Datasets:

Modalities:
Text
Languages:
English
Libraries:
Datasets
License:
Zhangir Azerbayev
squashed?
4365a98
raw
history blame
34.3 kB
(* ========================================================================= *)
(* A HOL "by" tactic, doing Mizar-like things, trying something that is *)
(* sufficient for HOL's basic rules, trying a few other things like *)
(* arithmetic, and finally if all else fails using MESON_TAC[]. *)
(* ========================================================================= *)
(* ------------------------------------------------------------------------- *)
(* More refined net lookup that double-checks conditions like matchability. *)
(* ------------------------------------------------------------------------- *)
let matching_enter tm y net =
enter [] (tm,((fun tm' -> can (term_match [] tm) tm'),y)) net;;
let unconditional_enter (tm,y) net =
enter [] (tm,((fun t -> true),y)) net;;
let conditional_enter (tm,condy) net =
enter [] (tm,condy) net;;
let careful_lookup tm net =
map snd (filter (fun (c,y) -> c tm) (lookup tm net));;
(* ------------------------------------------------------------------------- *)
(* Transform theorem list to simplify, eliminate redundant connectives and *)
(* split the problem into (generally multiple) subproblems. Then, call the *)
(* prover given as the first argument on each component. *)
(* ------------------------------------------------------------------------- *)
let SPLIT_THEN =
let action_false th f oths = th
and action_true th f oths = f oths
and action_conj th f oths =
f (CONJUNCT1 th :: CONJUNCT2 th :: oths)
and action_disj th f oths =
let th1 = f (ASSUME(lhand(concl th)) :: oths)
and th2 = f (ASSUME(rand(concl th)) :: oths) in
DISJ_CASES th th1 th2
and action_taut tm =
let pfun = PART_MATCH lhs (TAUT tm) in
let prule th = EQ_MP (pfun (concl th)) th in
lhand tm,(fun th f oths -> f(prule th :: oths)) in
let enet = itlist unconditional_enter
[`F`,action_false;
`T`,action_true;
`p /\ q`,action_conj;
`p \/ q`,action_disj;
action_taut `(p ==> q) <=> ~p \/ q`;
action_taut `~F <=> T`;
action_taut `~T <=> F`;
action_taut `~(~p) <=> p`;
action_taut `~(p /\ q) <=> ~p \/ ~q`;
action_taut `~(p \/ q) <=> ~p /\ ~q`;
action_taut `~(p ==> q) <=> p /\ ~q`;
action_taut `p /\ F <=> F`;
action_taut `F /\ p <=> F`;
action_taut `p /\ T <=> p`;
action_taut `T /\ p <=> p`;
action_taut `p \/ F <=> p`;
action_taut `F \/ p <=> p`;
action_taut `p \/ T <=> T`;
action_taut `T \/ p <=> T`]
(let tm,act = action_taut `~(p <=> q) <=> p /\ ~q \/ ~p /\ q` in
let cond tm = type_of(rand(rand tm)) = bool_ty in
conditional_enter (tm,(cond,act))
(let tm,act = action_taut `(p <=> q) <=> p /\ q \/ ~p /\ ~q` in
let cond tm = type_of(rand tm) = bool_ty in
conditional_enter (tm,(cond,act)) empty_net)) in
fun prover ->
let rec splitthen splat tosplit =
match tosplit with
[] -> prover (rev splat)
| th::oths ->
let funs = careful_lookup (concl th) enet in
if funs = [] then splitthen (th::splat) oths
else (hd funs) th (splitthen splat) oths in
splitthen [];;
(* ------------------------------------------------------------------------- *)
(* A similar thing that also introduces Skolem constants (but not functions) *)
(* and does some slight first-order simplification like trivial miniscoping. *)
(* ------------------------------------------------------------------------- *)
let SPLIT_FOL_THEN =
let action_false th f splat oths = th
and action_true th f splat oths = f oths
and action_conj th f splat oths =
f (CONJUNCT1 th :: CONJUNCT2 th :: oths)
and action_disj th f splat oths =
let th1 = f (ASSUME(lhand(concl th)) :: oths)
and th2 = f (ASSUME(rand(concl th)) :: oths) in
DISJ_CASES th th1 th2
and action_exists th f splat oths =
let v,bod = dest_exists(concl th) in
let vars = itlist (union o thm_frees) (oths @ splat) (thm_frees th) in
let v' = variant vars v in
let th' = ASSUME (subst [v',v] bod) in
CHOOSE (v',th) (f (th'::oths))
and action_taut tm =
let pfun = PART_MATCH lhs (TAUT tm) in
let prule th = EQ_MP (pfun (concl th)) th in
lhand tm,(fun th f splat oths -> f(prule th :: oths))
and action_fol tm =
let pfun = PART_MATCH lhs (prove(tm,MESON_TAC[])) in
let prule th = EQ_MP (pfun (concl th)) th in
lhand tm,(fun th f splat oths -> f(prule th :: oths)) in
let enet = itlist unconditional_enter
[`F`,action_false;
`T`,action_true;
`p /\ q`,action_conj;
`p \/ q`,action_disj;
`?x. P x`,action_exists;
action_taut `~(~p) <=> p`;
action_taut `~(p /\ q) <=> ~p \/ ~q`;
action_taut `~(p \/ q) <=> ~p /\ ~q`;
action_fol `~(!x. P x) <=> (?x. ~(P x))`;
action_fol `(!x. P x /\ Q x) <=> (!x. P x) /\ (!x. Q x)`]
empty_net in
fun prover ->
let rec splitthen splat tosplit =
match tosplit with
[] -> prover (rev splat)
| th::oths ->
let funs = careful_lookup (concl th) enet in
if funs = [] then splitthen (th::splat) oths
else (hd funs) th (splitthen splat) splat oths in
splitthen [];;
(* ------------------------------------------------------------------------- *)
(* Do the basic "semantic correlates" stuff. *)
(* This is more like NNF than Mizar's version. *)
(* ------------------------------------------------------------------------- *)
let CORRELATE_RULE =
PURE_REWRITE_RULE
[TAUT `(a <=> b) <=> (a ==> b) /\ (b ==> a)`;
TAUT `(a ==> b) <=> ~a \/ b`;
DE_MORGAN_THM;
TAUT `~(~a) <=> a`;
TAUT `~T <=> F`;
TAUT `~F <=> T`;
TAUT `T /\ p <=> p`;
TAUT `p /\ T <=> p`;
TAUT `F /\ p <=> F`;
TAUT `p /\ F <=> F`;
TAUT `T \/ p <=> T`;
TAUT `p \/ T <=> T`;
TAUT `F \/ p <=> p`;
TAUT `p \/ F <=> p`;
GSYM CONJ_ASSOC; GSYM DISJ_ASSOC;
prove(`(?x. P x) <=> ~(!x. ~(P x))`,MESON_TAC[])];;
(* ------------------------------------------------------------------------- *)
(* Look for an immediate contradictory pair of theorems. This is quadratic, *)
(* but I doubt if that's much of an issue in practice. We could do something *)
(* fancier, but need to be careful over alpha-equivalence if sorting. *)
(* ------------------------------------------------------------------------- *)
let THMLIST_CONTR_RULE =
let CONTR_PAIR_THM = UNDISCH_ALL(TAUT `p ==> ~p ==> F`)
and p_tm = `p:bool` in
fun ths ->
let ths_n,ths_p = partition (is_neg o concl) ths in
let th_n = find (fun thn -> let tm = rand(concl thn) in
exists (aconv tm o concl) ths_p) ths_n in
let tm = rand(concl th_n) in
let th_p = find (aconv tm o concl) ths_p in
itlist PROVE_HYP [th_p; th_n] (INST [tm,p_tm] CONTR_PAIR_THM);;
(* ------------------------------------------------------------------------- *)
(* Hence something similar to Mizar's "prechecker". *)
(* ------------------------------------------------------------------------- *)
let PRECHECKER_THEN prover =
SPLIT_THEN (fun ths -> try THMLIST_CONTR_RULE ths
with Failure _ ->
SPLIT_FOL_THEN prover (map CORRELATE_RULE ths));;
(* ------------------------------------------------------------------------- *)
(* Lazy equations for use in congruence closure. *)
(* ------------------------------------------------------------------------- *)
type lazyeq = Lazy of (term * term) * (unit -> thm);;
let cache f =
let store = ref TRUTH in
fun () -> let th = !store in
if is_eq(concl th) then th else
let th' = f() in
(store := th'; th');;
let lazy_eq th =
Lazy((dest_eq(concl th)),(fun () -> th));;
let lazy_eval (Lazy(_,f)) = f();;
let REFL' t = Lazy((t,t),cache(fun () -> REFL t));;
let SYM' = fun (Lazy((t,t'),f)) -> Lazy((t',t),cache(fun () -> SYM(f ())));;
let TRANS' =
fun (Lazy((s,s'),f)) (Lazy((t,t'),g)) ->
if not(aconv s' t) then failwith "TRANS'"
else Lazy((s,t'),cache(fun () -> TRANS (f ()) (g ())));;
let MK_COMB' =
fun (Lazy((s,s'),f),Lazy((t,t'),g)) ->
Lazy((mk_comb(s,t),mk_comb(s',t')),cache(fun () -> MK_COMB (f (),g ())));;
let concl' = fun (Lazy(tmp,g)) -> tmp;;
(* ------------------------------------------------------------------------- *)
(* Successors of a term, and predecessor function. *)
(* ------------------------------------------------------------------------- *)
let successors tm =
try let f,x = dest_comb tm in [f;x]
with Failure _ -> [];;
let predecessor_function tms =
itlist (fun x -> itlist (fun y f -> (y |-> insert x (tryapplyd f y [])) f)
(successors x))
tms undefined;;
(* ------------------------------------------------------------------------- *)
(* A union-find structure for equivalences, with theorems for edges. *)
(* ------------------------------------------------------------------------- *)
type termnode = Nonterminal of lazyeq | Terminal of term * term list;;
type termequivalence = Equivalence of (term,termnode)func;;
let rec terminus (Equivalence f as eqv) a =
match (apply f a) with
Nonterminal(th) -> let b = snd(concl' th) in
let th',n = terminus eqv b in
TRANS' th th',n
| Terminal(t,n) -> (REFL' t,n);;
let tryterminus eqv a =
try terminus eqv a with Failure _ -> (REFL' a,[a]);;
let canonize eqv a = fst(tryterminus eqv a);;
let equate th (Equivalence f as eqv) =
let a,b = concl' th in
let (ath,na) = tryterminus eqv a
and (bth,nb) = tryterminus eqv b in
let a' = snd(concl' ath) and b' = snd(concl' bth) in
Equivalence
(if a' = b' then f else
if length na <= length nb then
let th' = TRANS' (TRANS' (SYM' ath) th) bth in
(a' |-> Nonterminal th') ((b' |-> Terminal(b',na@nb)) f)
else
let th' = TRANS'(SYM'(TRANS' th bth)) ath in
(b' |-> Nonterminal th') ((a' |-> Terminal(a',na@nb)) f));;
let unequal = Equivalence undefined;;
let equated (Equivalence f) = dom f;;
let prove_equal eqv (s,t) =
let sth = canonize eqv s and tth = canonize eqv t in
TRANS' (canonize eqv s) (SYM'(canonize eqv t));;
let equivalence_class eqv a = snd(tryterminus eqv a);;
(* ------------------------------------------------------------------------- *)
(* Prove composite terms equivalent based on 1-step congruence. *)
(* ------------------------------------------------------------------------- *)
let provecongruent eqv (tm1,tm2) =
let f1,x1 = dest_comb tm1
and f2,x2 = dest_comb tm2 in
MK_COMB'(prove_equal eqv (f1,f2),prove_equal eqv (x1,x2));;
(* ------------------------------------------------------------------------- *)
(* Merge equivalence classes given equation "th", using congruence closure. *)
(* ------------------------------------------------------------------------- *)
let rec emerge th (eqv,pfn) =
let s,t = concl' th in
let sth = canonize eqv s and tth = canonize eqv t in
let s' = snd(concl' sth) and t' = snd(concl' tth) in
if s' = t' then (eqv,pfn) else
let sp = tryapplyd pfn s' [] and tp = tryapplyd pfn t' [] in
let eqv' = equate th eqv in
let stth = canonize eqv' s' in
let sttm = snd(concl' stth) in
let pfn' = (sttm |-> union sp tp) pfn in
itlist (fun (u,v) (eqv,pfn as eqp) ->
try let thuv = provecongruent eqv (u,v) in emerge thuv eqp
with Failure _ -> eqp)
(allpairs (fun u v -> (u,v)) sp tp) (eqv',pfn');;
(* ------------------------------------------------------------------------- *)
(* Find subterms of "tm" that contain as a subterm one of the "tms" terms. *)
(* This is intended to be more efficient than the obvious "find_terms ...". *)
(* ------------------------------------------------------------------------- *)
let rec supersubterms tms tm =
let ltms,tms' =
if mem tm tms then [tm],filter (fun t -> t <> tm) tms
else [],tms in
if tms' = [] then ltms else
let stms =
try let l,r = dest_comb tm in
union (supersubterms tms' l) (supersubterms tms' r)
with Failure _ -> [] in
if stms = [] then ltms
else tm::stms;;
(* ------------------------------------------------------------------------- *)
(* Find an appropriate term universe for overall terms "tms". *)
(* ------------------------------------------------------------------------- *)
let term_universe tms =
setify (itlist ((@) o supersubterms tms) tms []);;
(* ------------------------------------------------------------------------- *)
(* Congruence closure of "eqs" over term universe "tms". *)
(* ------------------------------------------------------------------------- *)
let congruence_closure tms eqs =
let pfn = predecessor_function tms in
let eqv,_ = itlist emerge eqs (unequal,pfn) in
eqv;;
(* ------------------------------------------------------------------------- *)
(* Prove that "eq" follows from "eqs" by congruence closure. *)
(* ------------------------------------------------------------------------- *)
let CCPROVE eqs eq =
let tps = dest_eq eq :: map concl' eqs in
let otms = itlist (fun (x,y) l -> x::y::l) tps [] in
let tms = term_universe(setify otms) in
let eqv = congruence_closure tms eqs in
prove_equal eqv (dest_eq eq);;
(* ------------------------------------------------------------------------- *)
(* Inference rule for `eq1 /\ ... /\ eqn ==> eq` *)
(* ------------------------------------------------------------------------- *)
let CONGRUENCE_CLOSURE tm =
if is_imp tm then
let eqs,eq = dest_imp tm in
DISCH eqs (lazy_eval(CCPROVE (map lazy_eq (CONJUNCTS(ASSUME eqs))) eq))
else lazy_eval(CCPROVE [] tm);;
(* ------------------------------------------------------------------------- *)
(* Inference rule for contradictoriness of set of +ve and -ve eqns. *)
(* ------------------------------------------------------------------------- *)
let CONGRUENCE_CLOSURE_CONTR ths =
let nths,pths = partition (is_neg o concl) ths in
let peqs = filter (is_eq o concl) pths
and neqs = filter (is_eq o rand o concl) nths in
let tps = map (dest_eq o concl) peqs @ map (dest_eq o rand o concl) neqs in
let otms = itlist (fun (x,y) l -> x::y::l) tps [] in
let tms = term_universe(setify otms) in
let eqv = congruence_closure tms (map lazy_eq peqs) in
let prover th =
let eq = dest_eq(rand(concl th)) in
let lth = prove_equal eqv eq in
EQ_MP (EQF_INTRO th) (lazy_eval lth) in
tryfind prover neqs;;
(* ------------------------------------------------------------------------- *)
(* Attempt to prove equality between terms/formulas based on equivalence. *)
(* Note that ABS sideconditions are only checked at inference-time... *)
(* ------------------------------------------------------------------------- *)
let ABS' v =
fun (Lazy((s,t),f)) ->
Lazy((mk_abs(v,s),mk_abs(v,t)),
cache(fun () -> ABS v (f ())));;
let ALPHA_EQ' s' t' =
fun (Lazy((s,t),f) as inp) ->
if s' = s && t' = t then inp else
Lazy((s',t'),
cache(fun () -> EQ_MP (ALPHA (mk_eq(s,t)) (mk_eq(s',t')))
(f ())));;
let rec PROVE_EQUAL eqv (tm1,tm2 as tmp) =
if tm1 = tm2 then REFL' tm1 else
try prove_equal eqv tmp with Failure _ ->
if is_comb tm1 && is_comb tm2 then
let f1,x1 = dest_comb tm1
and f2,x2 = dest_comb tm2 in
MK_COMB'(PROVE_EQUAL eqv (f1,f2),PROVE_EQUAL eqv (x1,x2))
else if is_abs tm1 && is_abs tm2 then
let x1,bod1 = dest_abs tm1
and x2,bod2 = dest_abs tm2 in
let gv = genvar(type_of x1) in
ALPHA_EQ' tm1 tm2
(ABS' x1 (PROVE_EQUAL eqv (vsubst[gv,x1] bod1,vsubst[gv,x2] bod2)))
else failwith "PROVE_EQUAL";;
let PROVE_EQUIVALENT eqv tm1 tm2 = lazy_eval (PROVE_EQUAL eqv (tm1,tm2));;
(* ------------------------------------------------------------------------- *)
(* Complementary version for formulas. *)
(* ------------------------------------------------------------------------- *)
let PROVE_COMPLEMENTARY eqv th1 th2 =
let tm1 = concl th1 and tm2 = concl th2 in
if is_neg tm1 then
let th = PROVE_EQUIVALENT eqv (rand tm1) tm2 in
EQ_MP (EQF_INTRO th1) (EQ_MP (SYM th) th2)
else if is_neg tm2 then
let th = PROVE_EQUIVALENT eqv (rand tm2) tm1 in
EQ_MP (EQF_INTRO th2) (EQ_MP (SYM th) th1)
else failwith "PROVE_COMPLEMENTARY";;
(* ------------------------------------------------------------------------- *)
(* Check equality under equivalence with "env" mapping for first term. *)
(* ------------------------------------------------------------------------- *)
let rec test_eq eqv (tm1,tm2) env =
if is_comb tm1 && is_comb tm2 then
let f1,x1 = dest_comb tm1
and f2,x2 = dest_comb tm2 in
test_eq eqv (f1,f2) env && test_eq eqv (x1,x2) env
else if is_abs tm1 && is_abs tm2 then
let x1,bod1 = dest_abs tm1
and x2,bod2 = dest_abs tm2 in
let gv = genvar(type_of x1) in
test_eq eqv (vsubst[gv,x1] bod1,vsubst[gv,x2] bod2) env
else if is_var tm1 && can (rev_assoc tm1) env then
test_eq eqv (rev_assoc tm1 env,tm2) []
else can (prove_equal eqv) (tm1,tm2);;
(* ------------------------------------------------------------------------- *)
(* Map a term to its equivalence class modulo equivalence *)
(* ------------------------------------------------------------------------- *)
let rec term_equivs eqv tm =
let l = equivalence_class eqv tm in
if l <> [tm] then l
else if is_comb tm then
let f,x = dest_comb tm in
allpairs (curry mk_comb) (term_equivs eqv f) (term_equivs eqv x)
else if is_abs tm then
let v,bod = dest_abs tm in
let gv = genvar(type_of v) in
map (fun t -> alpha v (mk_abs(gv,t))) (term_equivs eqv (vsubst [gv,v] bod))
else [tm];;
(* ------------------------------------------------------------------------- *)
(* Replace "outer" universal variables with genvars. This is "outer" in the *)
(* second sense, i.e. universals not in scope of an existential or negation. *)
(* ------------------------------------------------------------------------- *)
let rec GENSPEC th =
let tm = concl th in
if is_forall tm then
let v = bndvar(rand tm) in
let gv = genvar(type_of v) in
GENSPEC(SPEC gv th)
else if is_conj tm then
let th1,th2 = CONJ_PAIR th in
CONJ (GENSPEC th1) (GENSPEC th2)
else if is_disj tm then
let th1 = GENSPEC(ASSUME(lhand tm))
and th2 = GENSPEC(ASSUME(rand tm)) in
let th3 = DISJ1 th1 (concl th2)
and th4 = DISJ2 (concl th1) th2 in
DISJ_CASES th th3 th4
else th;;
(* ------------------------------------------------------------------------- *)
(* Simple first-order matching. *)
(* ------------------------------------------------------------------------- *)
let rec term_fmatch vars vtm ctm env =
if mem vtm vars then
if can (rev_assoc vtm) env then
term_fmatch vars (rev_assoc vtm env) ctm env
else if aconv vtm ctm then env else (ctm,vtm)::env
else if is_comb vtm && is_comb ctm then
let fv,xv = dest_comb vtm
and fc,xc = dest_comb ctm in
term_fmatch vars fv fc (term_fmatch vars xv xc env)
else if is_abs vtm && is_abs ctm then
let xv,bodv = dest_abs vtm
and xc,bodc = dest_abs ctm in
let gv = genvar(type_of xv) and gc = genvar(type_of xc) in
let gbodv = vsubst [gv,xv] bodv
and gbodc = vsubst [gc,xc] bodc in
term_fmatch (gv::vars) gbodv gbodc ((gc,gv)::env)
else if vtm = ctm then env
else failwith "term_fmatch";;
let rec check_consistency env =
match env with
[] -> true
| (c,v)::es -> forall (fun (c',v') -> v' <> v || c' = c) es;;
let separate_insts env =
let tyin = itlist (fun (c,v) -> type_match (type_of v) (type_of c))
env [] in
let ifn(c,v) = (inst tyin c,inst tyin v) in
let tmin = setify (map ifn env) in
if check_consistency tmin then (tmin,tyin)
else failwith "separate_insts";;
let first_order_match vars vtm ctm env =
let env' = term_fmatch vars vtm ctm env in
if can separate_insts env' then env' else failwith "first_order_match";;
(* ------------------------------------------------------------------------- *)
(* Try to match all leaves to negation of auxiliary propositions. *)
(* ------------------------------------------------------------------------- *)
let matchleaves =
let rec matchleaves vars vtm ctms env cont =
if is_conj vtm then
try matchleaves vars (rand vtm) ctms env cont
with Failure _ -> matchleaves vars (lhand vtm) ctms env cont
else if is_disj vtm then
matchleaves vars (lhand vtm) ctms env
(fun e -> matchleaves vars (rand vtm) ctms e cont)
else
tryfind (fun ctm -> cont (first_order_match vars vtm ctm env)) ctms in
fun vars vtm ctms env -> matchleaves vars vtm ctms env (fun e -> e);;
(* ------------------------------------------------------------------------- *)
(* Now actually do the refutation once theorem is instantiated. *)
(* ------------------------------------------------------------------------- *)
let rec REFUTE_LEAVES eqv cths th =
let tm = concl th in
if is_conj tm then
try REFUTE_LEAVES eqv cths (CONJUNCT1 th)
with Failure _ -> REFUTE_LEAVES eqv cths (CONJUNCT2 th)
else if is_disj tm then
let th1 = REFUTE_LEAVES eqv cths (ASSUME(lhand tm))
and th2 = REFUTE_LEAVES eqv cths (ASSUME(rand tm)) in
DISJ_CASES th th1 th2
else
tryfind (PROVE_COMPLEMENTARY eqv th) cths;;
(* ------------------------------------------------------------------------- *)
(* Hence the Mizar "unifier" for given universal formula. *)
(* ------------------------------------------------------------------------- *)
let negate tm = if is_neg tm then rand tm else mk_neg tm;;
let MIZAR_UNIFIER eqv ths th =
let gth = GENSPEC th in
let vtm = concl gth in
let vars = subtract (frees vtm) (frees(concl th))
and ctms = map (negate o concl) ths in
let allctms = itlist (union o term_equivs eqv) ctms [] in
let env = matchleaves vars vtm allctms [] in
let tmin,tyin = separate_insts env in
REFUTE_LEAVES eqv ths (PINST tyin tmin gth);;
(* ------------------------------------------------------------------------- *)
(* Deduce disequalities of subterms and add symmetric versions at the end. *)
(* ------------------------------------------------------------------------- *)
let rec DISEQUALITIES ths =
match ths with
[] -> []
| th::oths ->
let t1,t2 = dest_eq (rand(concl th)) in
let f1,args1 = strip_comb t1
and f2,args2 = strip_comb t2 in
if f1 <> f2 || length args1 <> length args2
then th::(GSYM th)::(DISEQUALITIES oths) else
let zargs = zip args1 args2 in
let diffs = filter (fun (a1,a2) -> a1 <> a2) zargs in
if length diffs <> 1 then th::(GSYM th)::(DISEQUALITIES oths) else
let eths = map (fun (a1,a2) ->
if a1 = a2 then REFL a1 else ASSUME(mk_eq(a1,a2))) zargs in
let th1 = rev_itlist (fun x y -> MK_COMB(y,x)) eths (REFL f1) in
let th2 =
MP (GEN_REWRITE_RULE I [GSYM CONTRAPOS_THM] (DISCH_ALL th1)) th in
th::(GSYM th)::(DISEQUALITIES(th2::oths));;
(* ------------------------------------------------------------------------- *)
(* Get such a starting inequality from complementary literals. *)
(* ------------------------------------------------------------------------- *)
let ATOMINEQUALITIES th1 th2 =
let t1 = concl th1 and t2' = concl th2 in
let t2 = dest_neg t2' in
let f1,args1 = strip_comb t1
and f2,args2 = strip_comb t2 in
if f1 <> f2 || length args1 <> length args2 then [] else
let zargs = zip args1 args2 in
let diffs = filter (fun (a1,a2) -> a1 <> a2) zargs in
if length diffs <> 1 then [] else
let eths = map (fun (a1,a2) ->
if a1 = a2 then REFL a1 else ASSUME(mk_eq(a1,a2))) zargs in
let th3 = rev_itlist (fun x y -> MK_COMB(y,x)) eths (REFL f1) in
let th4 = EQ_MP (TRANS th3 (EQF_INTRO th2)) th1 in
let th5 = NOT_INTRO(itlist (DISCH o mk_eq) diffs th4) in
[itlist PROVE_HYP [th1; th2] th5];;
(* ------------------------------------------------------------------------- *)
(* Basic prover. *)
(* ------------------------------------------------------------------------- *)
let BASIC_MIZARBY ths =
try let nths,pths = partition (is_neg o concl) ths in
let peqs,pneqs = partition (is_eq o concl) pths
and neqs,nneqs = partition (is_eq o rand o concl) nths in
let tps = map (dest_eq o concl) peqs @
map (dest_eq o rand o concl) neqs in
let otms = itlist (fun (x,y) l -> x::y::l) tps [] in
let tms = term_universe(setify otms) in
let eqv = congruence_closure tms (map lazy_eq peqs) in
let eqprover th =
let s,t = dest_eq(rand(concl th)) in
let th' = PROVE_EQUIVALENT eqv s t in
EQ_MP (EQF_INTRO th) th'
and contrprover thp thn =
let th = PROVE_EQUIVALENT eqv (concl thp) (rand(concl thn)) in
EQ_MP (TRANS th (EQF_INTRO thn)) thp in
try tryfind eqprover neqs with Failure _ ->
try tryfind (fun thp -> tryfind (contrprover thp) nneqs) pneqs
with Failure _ ->
let new_neqs = unions(allpairs ATOMINEQUALITIES pneqs nneqs) in
let allths = pneqs @ nneqs @ peqs @ DISEQUALITIES(neqs @ new_neqs) in
tryfind (MIZAR_UNIFIER eqv allths)
(filter (is_forall o concl) allths)
with Failure _ -> failwith "BASIC_MIZARBY";;
(* ------------------------------------------------------------------------- *)
(* Put it all together. *)
(* ------------------------------------------------------------------------- *)
let MIZAR_REFUTER ths = PRECHECKER_THEN BASIC_MIZARBY ths;;
(* ------------------------------------------------------------------------- *)
(* The Mizar prover for getting a conclusion from hypotheses. *)
(* ------------------------------------------------------------------------- *)
let MIZAR_BY =
let pth = TAUT `(~p ==> F) <=> p` and p_tm = `p:bool` in
fun ths tm ->
let tm' = mk_neg tm in
let th0 = ASSUME tm' in
let th1 = MIZAR_REFUTER (th0::ths) in
EQ_MP (INST [tm,p_tm] pth) (DISCH tm' th1);;
(* ------------------------------------------------------------------------- *)
(* As a standalone prover of formulas. *)
(* ------------------------------------------------------------------------- *)
let MIZAR_RULE tm = MIZAR_BY [] tm;;
(* ------------------------------------------------------------------------- *)
(* Some additional stuff for HOL. *)
(* ------------------------------------------------------------------------- *)
let HOL_BY =
let BETASET_CONV =
TOP_DEPTH_CONV GEN_BETA_CONV THENC REWRITE_CONV[IN_ELIM_THM]
and BUILTIN_CONV tm =
try EQT_ELIM(NUM_REDUCE_CONV tm) with Failure _ ->
try EQT_ELIM(REAL_RAT_REDUCE_CONV tm) with Failure _ ->
try ARITH_RULE tm with Failure _ ->
try REAL_ARITH tm with Failure _ ->
failwith "BUILTIN_CONV" in
fun ths tm ->
try MIZAR_BY ths tm with Failure _ ->
try tryfind (fun th -> PART_MATCH I th tm) ths with Failure _ ->
try let avs,bod = strip_forall tm in
let gvs = map (genvar o type_of) avs in
let gtm = vsubst (zip gvs avs) bod in
let th = tryfind (fun th -> PART_MATCH I th gtm) ths in
let gth = GENL gvs th in
EQ_MP (ALPHA (concl gth) tm) gth
with Failure _ -> try
(let ths' = map BETA_RULE ths
and th' = TOP_DEPTH_CONV BETA_CONV tm in
let tm' = rand(concl th') in
try EQ_MP (SYM th') (tryfind (fun th -> PART_MATCH I th tm') ths)
with Failure _ -> try EQ_MP (SYM th') (BUILTIN_CONV tm')
with Failure _ ->
let ths'' = map (CONV_RULE BETASET_CONV) ths'
and th'' = TRANS th' (BETASET_CONV tm') in
EQ_MP (SYM th'') (prove(rand(concl th''),MESON_TAC ths'')))
with Failure _ -> failwith "HOL_BY";;
(* ------------------------------------------------------------------------- *)
(* Standalone prover, breaking down an implication first. *)
(* ------------------------------------------------------------------------- *)
let HOL_RULE tm =
try let l,r = dest_imp tm in
DISCH l (HOL_BY (CONJUNCTS(ASSUME l)) r)
with Failure _ -> HOL_BY [] tm;;
(* ------------------------------------------------------------------------- *)
(* Tautology examples (Pelletier problems). *)
(* ------------------------------------------------------------------------- *)
let prop_1 = time HOL_RULE
`p ==> q <=> ~q ==> ~p`;;
let prop_2 = time HOL_RULE
`~ ~p <=> p`;;
let prop_3 = time HOL_RULE
`~(p ==> q) ==> q ==> p`;;
let prop_4 = time HOL_RULE
`~p ==> q <=> ~q ==> p`;;
let prop_5 = time HOL_RULE
`(p \/ q ==> p \/ r) ==> p \/ (q ==> r)`;;
let prop_6 = time HOL_RULE
`p \/ ~p`;;
let prop_7 = time HOL_RULE
`p \/ ~ ~ ~p`;;
let prop_8 = time HOL_RULE
`((p ==> q) ==> p) ==> p`;;
let prop_9 = time HOL_RULE
`(p \/ q) /\ (~p \/ q) /\ (p \/ ~q) ==> ~(~q \/ ~q)`;;
let prop_10 = time HOL_RULE
`(q ==> r) /\ (r ==> p /\ q) /\ (p ==> q /\ r) ==> (p <=> q)`;;
let prop_11 = time HOL_RULE
`p <=> p`;;
let prop_12 = time HOL_RULE
`((p <=> q) <=> r) <=> (p <=> (q <=> r))`;;
let prop_13 = time HOL_RULE
`p \/ q /\ r <=> (p \/ q) /\ (p \/ r)`;;
let prop_14 = time HOL_RULE
`(p <=> q) <=> (q \/ ~p) /\ (~q \/ p)`;;
let prop_15 = time HOL_RULE
`p ==> q <=> ~p \/ q`;;
let prop_16 = time HOL_RULE
`(p ==> q) \/ (q ==> p)`;;
let prop_17 = time HOL_RULE
`p /\ (q ==> r) ==> s <=> (~p \/ q \/ s) /\ (~p \/ ~r \/ s)`;;
(* ------------------------------------------------------------------------- *)
(* Congruence closure examples. *)
(* ------------------------------------------------------------------------- *)
time HOL_RULE
`(f(f(f(f(f(x))))) = x) /\ (f(f(f(x))) = x) ==> (f(x) = x)`;;
time HOL_RULE
`(f(f(f(f(f(f(x)))))) = x) /\ (f(f(f(f(x)))) = x) ==> (f(f(x)) = x)`;;
time HOL_RULE `(f a = a) ==> (f(f a) = a)`;;
time HOL_RULE
`(a = f a) /\ ((g b (f a))=(f (f a))) /\ ((g a b)=(f (g b a)))
==> (g a b = a)`;;
time HOL_RULE
`((s(s(s(s(s(s(s(s(s(s(s(s(s(s(s a)))))))))))))))=a) /\
((s (s (s (s (s (s (s (s (s (s a))))))))))=a) /\
((s (s (s (s (s (s a))))))=a)
==> (a = s a)`;;
time HOL_RULE `(u = v) ==> (P u <=> P v)`;;
time HOL_RULE
`(b + c + d + e + f + g + h + i + j + k + l + m =
m + l + k + j + i + h + g + f + e + d + c + b)
==> (a + b + c + d + e + f + g + h + i + j + k + l + m =
a + m + l + k + j + i + h + g + f + e + d + c + b)`;;
time HOL_RULE
`(f(f(f(f(a)))) = a) /\ (f(f(f(f(f(f(a)))))) = a) /\
something(irrelevant) /\ (11 + 12 = 23) /\
(f(f(f(f(b)))) = f(f(f(f(f(f(f(f(f(f(c))))))))))) /\
~(otherthing) /\ ~(f(a) = a) /\ ~(f(b) = b) /\
P(f(f(f(a)))) ==> P(f(a))`;;
time HOL_RULE
`((a = b) \/ (c = d)) /\ ((a = c) \/ (b = d)) ==> (a = d) \/ (b = c)`;;
(* ------------------------------------------------------------------------- *)
(* Various combined examples. *)
(* ------------------------------------------------------------------------- *)
time HOL_RULE
`(f(f(f(f(a:A)))) = a) /\ (f(f(f(f(f(f(a)))))) = a) /\
something(irrelevant) /\ (11 + 12 = 23) /\
(f(f(f(f(b:A)))) = f(f(f(f(f(f(f(f(f(f(c))))))))))) /\
~(otherthing) /\ ~(f(a) = a) /\ ~(f(b) = b) /\
P(f(a)) /\ ~(f(f(f(a))) = f(a)) ==> ?x. P(f(f(f(x))))`;;
time HOL_RULE
`(f(f(f(f(a:A)))) = a) /\ (f(f(f(f(f(f(a)))))) = a) /\
something(irrelevant) /\ (11 + 12 = 23) /\
(f(f(f(f(b:A)))) = f(f(f(f(f(f(f(f(f(f(c))))))))))) /\
~(otherthing) /\ ~(f(a) = a) /\ ~(f(b) = b) /\
P(f(a))
==> P(f(f(f(a))))`;;
time HOL_RULE
`(f(f(f(f(a:A)))) = a) /\ (f(f(f(f(f(f(a)))))) = a) /\
something(irrelevant) /\ (11 + 12 = 23) /\
(f(f(f(f(b:A)))) = f(f(f(f(f(f(f(f(f(f(c))))))))))) /\
~(otherthing) /\ ~(f(a) = a) /\ ~(f(b) = b) /\
P(f(a))
==> ?x. P(f(f(f(x))))`;;
time HOL_RULE
`(a = f a) /\ ((g b (f a))=(f (f a))) /\ ((g a b)=(f (g b a))) /\
(!x y. ~P (g x y))
==> ~P(a)`;;
time HOL_RULE
`(!x y. x + y = y + x) /\ (1 + 2 = x) /\ (x = 3) ==> (3 = 2 + 1)`;;
time HOL_RULE
`(!x:num y. x + y = y + x) ==> (1 + 2 = 2 + 1)`;;
time HOL_RULE
`(!x:num y. ~(x + y = y + x)) ==> ~(1 + 2 = 2 + 1)`;;
time HOL_RULE
`(1 + 2 = 2 + 1) ==> ?x:num y. x + y = y + x`;;
time HOL_RULE
`(1 + x = x + 1) ==> ?x:num y. x + y = y + x`;;
time (HOL_BY []) `?x. P x ==> !y. P y`;;
(* ------------------------------------------------------------------------- *)
(* Testing the HOL extensions. *)
(* ------------------------------------------------------------------------- *)
time HOL_RULE `1 + 1 = 2`;;
time HOL_RULE `(\x. x + 1) 2 = 2 + 1`;;
time HOL_RULE `!x. x < 2 ==> 2 * x <= 3`;;
time HOL_RULE `y IN {x | x < 2} <=> y < 2`;;
time HOL_RULE `(!x. (x = a) \/ x > a) ==> (1 + x = a) \/ 1 + x > a`;;
time HOL_RULE `(\(x,y). x + y)(1,2) + 5 = (1 + 2) + 5`;;
(* ------------------------------------------------------------------------- *)
(* These and only these should go to MESON. *)
(* ------------------------------------------------------------------------- *)
print_string "***** Now the following (only) should use MESON";
print_newline();;
time HOL_RULE `?x y. x = y`;;
time HOL_RULE `(!Y X Z. p(X,Y) /\ p(Y,Z) ==> p(X,Z)) /\
(!Y X Z. q(X,Y) /\ q(Y,Z) ==> q(X,Z)) /\
(!Y X. q(X,Y) ==> q(Y,X)) /\
(!X Y. p(X,Y) \/ q(X,Y))
==> p(a,b) \/ q(c,d)`;;
time HOL_BY [PAIR_EQ] `(1,2) IN {(x,y) | x < y} <=> 1 < 2`;;
HOL_BY [] `?x. !y. P x ==> P y`;;