Datasets:
Tasks:
Text Generation
Modalities:
Text
Sub-tasks:
language-modeling
Languages:
English
Size:
100K - 1M
License:
(* ========================================================================= *) | |
(* Dense linear order decision procedure for reals, by Sean McLaughlin. *) | |
(* ========================================================================= *) | |
prioritize_real();; | |
(* ---------------------------------------------------------------------- *) | |
(* Util *) | |
(* ---------------------------------------------------------------------- *) | |
let list_conj = | |
let t_tm = `T` in | |
fun l -> if l = [] then t_tm else end_itlist (curry mk_conj) l;; | |
let mk_lt = mk_binop `(<)`;; | |
(* ---------------------------------------------------------------------- *) | |
(* cnnf *) | |
(* ---------------------------------------------------------------------- *) | |
let DOUBLE_NEG_CONV = | |
let dn_thm = TAUT `!x. ~(~ x) <=> x` in | |
let dn_conv = | |
fun tm -> | |
let tm' = dest_neg (dest_neg tm) in | |
ISPEC tm' dn_thm in | |
dn_conv;; | |
let IMP_CONV = | |
let i_thm = TAUT `!a b. (a ==> b) <=> (~a \/ b)` in | |
let i_conv = | |
fun tm -> | |
let (a,b) = dest_imp tm in | |
ISPECL [a;b] i_thm in | |
i_conv;; | |
let BEQ_CONV = | |
let beq_thm = TAUT `!a b. (a = b) <=> (a /\ b \/ ~a /\ ~b)` in | |
let beq_conv = | |
fun tm -> | |
let (a,b) = dest_eq tm in | |
ISPECL [a;b] beq_thm in | |
beq_conv;; | |
let NEG_AND_CONV = | |
let na_thm = TAUT `!a b. ~(a /\ b) <=> (~a \/ ~b)` in | |
let na_conv = | |
fun tm -> | |
let (a,b) = dest_conj (dest_neg tm) in | |
ISPECL [a;b] na_thm in | |
na_conv;; | |
let NEG_OR_CONV = | |
let no_thm = TAUT `!a b. ~(a \/ b) <=> (~a /\ ~b)` in | |
let no_conv = | |
fun tm -> | |
let (a,b) = dest_disj (dest_neg tm) in | |
ISPECL [a;b] no_thm in | |
no_conv;; | |
let NEG_IMP_CONV = | |
let ni_thm = TAUT `!a b. ~(a ==> b) <=> (a /\ ~b)` in | |
let ni_conv = | |
fun tm -> | |
let (a,b) = dest_imp (dest_neg tm) in | |
ISPECL [a;b] ni_thm in | |
ni_conv;; | |
let NEG_BEQ_CONV = | |
let nbeq_thm = TAUT `!a b. ~(a = b) <=> (a /\ ~b \/ ~a /\ b)` in | |
let nbeq_conv = | |
fun tm -> | |
let (a,b) = dest_eq (dest_neg tm) in | |
ISPECL [a;b] nbeq_thm in | |
nbeq_conv;; | |
(* tm = (p /\ q0) \/ (~p /\ q1) *) | |
let dest_cases tm = | |
try | |
let (l,r) = dest_disj tm in | |
let (p,q0) = dest_conj l in | |
let (np,q1) = dest_conj r in | |
if mk_neg p = np then (p,q0,q1) else failwith "not a cases term" | |
with Failure _ -> failwith "not a cases term";; | |
let is_cases = can dest_cases;; | |
let CASES_CONV = | |
let c_thm = | |
TAUT `!p q0 q1. ~(p /\ q0 \/ ~p /\ q1) <=> (p /\ ~q0 \/ ~p /\ ~q1)` in | |
let cc = | |
fun tm -> | |
let (p,q0,q1) = dest_cases tm in | |
ISPECL [p;q0;q1] c_thm in | |
cc;; | |
let QE_SIMPLIFY_CONV = | |
let NOT_EXISTS_UNIQUE_THM = prove | |
(`~(?!x. P x) <=> (!x. ~P x) \/ ?x x'. P x /\ P x' /\ ~(x = x')`, | |
REWRITE_TAC[EXISTS_UNIQUE_THM; DE_MORGAN_THM; NOT_EXISTS_THM] THEN | |
REWRITE_TAC[NOT_FORALL_THM; NOT_IMP; CONJ_ASSOC]) in | |
let tauts = | |
[TAUT `~(~p) <=> p`; | |
TAUT `~(p /\ q) <=> ~p \/ ~q`; | |
TAUT `~(p \/ q) <=> ~p /\ ~q`; | |
TAUT `~(p ==> q) <=> p /\ ~q`; | |
TAUT `p ==> q <=> ~p \/ q`; | |
NOT_FORALL_THM; | |
NOT_EXISTS_THM; | |
EXISTS_UNIQUE_THM; | |
NOT_EXISTS_UNIQUE_THM; | |
TAUT `~(p = q) <=> (p /\ ~q) \/ (~p /\ q)`; | |
TAUT `(p = q) <=> (p /\ q) \/ (~p /\ ~q)`; | |
TAUT `~(p /\ q \/ ~p /\ r) <=> p /\ ~q \/ ~p /\ ~r`] in | |
GEN_REWRITE_CONV TOP_SWEEP_CONV tauts;; | |
let CNNF_CONV = | |
let refl_conj = REFL `(/\)` | |
and refl_disj = REFL `(\/)` in | |
fun lfn_conv -> | |
let rec cnnf_conv tm = | |
if is_conj tm then | |
let (p,q) = dest_conj tm in | |
let thm1 = cnnf_conv p in | |
let thm2 = cnnf_conv q in | |
MK_COMB (MK_COMB (refl_conj,thm1),thm2) | |
else if is_disj tm then | |
let (p,q) = dest_disj tm in | |
let thm1 = cnnf_conv p in | |
let thm2 = cnnf_conv q in | |
MK_COMB (MK_COMB (refl_disj,thm1),thm2) | |
else if is_imp tm then | |
let (p,q) = dest_imp tm in | |
let thm1 = cnnf_conv (mk_neg p) in | |
let thm2 = cnnf_conv q in | |
TRANS (IMP_CONV tm) (MK_COMB(MK_COMB(refl_disj,thm1),thm2)) | |
else if is_iff tm then | |
let (p,q) = dest_eq tm in | |
let pthm = cnnf_conv p in | |
let qthm = cnnf_conv q in | |
let npthm = cnnf_conv (mk_neg p) in | |
let nqthm = cnnf_conv (mk_neg q) in | |
let thm1 = MK_COMB(MK_COMB(refl_conj,pthm),qthm) in | |
let thm2 = MK_COMB(MK_COMB(refl_conj,npthm),nqthm) in | |
TRANS (BEQ_CONV tm) (MK_COMB(MK_COMB(refl_disj,thm1),thm2)) | |
else if is_neg tm then | |
let tm' = dest_neg tm in | |
if is_neg tm' then | |
let tm'' = dest_neg tm' in | |
let thm = cnnf_conv tm in | |
TRANS (DOUBLE_NEG_CONV tm'') thm | |
else if is_conj tm' then | |
let (p,q) = dest_conj tm' in | |
let thm1 = cnnf_conv (mk_neg p) in | |
let thm2 = cnnf_conv (mk_neg q) in | |
TRANS (NEG_AND_CONV tm) (MK_COMB(MK_COMB(refl_disj,thm1),thm2)) | |
else if is_cases tm' then | |
let (p,q0,q1) = dest_cases tm in | |
let thm1 = cnnf_conv (mk_conj(p,mk_neg q0)) in | |
let thm2 = cnnf_conv (mk_conj(mk_neg p,mk_neg q1)) in | |
TRANS (CASES_CONV tm) (MK_COMB(MK_COMB(refl_disj,thm1),thm2)) | |
else if is_disj tm' then | |
let (p,q) = dest_disj tm' in | |
let thm1 = cnnf_conv (mk_neg p) in | |
let thm2 = cnnf_conv (mk_neg q) in | |
TRANS (NEG_OR_CONV tm) (MK_COMB(MK_COMB(refl_conj,thm1),thm2)) | |
else if is_imp tm' then | |
let (p,q) = dest_imp tm' in | |
let thm1 = cnnf_conv p in | |
let thm2 = cnnf_conv (mk_neg q) in | |
TRANS (NEG_IMP_CONV tm) (MK_COMB(MK_COMB(refl_conj,thm1),thm2)) | |
else if is_iff tm' then | |
let (p,q) = dest_eq tm' in | |
let pthm = cnnf_conv p in | |
let qthm = cnnf_conv q in | |
let npthm = cnnf_conv (mk_neg p) in | |
let nqthm = cnnf_conv (mk_neg q) in | |
let thm1 = MK_COMB (MK_COMB(refl_conj,pthm),nqthm) in | |
let thm2 = MK_COMB(MK_COMB(refl_conj,npthm),qthm) in | |
TRANS (NEG_BEQ_CONV tm) (MK_COMB(MK_COMB(refl_disj,thm1),thm2)) | |
else lfn_conv tm | |
else lfn_conv tm in | |
QE_SIMPLIFY_CONV THENC cnnf_conv THENC QE_SIMPLIFY_CONV;; | |
(* | |
let tests = [ | |
`~(a /\ b)`; | |
`~(a \/ b)`; | |
`~(a ==> b)`; | |
`~(a:bool <=> b)`; | |
`~ ~ a`; | |
];; | |
map (CNNF_CONV (fun x -> REFL x)) tests;; | |
*) | |
(* ---------------------------------------------------------------------- *) | |
(* Real Lists *) | |
(* ---------------------------------------------------------------------- *) | |
let MINL = new_recursive_definition list_RECURSION | |
`(MINL [] default = default) /\ | |
(MINL (CONS h t) default = min h (MINL t default))`;; | |
let MAXL = new_recursive_definition list_RECURSION | |
`(MAXL [] default = default) /\ | |
(MAXL (CONS h t) default = max h (MAXL t default))`;; | |
let MAX_LT = prove | |
(`!x y z. max x y < z <=> x < z /\ y < z`, | |
REWRITE_TAC[real_max] THEN MESON_TAC[REAL_LET_TRANS; REAL_LE_TOTAL]);; | |
let MIN_GT = prove | |
(`!x y z. x < real_min y z <=> x < y /\ x < z`, | |
REWRITE_TAC[real_min] THEN MESON_TAC[REAL_LTE_TRANS; REAL_LE_TOTAL]);; | |
let ALL_LT_LEMMA = prove | |
(`!left x lefts. ALL (\l. l < x) (CONS left lefts) <=> MAXL lefts left < x`, | |
GEN_TAC THEN GEN_TAC THEN LIST_INDUCT_TAC THEN REWRITE_TAC[MAXL; ALL] THEN | |
SPEC_TAC(`t:real list`,`t:real list`) THEN LIST_INDUCT_TAC THEN | |
REWRITE_TAC[ALL; MAXL; MAX_LT] THEN ASM_MESON_TAC[MAX_LT]);; | |
let ALL_GT_LEMMA = prove | |
(`!right x rights. | |
ALL (\r. x < r) (CONS right rights) <=> x < MINL rights right`, | |
GEN_TAC THEN GEN_TAC THEN LIST_INDUCT_TAC THEN REWRITE_TAC[MINL; ALL] THEN | |
SPEC_TAC(`t:real list`,`t:real list`) THEN LIST_INDUCT_TAC THEN | |
REWRITE_TAC[ALL; MINL; MIN_GT] THEN ASM_MESON_TAC[MIN_GT]);; | |
(* ---------------------------------------------------------------------- *) | |
(* Axioms *) | |
(* ---------------------------------------------------------------------- *) | |
let REAL_DENSE = prove | |
(`!x y. x < y ==> ?z. x < z /\ z < y`, | |
REPEAT STRIP_TAC THEN EXISTS_TAC `(x + y) / &2` THEN | |
SIMP_TAC[REAL_LT_LDIV_EQ; REAL_LT_RDIV_EQ; REAL_OF_NUM_LT; ARITH] THEN | |
POP_ASSUM MP_TAC THEN REAL_ARITH_TAC);; | |
let REAL_LT_EXISTS = prove(`!x. ?y. x < y`, | |
GEN_TAC THEN | |
EXISTS_TAC `x + &1` THEN | |
REAL_ARITH_TAC);; | |
let REAL_GT_EXISTS = prove(`!x. ?y. y < x`, | |
GEN_TAC THEN | |
EXISTS_TAC `x - &1` THEN | |
REAL_ARITH_TAC);; | |
(* ---------------------------------------------------------------------- *) | |
(* lfn_dlo *) | |
(* ---------------------------------------------------------------------- *) | |
let LFN_DLO_CONV = | |
PURE_REWRITE_CONV[ | |
REAL_ARITH `~(s < t) <=> ((s = t) \/ (t < s))`; | |
REAL_ARITH `~(s = t) <=> (s < t \/ t < s)`; | |
];; | |
(* ------------------------------------------------------------------------- *) | |
(* Proforma theorems to support the main inference step. *) | |
(* ------------------------------------------------------------------------- *) | |
let PROFORMA_LEFT = prove | |
(`!l ls. (?x. ALL (\l. l < x) (CONS l ls)) <=> T`, | |
REWRITE_TAC[ALL_LT_LEMMA] THEN MESON_TAC[REAL_LT_EXISTS]);; | |
let PROFORMA_RIGHT = prove | |
(`!r rs. (?x. ALL (\r. x < r) (CONS r rs)) <=> T`, | |
REWRITE_TAC[ALL_GT_LEMMA] THEN MESON_TAC[REAL_GT_EXISTS]);; | |
let PROFORMA_BOTH = prove | |
(`!l ls r rs. | |
(?x. ALL (\l. l < x) (CONS l ls) /\ ALL (\r. x < r) (CONS r rs)) <=> | |
ALL (\l. ALL (\r. l < r) (CONS r rs)) (CONS l ls)`, | |
REWRITE_TAC[ALL_LT_LEMMA; ALL_GT_LEMMA] THEN | |
MESON_TAC[REAL_DENSE; REAL_LT_TRANS]);; | |
(* ------------------------------------------------------------------------- *) | |
(* Deal with ?x. <conjunction of strict inequalities all involving x> *) | |
(* ------------------------------------------------------------------------- *) | |
let mk_rlist = let ty = `:real` in fun x -> mk_list(x,ty);; | |
let expand_all = PURE_REWRITE_RULE | |
[ALL; BETA_THM; GSYM CONJ_ASSOC; TAUT `a /\ T <=> a`];; | |
let DLO_EQ_CONV fm = | |
let x,p = dest_exists fm in | |
let xl,xr = partition (fun t -> rand t = x) (conjuncts p) in | |
let lefts = map lhand xl and rights = map rand xr in | |
let th1 = | |
if lefts = [] then SPECL [hd rights; mk_rlist(tl rights)] PROFORMA_RIGHT | |
else if rights = [] then SPECL [hd lefts; mk_rlist(tl lefts)] PROFORMA_LEFT | |
else SPECL [hd lefts; mk_rlist(tl lefts); hd rights; mk_rlist(tl rights)] | |
PROFORMA_BOTH in | |
let th2 = CONV_RULE (LAND_CONV(GEN_ALPHA_CONV x)) (expand_all th1) in | |
let p' = snd(dest_exists(lhand(concl th2))) in | |
let th3 = MK_EXISTS x (CONJ_ACI_RULE(mk_eq(p,p'))) in | |
TRANS th3 th2;; | |
(* ------------------------------------------------------------------------- *) | |
(* Deal with general ?x. <conjunction of atoms> *) | |
(* ------------------------------------------------------------------------- *) | |
let eq_triv_conv = | |
let pth_triv = prove | |
(`((?x. x = x) <=> T) /\ | |
((?x. x = t) <=> T) /\ | |
((?x. t = x) <=> T) /\ | |
((?x. (x = t) /\ P x) <=> P t) /\ | |
((?x. (t = x) /\ P x) <=> P t)`, | |
MESON_TAC[]) in | |
GEN_REWRITE_CONV I [pth_triv] | |
and eq_refl_conv = | |
let pth_refl = prove | |
(`(?x. (x = x) /\ P x) <=> (?x. P x)`, | |
MESON_TAC[]) in | |
GEN_REWRITE_CONV I [pth_refl] | |
and lt_refl_conv = | |
GEN_REWRITE_CONV DEPTH_CONV | |
[REAL_LT_REFL; AND_CLAUSES; EXISTS_SIMP];; | |
let rec DLOBASIC_CONV fm = | |
try let x,p = dest_exists fm in | |
let cjs = conjuncts p in | |
try let eq = find (fun e -> is_eq e && (lhs e = x || rhs e = x)) cjs in | |
let cjs' = eq::setify(subtract cjs [eq]) in | |
let p' = list_mk_conj cjs' in | |
let th1 = MK_EXISTS x (CONJ_ACI_RULE(mk_eq(p,p'))) in | |
let fm' = rand(concl th1) in | |
try TRANS th1 (eq_triv_conv fm') with Failure _ -> | |
TRANS th1 ((eq_refl_conv THENC DLOBASIC_CONV) fm') | |
with Failure _ -> | |
if mem (mk_lt x x) cjs then lt_refl_conv fm | |
else DLO_EQ_CONV fm | |
with Failure _ -> (print_qterm fm; failwith "dlobasic");; | |
(* ------------------------------------------------------------------------- *) | |
(* Overall quantifier elimination. *) | |
(* ------------------------------------------------------------------------- *) | |
let AFN_DLO_CONV vars = | |
PURE_REWRITE_CONV[ | |
REAL_ARITH `s <= t <=> ~(t < s)`; | |
REAL_ARITH `s >= t <=> ~(s < t)`; | |
REAL_ARITH `s > t <=> t < s` | |
];; | |
let dest_binop_op tm = | |
try | |
let f,r = dest_comb tm in | |
let op,l = dest_comb f in | |
(l,r,op) | |
with Failure _ -> failwith "dest_binop_op";; | |
let forall_thm = prove(`!P. (!x. P x) <=> ~ (?x. ~ P x)`,MESON_TAC[]) | |
and or_exists_conv = PURE_REWRITE_CONV[OR_EXISTS_THM] | |
and triv_exists_conv = REWR_CONV EXISTS_SIMP | |
and push_exists_conv = REWR_CONV RIGHT_EXISTS_AND_THM | |
and not_tm = `(~)` | |
and or_tm = `(\/)` | |
and t_tm = `T` | |
and f_tm = `F`;; | |
let LIFT_QELIM_CONV afn_conv nfn_conv qfn_conv = | |
let rec qelift_conv vars fm = | |
if fm = t_tm || fm = f_tm then REFL fm | |
else if is_neg fm then | |
let thm1 = qelift_conv vars (dest_neg fm) in | |
MK_COMB(REFL not_tm,thm1) | |
else if is_conj fm || is_disj fm || is_imp fm || is_iff fm then | |
let (p,q,op) = dest_binop_op fm in | |
let thm1 = qelift_conv vars p in | |
let thm2 = qelift_conv vars q in | |
MK_COMB(MK_COMB((REFL op),thm1),thm2) | |
else if is_forall fm then | |
let (x,p) = dest_forall fm in | |
let nex_thm = BETA_RULE (ISPEC (mk_abs(x,p)) forall_thm) in | |
let elim_thm = qelift_conv vars (mk_exists(x,mk_neg p)) in | |
TRANS nex_thm (MK_COMB (REFL not_tm,elim_thm)) | |
else if is_exists fm then | |
let (x,p) = dest_exists fm in | |
let thm1 = qelift_conv (x::vars) p in | |
let thm1a = MK_EXISTS x thm1 in | |
let thm2 = nfn_conv (rhs(concl thm1)) in | |
let thm2a = MK_EXISTS x thm2 in | |
let djs = disjuncts (rhs (concl thm2)) in | |
let djthms = map (qelim x vars) djs in | |
let thm3 = end_itlist | |
(fun thm1 thm2 -> MK_COMB(MK_COMB (REFL or_tm,thm1),thm2)) djthms in | |
let split_ex_thm = GSYM (or_exists_conv (lhs (concl thm3))) in | |
let thm3a = TRANS split_ex_thm thm3 in | |
TRANS (TRANS thm1a thm2a) thm3a | |
else | |
afn_conv vars fm | |
and qelim x vars p = | |
let cjs = conjuncts p in | |
let ycjs,ncjs = partition (mem x o frees) cjs in | |
if ycjs = [] then triv_exists_conv(mk_exists(x,p)) | |
else if ncjs = [] then qfn_conv vars (mk_exists(x,p)) else | |
let th1 = CONJ_ACI_RULE | |
(mk_eq(p,mk_conj(list_mk_conj ncjs,list_mk_conj ycjs))) in | |
let th2 = CONV_RULE (RAND_CONV push_exists_conv) (MK_EXISTS x th1) in | |
let t1,t2 = dest_comb (rand(concl th2)) in | |
TRANS th2 (AP_TERM t1 (qfn_conv vars t2)) in | |
fun fm -> ((qelift_conv (frees fm)) THENC QE_SIMPLIFY_CONV) fm;; | |
let QELIM_DLO_CONV = | |
(LIFT_QELIM_CONV AFN_DLO_CONV ((CNNF_CONV LFN_DLO_CONV) THENC DNF_CONV) | |
(fun v -> DLOBASIC_CONV)) THENC (REWRITE_CONV[]);; | |
(* ---------------------------------------------------------------------- *) | |
(* Test *) | |
(* ---------------------------------------------------------------------- *) | |
let tests = [ | |
`!x y. ?z. z < x /\ z < y`; | |
`?z. x < x /\ z < y`; | |
`?z. x < z /\ z < y`; | |
`!x. x < a ==> x < b`; | |
`!a b. (!x. (x < a) <=> (x < b)) <=> (a = b)`; (* long time *) | |
`!x. ?y. x < y`; | |
`!x y z. x < y /\ y < z ==> x < z`; | |
`!x y. x < y \/ (x = y) \/ y < x`; | |
`!x y. x < y \/ (x = y) \/ y < x`; | |
`?x y. x < y /\ y < x`; | |
`!x y. ?z. z < x /\ x < y`; | |
`!x y. ?z. z < x /\ z < y`; | |
`!x y. x < y ==> ?z. x < z /\ z < y`; | |
`!x y. ~(x = y) ==> ?u. u < x /\ (y < u \/ x < y)`; | |
`?x. x = x:real`; | |
`?x.(x = x) /\ (x = y)`; | |
`?z. x < z /\ z < y`; | |
`?z. x <= z /\ z <= y`; | |
`?z. x < z /\ z <= y`; | |
`!x y z. ?u. u < x /\ u < y /\ u < z`; | |
`!y. x < y /\ y < z ==> w < z`; | |
`!x y . x < y`; | |
`?z. z < x /\ x < y`; | |
`!a b. (!x. x < a ==> x < b) <=> (a <= b)`; | |
`!x. x < a ==> x < b`; | |
`!x. x < a ==> x <= b`; | |
`!a b. ?x. ~(x = a) \/ ~(x = b) \/ (a = b:real)`; | |
`!x y. x <= y \/ x > y`; | |
`!x y. x <= y \/ x < y` | |
];; | |
map (time QELIM_DLO_CONV) tests;; | |