] THEN | |
SIMP_TAC[FINITE_RESTRICT; FINITE_NUMSEG_LT; FINITE_UNION] THEN | |
REWRITE_TAC[SUBSET; IN_ELIM_THM; IN_UNION] THEN | |
X_GEN_TAC `a:num` THEN SIMP_TAC[] THEN | |
DISCH_THEN(ASSUME_TAC o CONJUNCT2) THEN | |
FIRST_ASSUM(MP_TAC o MATCH_MP MILLER_RABIN_PSEUDOPRIME_IMP_COPRIME) THEN | |
ASM_REWRITE_TAC[] THEN DISCH_TAC THEN | |
FIRST_X_ASSUM(MP_TAC o GEN_REWRITE_RULE I [miller_rabin_pseudoprime]) THEN | |
FIRST_ASSUM(MP_TAC o MATCH_MP (REWRITE_RULE[IMP_CONJ] INDEX_UNIQUE)) THEN | |
ASM_REWRITE_TAC[ARITH_EQ; DIVIDES_2; NOT_EVEN] THEN | |
DISCH_THEN SUBST1_TAC THEN CONV_TAC(TOP_DEPTH_CONV let_CONV) THEN | |
SUBGOAL_THEN `(n - 1) DIV 2 EXP s = t` SUBST_ALL_TAC THENL | |
[REWRITE_TAC[SYM(ASSUME `2 EXP s * t = n - 1`)] THEN | |
SIMP_TAC[DIV_MULT; EXP_EQ_0; ARITH_EQ]; | |
ALL_TAC] THEN | |
DISCH_THEN(DISJ_CASES_THEN2 ASSUME_TAC MP_TAC) THENL | |
[DISJ1_TAC THEN ONCE_REWRITE_TAC[MULT_SYM] THEN | |
REWRITE_TAC[GSYM EXP_EXP] THEN ASM_SIMP_TAC[CONG_EXP_1]; | |
DISCH_THEN(X_CHOOSE_THEN `i:num` STRIP_ASSUME_TAC)] THEN | |
SUBGOAL_THEN `i:num <= v` MP_TAC THENL | |
[ASM_CASES_TAC `p = 0` THENL [ASM_MESON_TAC[PRIME_0]; ALL_TAC] THEN | |
ASM_CASES_TAC `p = 1` THENL [ASM_MESON_TAC[PRIME_1]; ALL_TAC] THEN | |
FIRST_ASSUM(MP_TAC o SPEC `p:num` o MATCH_MP (NUMBER_RULE | |
`!p:num. (a == b) (mod n) | |
==> p divides n /\ (b EXP 2 == 1) (mod n) | |
==> (a EXP 2 == 1) (mod p)`)) THEN | |
ASM_REWRITE_TAC[CONG_MINUS1_SQUARED] THEN | |
FIRST_ASSUM(MP_TAC o SPEC `p:num` o MATCH_MP (NUMBER_RULE | |
`!p:num. (a == b) (mod n) | |
==> p divides n /\ (a == 1) (mod p) | |
==> (b == 1) (mod p)`)) THEN | |
ASM_REWRITE_TAC[] THEN | |
GEN_REWRITE_TAC LAND_CONV [GSYM CONTRAPOS_THM] THEN ANTS_TAC THENL | |
[REWRITE_TAC[NUMBER_RULE | |
`(a == 1) (mod p) <=> (a + 1 == 2) (mod p)`] THEN | |
ASM_SIMP_TAC[SUB_ADD; LE_1] THEN | |
ASM_SIMP_TAC[NUMBER_RULE | |
`p divides n ==> ((n == m) (mod p) <=> p divides m)`] THEN | |
ASM_SIMP_TAC[DIVIDES_PRIME_PRIME; PRIME_2] THEN | |
ASM_MESON_TAC[DIVIDES_2; NOT_EVEN]; | |
ALL_TAC] THEN | |
MP_TAC(NUMBER_RULE | |
`p divides n /\ coprime(a,n) | |
==> coprime(a:num,p) /\ coprime(p,a)`) THEN | |
ASM_REWRITE_TAC[] THEN STRIP_TAC THEN | |
MP_TAC(SPECL [`a:num`; `p:num`] FERMAT_LITTLE_PRIME) THEN | |
ASM_REWRITE_TAC[IMP_IMP; EXP_EXP; GSYM CONJ_ASSOC] THEN | |
GEN_REWRITE_TAC (LAND_CONV o ONCE_DEPTH_CONV) [ORDER_DIVIDES] THEN | |
ASM_SIMP_TAC[DIVIDES_INDEX; MULT_EQ_0; EXP_EQ_0; ARITH_EQ; ORDER_EQ_0; | |
INDEX_MUL; ARITH_RULE `p - 1 = 0 <=> p = 0 \/ p = 1`] THEN | |
SIMP_TAC[INDEX_PRIME; PRIME_2] THEN DISCH_THEN(MP_TAC o MATCH_MP | |
(MESON[PRIME_2] | |
`(!p. prime p ==> P p) /\ ~(!p. prime p ==> Q p) /\ | |
(!p. prime p ==> R p) | |
==> (!p. ~(p = 2) ==> (Q p <=> R p)) ==> P 2 /\ ~Q 2 /\ R 2`)) THEN | |
ANTS_TAC THENL [SIMP_TAC[ADD_CLAUSES]; ALL_TAC] THEN | |
REWRITE_TAC[ARITH_RULE `~(i <= n) /\ i <= n + 1 <=> i = n + 1`] THEN | |
FIRST_X_ASSUM(MP_TAC o | |
GEN_REWRITE_RULE RAND_CONV [PRIMEPOW_DIVIDES_INDEX]) THEN | |
ASM_SIMP_TAC[INDEX_ZERO; DIVIDES_2; GSYM NOT_ODD; ADD_CLAUSES; | |
INDEX_EXP; INDEX_REFL; PRIME_2; ARITH_LE] THEN | |
ASM_ARITH_TAC; | |
GEN_REWRITE_TAC LAND_CONV | |
[ARITH_RULE `i:num <= v <=> i < v \/ i = v`] THEN | |
MATCH_MP_TAC MONO_OR THEN CONJ_TAC THENL [ALL_TAC; ASM_MESON_TAC[]] THEN | |
REWRITE_TAC[LT_EXISTS] THEN | |
DISCH_THEN(X_CHOOSE_THEN `d:num` SUBST1_TAC) THEN | |
REWRITE_TAC[ARITH_RULE `i + SUC n = SUC i + n`] THEN | |
REWRITE_TAC[EXP_ADD; EXP; ARITH_RULE | |
`((2 * i) * d) * t = ((i * t) * 2) * d`] THEN | |
ONCE_REWRITE_TAC[GSYM EXP_EXP] THEN MATCH_MP_TAC CONG_EXP_1 THEN | |
ONCE_REWRITE_TAC[GSYM EXP_EXP] THEN FIRST_X_ASSUM(MATCH_MP_TAC o MATCH_MP | |
(NUMBER_RULE `(x == a) (mod n) ==> (a EXP 2 == 1) (mod n) | |
==> (x EXP 2 == 1) (mod n)`)) THEN | |
ASM_REWRITE_TAC[CONG_MINUS1_SQUARED]]; | |
MATCH_MP_TAC(ARITH_RULE `x <= b /\ y <= b ==> x + y <= 2 * b`) THEN | |
SUBGOAL_THEN | |
`!z. coprime(n,z) | |
==> CARD {a | a < n /\ (a EXP (2 EXP v * t) == z) (mod n)} <= | |
nproduct {p | prime p /\ p divides n} | |
(\p. 2 EXP v * gcd(t,p - 1))` | |
MP_TAC THENL | |
[ALL_TAC; | |
DISCH_THEN(fun th -> CONJ_TAC THEN MATCH_MP_TAC th) THEN | |
ASM_MESON_TAC[COPRIME_MINUS1; COPRIME_1; COPRIME_SYM]] THEN | |
X_GEN_TAC `z:num` THEN DISCH_TAC THEN | |
W(MP_TAC o PART_MATCH (lhand o rand) | |
BOUND_POWER_RESIDUES_MODULO_ODD_COPRIME o lhand o snd) THEN | |
ASM_REWRITE_TAC[] THEN ANTS_TAC THENL | |
[ASM_REWRITE_TAC[COPRIME_LMUL; COPRIME_LEXP; COPRIME_2] THEN | |
FIRST_ASSUM(MP_TAC o MATCH_MP (ARITH_RULE | |
`st = n - 1 ==> ~(n = 0) ==> n = st + 1`)) THEN | |
ANTS_TAC THENL [ASM_REWRITE_TAC[]; CONV_TAC NUMBER_RULE]; | |
ALL_TAC] THEN | |
MATCH_MP_TAC(REWRITE_RULE[IMP_CONJ_ALT] LE_TRANS) THEN | |
SUBGOAL_THEN `FINITE {p | prime p /\ p divides n}` MP_TAC THENL | |
[ASM_SIMP_TAC[FINITE_SPECIAL_DIVISORS]; | |
SPEC_TAC(`{p | prime p /\ p divides n}`,`s:num->bool`)] THEN | |
MATCH_MP_TAC FINITE_INDUCT_STRONG THEN | |
SIMP_TAC[NPRODUCT_CLAUSES; LE_REFL] THEN | |
MAP_EVERY X_GEN_TAC [`p:num`; `s:num->bool`] THEN STRIP_TAC THEN | |
MATCH_MP_TAC LE_MULT2 THEN ASM_REWRITE_TAC[] THEN | |
MATCH_MP_TAC DIVIDES_LE_IMP THEN | |
REWRITE_TAC[NUMBER_RULE `gcd(a * b:num,c) divides a * gcd(b,c)`] THEN | |
REWRITE_TAC[MULT_EQ_0; GCD_ZERO; EXP_EQ_0; ARITH_EQ]]);; | |
(* ------------------------------------------------------------------------- *) | |
(* At most 1/4 of coprime numbers are pseudoprime bases, except for n = 9. *) | |
(* ------------------------------------------------------------------------- *) | |
let MILLER_RABIN_PSEUDOPRIME_BOUND_PHI = prove | |
(`!n. ODD n /\ ~prime n /\ n > 9 | |
==> CARD {a | a < n /\ miller_rabin_pseudoprime a n} <= (phi n) DIV 4`, | |
GEN_TAC THEN REWRITE_TAC[GT] THEN | |
MAP_EVERY (fun t -> ASM_CASES_TAC t THEN ASM_REWRITE_TAC[ARITH]) | |
[`n = 0`; `n = 1`; `n = 2`] THEN | |
STRIP_TAC THEN MP_TAC(ISPECL [`n - 1`; `2`] INDEX_DECOMPOSITION) THEN | |
ABBREV_TAC `s = index 2 (n - 1)` THEN | |
ASM_REWRITE_TAC[ARITH_RULE `n - 1 = 0 <=> n = 0 \/ n = 1`; ARITH_EQ] THEN | |
REWRITE_TAC[DIVIDES_2; NOT_EVEN] THEN | |
DISCH_THEN(X_CHOOSE_THEN `t:num` STRIP_ASSUME_TAC) THEN | |
MP_TAC(fst(EQ_IMP_RULE(SPEC | |
`\v. !p. prime p /\ p divides n ==> 2 EXP v divides p - 1` num_MAX))) THEN | |
REWRITE_TAC[] THEN ANTS_TAC THENL | |
[CONJ_TAC THENL [MESON_TAC[EXP; DIVIDES_1]; ALL_TAC] THEN | |
MP_TAC(SPEC `n:num` PRIME_FACTOR) THEN ASM_REWRITE_TAC[] THEN | |
DISCH_THEN(X_CHOOSE_THEN `p:num` STRIP_ASSUME_TAC) THEN | |
EXISTS_TAC `index 2 (p - 1)` THEN X_GEN_TAC `k:num` THEN | |
REWRITE_TAC[PRIMEPOW_DIVIDES_INDEX] THEN | |
ASM_REWRITE_TAC[ARITH_RULE `n - 1 = 0 <=> n = 0 \/ n = 1`; ARITH_EQ] THEN | |
ASM_MESON_TAC[PRIME_0; PRIME_1]; | |
REWRITE_TAC[LEFT_IMP_EXISTS_THM]] THEN | |
MATCH_MP_TAC num_INDUCTION THEN CONJ_TAC THENL | |
[MATCH_MP_TAC(TAUT `~q ==> p /\ q ==> r`) THEN | |
DISCH_THEN(MP_TAC o SPEC `1`) THEN | |
REWRITE_TAC[ARITH; DIVIDES_2; EVEN_SUB] THEN | |
ASM_MESON_TAC[DIVIDES_2; DIVIDES_TRANS; NOT_EVEN]; | |
X_GEN_TAC `v:num` THEN DISCH_THEN(K ALL_TAC)] THEN | |
REWRITE_TAC[ADD1] THEN | |
DISCH_THEN(CONJUNCTS_THEN2 ASSUME_TAC (MP_TAC o SPEC `v + 2`)) THEN | |
REWRITE_TAC[ARITH_RULE `~(v + 2 <= v + 1)`; NOT_FORALL_THM; NOT_IMP] THEN | |
REWRITE_TAC[GSYM CONJ_ASSOC] THEN DISCH_TAC THEN | |
MP_TAC(SPECL [`n:num`; `s:num`; `t:num`; `v:num`] | |
MILLER_RABIN_PSEUDOPRIME_BOUND_GEN) THEN | |
ASM_REWRITE_TAC[] THEN | |
MATCH_MP_TAC(REWRITE_RULE[IMP_CONJ_ALT] LE_TRANS) THEN | |
REWRITE_TAC[ARITH_RULE `2 * x <= y DIV 4 <=> 8 * x <= y`] THEN | |
SUBGOAL_THEN `FINITE {p | prime p /\ p divides n}` ASSUME_TAC THENL | |
[ASM_SIMP_TAC[FINITE_SPECIAL_DIVISORS]; ALL_TAC] THEN | |
SUBGOAL_THEN | |
`CARD {p | prime p /\ p divides n} = 0 \/ | |
3 <= CARD {p | prime p /\ p divides n} \/ | |
{p | prime p /\ p divides n} HAS_SIZE 1 \/ | |
{p | prime p /\ p divides n} HAS_SIZE 2` | |
MP_TAC THENL [ASM_REWRITE_TAC[HAS_SIZE] THEN ARITH_TAC; ALL_TAC] THEN | |
DISCH_THEN(REPEAT_TCL DISJ_CASES_THEN MP_TAC) THENL | |
[ASM_SIMP_TAC[CARD_EQ_0] THEN MP_TAC(SPEC `n:num` PRIME_FACTOR) THEN | |
ASM SET_TAC[]; | |
(*** The case of >= 3 prime divisors ***) | |
DISCH_TAC THEN SUBST1_TAC(ARITH_RULE `8 = 2 EXP 3`) THEN TRANS_TAC LE_TRANS | |
`2 EXP CARD {p | prime p /\ p divides n} * | |
nproduct {p | prime p /\ p divides n} (\p. 2 EXP v * gcd(t,p - 1))` THEN | |
ASM_REWRITE_TAC[LE_MULT_RCANCEL; LE_EXP] THEN CONV_TAC NUM_REDUCE_CONV THEN | |
ASM_SIMP_TAC[GSYM NPRODUCT_CONST; FINITE_SPECIAL_DIVISORS; | |
GSYM NPRODUCT_MUL] THEN | |
GEN_REWRITE_TAC RAND_CONV [PHI_EXPAND] THEN ASM_REWRITE_TAC[] THEN | |
MATCH_MP_TAC NPRODUCT_LE THEN | |
ASM_SIMP_TAC[FINITE_SPECIAL_DIVISORS; LE_0; IN_ELIM_THM] THEN | |
X_GEN_TAC `p:num` THEN STRIP_TAC THEN | |
MP_TAC(SPECL [`p - 1`; `2`] INDEX_DECOMPOSITION) THEN | |
ASM_REWRITE_TAC[ARITH_RULE `n - 1 = 0 <=> n = 0 \/ n = 1`; ARITH_EQ] THEN | |
ASM_CASES_TAC `p = 0` THENL [ASM_MESON_TAC[PRIME_0]; ALL_TAC] THEN | |
ASM_CASES_TAC `p = 1` THENL [ASM_MESON_TAC[PRIME_1]; ALL_TAC] THEN | |
ASM_REWRITE_TAC[DIVIDES_2; NOT_EVEN; LEFT_IMP_EXISTS_THM] THEN | |
X_GEN_TAC `r:num` THEN DISCH_THEN(CONJUNCTS_THEN2 MP_TAC ASSUME_TAC) THEN | |
DISCH_THEN(SUBST1_TAC o SYM) THEN | |
ASM_SIMP_TAC[GCD_COPRIME_RMUL; COPRIME_LEXP; COPRIME_2] THEN | |
ASM_SIMP_TAC[GCD_ONE; COPRIME_REXP; COPRIME_2] THEN | |
REWRITE_TAC[MULT_CLAUSES; MULT_ASSOC; GSYM(CONJUNCT2 EXP)] THEN | |
REWRITE_TAC[GSYM MULT_ASSOC] THEN GEN_REWRITE_TAC RAND_CONV [MULT_SYM] THEN | |
REWRITE_TAC[GSYM MULT_ASSOC] THEN MATCH_MP_TAC LE_MULT2 THEN | |
REWRITE_TAC[ADD1; LE_EXP; ARITH_EQ] THEN ASM_SIMP_TAC[LE_INDEX] THEN | |
CONJ_TAC THENL [ASM_ARITH_TAC; ALL_TAC] THEN | |
MATCH_MP_TAC(ARITH_RULE `g <= r /\ r * 1 <= r * p ==> g <= r * p`) THEN | |
REWRITE_TAC[GCD_LE; LE_MULT_LCANCEL] THEN | |
CONJ_TAC THENL [ASM_MESON_TAC[ODD]; DISJ2_TAC] THEN | |
ASM_REWRITE_TAC[ARITH_RULE `1 <= x <=> ~(x = 0)`; ARITH_EQ; EXP_EQ_0]; | |
(*** The case of 1 prime divisor ***) | |
CONV_TAC(LAND_CONV HAS_SIZE_CONV) THEN | |
DISCH_THEN(X_CHOOSE_TAC `p:num`) THEN | |
GEN_REWRITE_TAC RAND_CONV [PHI_EXPAND] THEN | |
ASM_REWRITE_TAC[NPRODUCT_SING] THEN | |
FIRST_ASSUM(STRIP_ASSUME_TAC o MATCH_MP (SET_RULE | |
`{x | P x /\ Q x} = {p} ==> P p /\ Q p`)) THEN | |
ASM_CASES_TAC `p = 0` THENL [ASM_MESON_TAC[PRIME_0]; ALL_TAC] THEN | |
ASM_CASES_TAC `p = 1` THENL [ASM_MESON_TAC[PRIME_1]; ALL_TAC] THEN | |
REWRITE_TAC[ARITH_RULE | |
`8 * v * g <= p * q <=> (2 * v * g) * 4 <= q * p`] THEN | |
MATCH_MP_TAC LE_MULT2 THEN CONJ_TAC THENL | |
[REWRITE_TAC[MULT_ASSOC; GSYM(CONJUNCT2 EXP); ADD1] THEN | |
MATCH_MP_TAC DIVIDES_LE_IMP THEN | |
ASM_REWRITE_TAC[ARITH_RULE `p - 1 = 0 <=> p = 0 \/ p = 1`] THEN | |
MATCH_MP_TAC DIVIDES_MUL THEN ASM_SIMP_TAC[GCD; COPRIME_LEXP] THEN | |
DISJ1_TAC THEN MATCH_MP_TAC(NUMBER_RULE | |
`coprime(a,b) ==> coprime(a,gcd(b,c))`) THEN | |
ASM_REWRITE_TAC[COPRIME_2]; | |
ALL_TAC] THEN | |
MP_TAC(SPECL [`\n:num. n`; `n:num`] MULTIPLICATIVE_EXPAND) THEN | |
ASM_REWRITE_TAC[MULTIPLICATIVE_ID; NPRODUCT_SING] THEN | |
SUBGOAL_THEN `3 <= p` MP_TAC THENL | |
[ASM_MESON_TAC[ODD_PRIME; NOT_ODD; DIVIDES_TRANS; DIVIDES_2]; | |
ALL_TAC] THEN | |
REWRITE_TAC[ARITH_RULE `3 <= p <=> p = 3 \/ 4 <= p`] THEN | |
DISCH_THEN(DISJ_CASES_THEN2 SUBST_ALL_TAC MP_TAC) THENL | |
[MATCH_MP_TAC(ARITH_RULE | |
`9 < n /\ (3 EXP 2 < i ==> 3 EXP 2 <= j) ==> n = i ==> 4 <= j`) THEN | |
ASM_REWRITE_TAC[LT_EXP; LE_EXP] THEN ARITH_TAC; | |
DISCH_TAC THEN DISCH_THEN(MP_TAC o AP_TERM `prime`) THEN | |
ASM_REWRITE_TAC[PRIME_EXP] THEN DISCH_TAC THEN | |
TRANS_TAC LE_TRANS `4 EXP (index p n - 1)` THEN | |
ASM_REWRITE_TAC[EXP_MONO_LE] THEN | |
GEN_REWRITE_TAC LAND_CONV [GSYM EXP_1] THEN | |
REWRITE_TAC[LE_EXP; ARITH_EQ] THEN | |
ASM_REWRITE_TAC[ARITH_RULE `1 <= n - 1 <=> ~(n = 0) /\ ~(n = 1)`] THEN | |
ASM_REWRITE_TAC[INDEX_EQ_0]]; | |
(*** The case of 2 prime divisors ***) | |
CONV_TAC(LAND_CONV HAS_SIZE_CONV) THEN | |
REWRITE_TAC[LEFT_IMP_EXISTS_THM] THEN | |
MATCH_MP_TAC(MESON[] | |
`!P. (!p q. R p q ==> R q p) /\ | |
(!p q. P p ==> R p q) /\ | |
(!p q. ~P p /\ ~P q ==> R p q) | |
==> !p q. R p q`) THEN | |
EXISTS_TAC `\p. 2 <= index p n \/ 2 EXP (v + 2) divides p - 1` THEN | |
REWRITE_TAC[] THEN CONJ_TAC THENL [SET_TAC[]; ALL_TAC] THEN CONJ_TAC THEN | |
MAP_EVERY X_GEN_TAC [`p:num`; `q:num`] THEN | |
REPEAT(DISCH_THEN(REPEAT_TCL CONJUNCTS_THEN ASSUME_TAC)) THEN | |
(SUBGOAL_THEN `prime p /\ prime q /\ p divides n /\ q divides n` | |
STRIP_ASSUME_TAC THENL [ASM SET_TAC[]; ALL_TAC] THEN | |
SUBGOAL_THEN `~(p = 0) /\ ~(p = 1) /\ ~(q = 0) /\ ~(q = 1)` | |
STRIP_ASSUME_TAC THENL [ASM_MESON_TAC[PRIME_0; PRIME_1]; ALL_TAC]) THEN | |
GEN_REWRITE_TAC RAND_CONV [PHI_EXPAND] THEN | |
MP_TAC(SPECL [`\n:num. n`; `n:num`] MULTIPLICATIVE_EXPAND) THEN | |
ASM_REWRITE_TAC[MULTIPLICATIVE_ID] THEN | |
ASM_SIMP_TAC[NPRODUCT_CLAUSES; FINITE_INSERT; FINITE_EMPTY; | |
IN_INSERT; NOT_IN_EMPTY; MULT_CLAUSES] THEN | |
DISCH_THEN(ASSUME_TAC o SYM) THENL | |
[FIRST_X_ASSUM DISJ_CASES_TAC THENL | |
[REWRITE_TAC[GSYM(CONJUNCT2 EXP); ADD1; ARITH_RULE | |
`8 * (e1 * g1) * (e2 * g2) <= (p * p') * (q * q') <=> | |
2 * ((2 * e1) * g1) * ((2 * e2) * g2) <= p * p' * q * q'`] THEN | |
MATCH_MP_TAC LE_MULT2 THEN CONJ_TAC THENL | |
[TRANS_TAC LE_TRANS `2 EXP (index p n - 1)` THEN | |
ASM_SIMP_TAC[EXP_MONO_LE; PRIME_GE_2] THEN | |
GEN_REWRITE_TAC LAND_CONV [GSYM EXP_1] THEN | |
REWRITE_TAC[LE_EXP; ARITH_EQ] THEN | |
ASM_SIMP_TAC[ARITH_RULE `2 <= n ==> 1 <= n - 1`]; | |
ALL_TAC] THEN | |
MATCH_MP_TAC LE_MULT2 THEN CONJ_TAC THEN | |
MATCH_MP_TAC DIVIDES_LE_IMP THEN | |
ASM_REWRITE_TAC[MULT_EQ_0; EXP_EQ_0; | |
ARITH_RULE `p - 1 = 0 <=> p = 0 \/ p = 1`] | |
THENL [ALL_TAC; MATCH_MP_TAC DIVIDES_LMUL] THEN | |
MATCH_MP_TAC DIVIDES_MUL THEN ASM_SIMP_TAC[GCD; COPRIME_LEXP] THEN | |
DISJ1_TAC THEN MATCH_MP_TAC(NUMBER_RULE | |
`coprime(a,b) ==> coprime(a,gcd(b,c))`) THEN | |
ASM_REWRITE_TAC[COPRIME_2]; | |
REWRITE_TAC[GSYM(CONJUNCT2 EXP); ADD1; ARITH_RULE | |
`8 * (e1 * g1) * (e2 * g2) <= (p * p') * (q * q') <=> | |
((2 * 2 * e1) * g1) * ((2 * e2) * g2) <= (p * p') * (q * q')`] THEN | |
MATCH_MP_TAC LE_MULT2 THEN CONJ_TAC THEN | |
MATCH_MP_TAC DIVIDES_LE_IMP THEN | |
ASM_REWRITE_TAC[MULT_EQ_0; EXP_EQ_0; COPRIME_LEXP; | |
ARITH_RULE `p - 1 = 0 <=> p = 0 \/ p = 1`] THEN | |
MATCH_MP_TAC DIVIDES_MUL THEN | |
REWRITE_TAC[NUMBER_RULE `gcd(a,b) divides c * b`] THEN | |
ASM_SIMP_TAC[ARITH_RULE `(v + 1) + 1 = v + 2`; DIVIDES_LMUL] THEN | |
ASM_SIMP_TAC[COPRIME_LEXP] THEN DISJ1_TAC THEN | |
MATCH_MP_TAC(NUMBER_RULE | |
`coprime(a,b) ==> coprime(a,gcd(b,c))`) THEN | |
ASM_REWRITE_TAC[COPRIME_2]]; | |
REPEAT(FIRST_X_ASSUM(MP_TAC o GEN_REWRITE_RULE I [DE_MORGAN_THM])) THEN | |
REPEAT STRIP_TAC THEN REPEAT(FIRST_X_ASSUM(MP_TAC o MATCH_MP (ARITH_RULE | |
`~(2 <= n) ==> n = 0 \/ n = 1`))) THEN | |
ASM_REWRITE_TAC[INDEX_EQ_0] THEN REPEAT(DISCH_THEN SUBST_ALL_TAC) THEN | |
RULE_ASSUM_TAC(REWRITE_RULE[EXP_1]) THEN | |
REWRITE_TAC[SUB_REFL; EXP; MULT_CLAUSES] THEN | |
MP_TAC(SPECL [`q - 1`; `2`] INDEX_DECOMPOSITION) THEN | |
MP_TAC(SPECL [`p - 1`; `2`] INDEX_DECOMPOSITION) THEN | |
SUBGOAL_THEN | |
`index 2 (p - 1) = v + 1 /\ index 2 (q - 1) = v + 1` | |
(CONJUNCTS_THEN SUBST1_TAC) THENL | |
[ASM_REWRITE_TAC[INDEX_UNIQUE_ALT; ARITH_EQ; | |
ARITH_RULE `p - 1 = 0 <=> p = 0 \/ p = 1`] THEN | |
ASM_SIMP_TAC[ARITH_RULE `(n + 1) + 1 = n + 2`]; | |
ASM_REWRITE_TAC[ARITH_RULE `p - 1 = 0 <=> p = 0 \/ p = 1`] THEN | |
REWRITE_TAC[ARITH_EQ; LEFT_IMP_EXISTS_THM; DIVIDES_2; NOT_EVEN]] THEN | |
X_GEN_TAC `a:num` THEN DISCH_THEN(STRIP_ASSUME_TAC o GSYM) THEN | |
X_GEN_TAC `b:num` THEN DISCH_THEN(STRIP_ASSUME_TAC o GSYM) THEN | |
ASM_SIMP_TAC[COPRIME_REXP; COPRIME_2; NUMBER_RULE | |
`coprime(a,b) ==> gcd(a,b * c) = gcd(a,c)`] THEN | |
REWRITE_TAC[EXP_ADD; EXP_1; ARITH_RULE | |
`8 * (v * g1) * (v * g2) <= ((v * 2) * a) * (v * 2) * b <=> | |
(v * v) * 2 * g1 * g2 <= (v * v) * a * b`] THEN | |
REWRITE_TAC[LE_MULT_LCANCEL] THEN DISJ2_TAC THEN | |
MATCH_MP_TAC(ARITH_RULE | |
`~(a' = a /\ b' = b) /\ | |
(~(b' = b) ==> a' * (2 * b') <= a * b) /\ | |
(~(a' = a) ==> b' * (2 * a') <= b * a) | |
==> 2 * a' * b' <= a * b`) THEN | |
CONJ_TAC THENL | |
[REWRITE_TAC[GSYM DIVIDES_GCD_RIGHT] THEN STRIP_TAC; | |
CONJ_TAC THEN DISCH_TAC THEN MATCH_MP_TAC LE_MULT2 THEN | |
ASM_REWRITE_TAC[GCD_LE] THEN | |
(CONJ_TAC THENL [ASM_MESON_TAC[ODD]; ALL_TAC]) THEN | |
MATCH_MP_TAC PROPERLY_DIVIDES_LE_IMP THEN | |
REWRITE_TAC[GCD] THEN ASM_MESON_TAC[ODD]] THEN | |
UNDISCH_TAC `~(p:num = q)` THEN | |
FIRST_X_ASSUM(MP_TAC o MATCH_MP (ARITH_RULE | |
`m = n - 1 ==> ~(n = 0) ==> m + 1 = n`)) THEN | |
REPEAT(FIRST_X_ASSUM(MP_TAC o MATCH_MP (ARITH_RULE | |
`n - 1 = m ==> ~(n = 0) ==> m + 1 = n`))) THEN | |
ASM_REWRITE_TAC[] THEN EXPAND_TAC "n" THEN | |
REPLICATE_TAC 2 (DISCH_THEN(SUBST1_TAC o SYM)) THEN | |
REWRITE_TAC[EQ_ADD_RCANCEL] THEN MATCH_MP_TAC(NUMBER_RULE | |
`a divides t /\ b divides t /\ coprime(a,v) /\ coprime(b,v) | |
==> s * t + 1 = (v * a + 1) * (v * b + 1) | |
==> v * a = v * b`) THEN | |
ASM_REWRITE_TAC[COPRIME_REXP; COPRIME_2]]]);; | |
(* ------------------------------------------------------------------------- *) | |
(* There are no non-trivial absolute Miller-Rabin pseudoprimes *) | |
(* ------------------------------------------------------------------------- *) | |
let ABSOLUTE_MILLER_RABIN_PSEUDOPRIME = prove | |
(`!n. (!a. coprime(a,n) ==> miller_rabin_pseudoprime a n) <=> | |
n = 1 \/ prime n`, | |
GEN_TAC THEN ASM_CASES_TAC `n = 1` THEN | |
ASM_REWRITE_TAC[MILLER_RABIN_PSEUDOPRIME_MOD_1] THEN | |
EQ_TAC THENL [ALL_TAC; MESON_TAC[PRIME_IMP_MILLER_RABIN_PSEUDOPRIME]] THEN | |
ASM_CASES_TAC `n = 2` THEN ASM_REWRITE_TAC[PRIME_2] THEN | |
ASM_CASES_TAC `ODD n` THENL | |
[ALL_TAC; | |
ASM_REWRITE_TAC[miller_rabin_pseudoprime] THEN MESON_TAC[COPRIME_1]] THEN | |
ASM_CASES_TAC `n > 9` THENL | |
[GEN_REWRITE_TAC I [GSYM CONTRAPOS_THM] THEN DISCH_TAC THEN | |
MATCH_MP_TAC(SET_RULE | |
`{a | a < n /\ miller_rabin_pseudoprime a n} PSUBSET | |
{a | coprime(a,n) /\ a < n} | |
==> ~(!a. coprime (a,n) ==> miller_rabin_pseudoprime a n)`) THEN | |
MATCH_MP_TAC CARD_PSUBSET_IMP THEN REWRITE_TAC[SUBSET; IN_ELIM_THM] THEN | |
CONJ_TAC THENL | |
[ASM_MESON_TAC[MILLER_RABIN_PSEUDOPRIME_IMP_COPRIME]; | |
REWRITE_TAC[GSYM PHI_ALT]] THEN | |
MATCH_MP_TAC(ARITH_RULE `a <= b DIV 4 /\ ~(b = 0) ==> ~(a = b)`) THEN | |
ASM_SIMP_TAC[MILLER_RABIN_PSEUDOPRIME_BOUND_PHI] THEN | |
ASM_MESON_TAC[PHI_EQ_0; ODD]; | |
REPEAT(POP_ASSUM MP_TAC)] THEN | |
ASM_CASES_TAC `n < 10` THENL [ALL_TAC; ASM_ARITH_TAC] THEN | |
POP_ASSUM MP_TAC THEN SPEC_TAC(`n:num`,`n:num`) THEN | |
CONV_TAC EXPAND_CASES_CONV THEN CONV_TAC NUM_REDUCE_CONV THEN | |
CONV_TAC(ONCE_DEPTH_CONV PRIME_CONV) THEN | |
REWRITE_TAC[] THEN DISCH_THEN(MP_TAC o SPEC `2`) THEN | |
CONV_TAC(ONCE_DEPTH_CONV COPRIME_CONV) THEN | |
REWRITE_TAC[miller_rabin_pseudoprime] THEN CONV_TAC NUM_REDUCE_CONV THEN | |
REWRITE_TAC[ARITH_RULE `8 = 2 EXP 3`] THEN | |
SIMP_TAC[INDEX_EXP; INDEX_REFL; PRIME_2] THEN | |
CONV_TAC(TOP_DEPTH_CONV let_CONV) THEN CONV_TAC NUM_REDUCE_CONV THEN | |
REWRITE_TAC[MESON[] `(?x. P x /\ Q x) <=> ~(!x. P x ==> ~Q x)`] THEN | |
CONV_TAC(TOP_DEPTH_CONV EXPAND_CASES_CONV) THEN | |
REWRITE_TAC[CONG] THEN CONV_TAC NUM_REDUCE_CONV);; | |
(* ------------------------------------------------------------------------- *) | |
(* Less than 1/4 of numbers are pseudoprime bases, for any odd composite n. *) | |
(* ------------------------------------------------------------------------- *) | |
let MILLER_RABIN_PSEUDOPRIME_BOUND_LT = prove | |
(`!n. ODD n /\ ~prime n /\ ~(n = 1) | |
==> 4 * CARD {a | a < n /\ miller_rabin_pseudoprime a n} < n`, | |
MATCH_MP_TAC(MESON[] | |
`!Q. (!n. ~Q n ==> P n) /\ (!n. Q n ==> P n) | |
==> !n. P n`) THEN | |
EXISTS_TAC `\n. n < 10` THEN REWRITE_TAC[] THEN CONJ_TAC THENL | |
[X_GEN_TAC `n:num` THEN REWRITE_TAC[ARITH_RULE `~(n < 10) <=> n > 9`] THEN | |
REPEAT STRIP_TAC THEN TRANS_TAC LET_TRANS `n - 1` THEN | |
CONJ_TAC THENL [ALL_TAC; ASM_ARITH_TAC] THEN | |
TRANS_TAC LE_TRANS `phi n` THEN ASM_SIMP_TAC[PHI_LIMIT_STRONG] THEN | |
REWRITE_TAC[ARITH_RULE `4 * m <= n <=> m <= n DIV 4`] THEN | |
ASM_SIMP_TAC[MILLER_RABIN_PSEUDOPRIME_BOUND_PHI]; | |
CONV_TAC EXPAND_CASES_CONV THEN CONV_TAC NUM_REDUCE_CONV THEN | |
CONV_TAC(ONCE_DEPTH_CONV PRIME_CONV) THEN REWRITE_TAC[]] THEN | |
SUBGOAL_THEN `{a | a < 9 /\ miller_rabin_pseudoprime a 9} = {1,8}` | |
SUBST1_TAC THENL | |
[MATCH_MP_TAC(SET_RULE | |
`(!i. i IN s ==> R i) /\ (!i. R i ==> (P i <=> i IN s)) | |
==> {i | R i /\ P i} = s`) THEN | |
REWRITE_TAC[FORALL_IN_INSERT; NOT_IN_EMPTY] THEN | |
CONV_TAC NUM_REDUCE_CONV THEN REWRITE_TAC[IN_INSERT; NOT_IN_EMPTY] THEN | |
REWRITE_TAC[miller_rabin_pseudoprime] THEN CONV_TAC NUM_REDUCE_CONV THEN | |
REWRITE_TAC[ARITH_RULE `8 = 2 EXP 3`] THEN | |
SIMP_TAC[INDEX_EXP; INDEX_REFL; PRIME_2] THEN | |
CONV_TAC(TOP_DEPTH_CONV let_CONV) THEN CONV_TAC NUM_REDUCE_CONV THEN | |
REWRITE_TAC[MESON[] `(?x. P x /\ Q x) <=> ~(!x. P x ==> ~Q x)`] THEN | |
CONV_TAC(TOP_DEPTH_CONV EXPAND_CASES_CONV) THEN | |
REWRITE_TAC[CONG] THEN CONV_TAC NUM_REDUCE_CONV; | |
SIMP_TAC[CARD_CLAUSES; FINITE_INSERT; FINITE_EMPTY] THEN | |
REWRITE_TAC[IN_INSERT; NOT_IN_EMPTY; ARITH]]);; | |
let MILLER_RABIN_PSEUDOPRIME_BOUND = prove | |
(`!n. ODD n /\ ~prime n /\ ~(n = 1) | |
==> CARD {a | a < n /\ miller_rabin_pseudoprime a n} <= n DIV 4`, | |
GEN_TAC THEN | |
DISCH_THEN(MP_TAC o MATCH_MP MILLER_RABIN_PSEUDOPRIME_BOUND_LT) THEN | |
ARITH_TAC);; | |