Datasets:
Tasks:
Text Generation
Modalities:
Text
Sub-tasks:
language-modeling
Languages:
English
Size:
100K - 1M
License:
(* ========================================================================= *) | |
(* Derived properties of provability. *) | |
(* ========================================================================= *) | |
let negativef = new_definition | |
`negativef p = ?q. p = q --> False`;; | |
let negatef = new_definition | |
`negatef p = if negativef p then @q. p = q --> False else p --> False`;; | |
(* ------------------------------------------------------------------------- *) | |
(* The primitive basis, separated into its named components. *) | |
(* ------------------------------------------------------------------------- *) | |
let axiom_addimp = prove | |
(`!A p q. A |-- p --> (q --> p)`, | |
MESON_TAC[proves_RULES; axiom_RULES]);; | |
let axiom_distribimp = prove | |
(`!A p q r. A |-- (p --> q --> r) --> (p --> q) --> (p --> r)`, | |
MESON_TAC[proves_RULES; axiom_RULES]);; | |
let axiom_doubleneg = prove | |
(`!A p. A |-- ((p --> False) --> False) --> p`, | |
MESON_TAC[proves_RULES; axiom_RULES]);; | |
let axiom_allimp = prove | |
(`!A x p q. A |-- (!!x (p --> q)) --> (!!x p) --> (!!x q)`, | |
MESON_TAC[proves_RULES; axiom_RULES]);; | |
let axiom_impall = prove | |
(`!A x p. ~(x IN FV p) ==> A |-- p --> !!x p`, | |
MESON_TAC[proves_RULES; axiom_RULES]);; | |
let axiom_existseq = prove | |
(`!A x t. ~(x IN FVT t) ==> A |-- ??x (V x === t)`, | |
MESON_TAC[proves_RULES; axiom_RULES]);; | |
let axiom_eqrefl = prove | |
(`!A t. A |-- t === t`, | |
MESON_TAC[proves_RULES; axiom_RULES]);; | |
let axiom_funcong = prove | |
(`(!A s t. A |-- s === t --> Suc s === Suc t) /\ | |
(!A s t u v. A |-- s === t --> u === v --> s ++ u === t ++ v) /\ | |
(!A s t u v. A |-- s === t --> u === v --> s ** u === t ** v)`, | |
MESON_TAC[proves_RULES; axiom_RULES]);; | |
let axiom_predcong = prove | |
(`(!A s t u v. A |-- s === t --> u === v --> s === u --> t === v) /\ | |
(!A s t u v. A |-- s === t --> u === v --> s << u --> t << v) /\ | |
(!A s t u v. A |-- s === t --> u === v --> s <<= u --> t <<= v)`, | |
MESON_TAC[proves_RULES; axiom_RULES]);; | |
let axiom_iffimp1 = prove | |
(`!A p q. A |-- (p <-> q) --> p --> q`, | |
MESON_TAC[proves_RULES; axiom_RULES]);; | |
let axiom_iffimp2 = prove | |
(`!A p q. A |-- (p <-> q) --> q --> p`, | |
MESON_TAC[proves_RULES; axiom_RULES]);; | |
let axiom_impiff = prove | |
(`!A p q. A |-- (p --> q) --> (q --> p) --> (p <-> q)`, | |
MESON_TAC[proves_RULES; axiom_RULES]);; | |
let axiom_true = prove | |
(`A |-- True <-> (False --> False)`, | |
MESON_TAC[proves_RULES; axiom_RULES]);; | |
let axiom_not = prove | |
(`!A p. A |-- Not p <-> (p --> False)`, | |
MESON_TAC[proves_RULES; axiom_RULES]);; | |
let axiom_and = prove | |
(`!A p q. A |-- (p && q) <-> (p --> q --> False) --> False`, | |
MESON_TAC[proves_RULES; axiom_RULES]);; | |
let axiom_or = prove | |
(`!A p q. A |-- (p || q) <-> Not(Not p && Not q)`, | |
MESON_TAC[proves_RULES; axiom_RULES]);; | |
let axiom_exists = prove | |
(`!A x p. A |-- (??x p) <-> Not(!!x (Not p))`, | |
MESON_TAC[proves_RULES; axiom_RULES]);; | |
let assume = prove | |
(`!A p. p IN A ==> A |-- p`, | |
MESON_TAC[proves_RULES]);; | |
let modusponens = prove | |
(`!A p. A |-- (p --> q) /\ A |-- p ==> A |-- q`, | |
MESON_TAC[proves_RULES]);; | |
let gen = prove | |
(`!A p x. A |-- p ==> A |-- !!x p`, | |
MESON_TAC[proves_RULES]);; | |
(* ------------------------------------------------------------------------- *) | |
(* Some purely propositional schemas and derived rules. *) | |
(* ------------------------------------------------------------------------- *) | |
let iff_imp1 = prove | |
(`!A p q. A |-- p <-> q ==> A |-- p --> q`, | |
MESON_TAC[modusponens; axiom_iffimp1]);; | |
let iff_imp2 = prove | |
(`!A p q. A |-- p <-> q ==> A |-- q --> p`, | |
MESON_TAC[modusponens; axiom_iffimp2]);; | |
let imp_antisym = prove | |
(`!A p q. A |-- p --> q /\ A |-- q --> p ==> A |-- p <-> q`, | |
MESON_TAC[modusponens; axiom_impiff]);; | |
let add_assum = prove | |
(`!A p q. A |-- q ==> A |-- p --> q`, | |
MESON_TAC[modusponens; axiom_addimp]);; | |
let imp_refl = prove | |
(`!A p. A |-- p --> p`, | |
MESON_TAC[modusponens; axiom_distribimp; axiom_addimp]);; | |
let imp_add_assum = prove | |
(`!A p q r. A |-- q --> r ==> A |-- (p --> q) --> (p --> r)`, | |
MESON_TAC[modusponens; axiom_distribimp; add_assum]);; | |
let imp_unduplicate = prove | |
(`!A p q. A |-- p --> p --> q ==> A |-- p --> q`, | |
MESON_TAC[modusponens; axiom_distribimp; imp_refl]);; | |
let imp_trans = prove | |
(`!A p q. A |-- p --> q /\ A |-- q --> r ==> A |-- p --> r`, | |
MESON_TAC[modusponens; imp_add_assum]);; | |
let imp_swap = prove | |
(`!A p q r. A |-- p --> q --> r ==> A |-- q --> p --> r`, | |
MESON_TAC[imp_trans; axiom_addimp; modusponens; axiom_distribimp]);; | |
let imp_trans_chain_2 = prove | |
(`!A p q1 q2 r. A |-- p --> q1 /\ A |-- p --> q2 /\ A |-- q1 --> q2 --> r | |
==> A |-- p --> r`, | |
ASM_MESON_TAC[imp_trans; imp_swap; imp_unduplicate]);; | |
let imp_trans_th = prove | |
(`!A p q r. A |-- (q --> r) --> (p --> q) --> (p --> r)`, | |
MESON_TAC[imp_trans; axiom_addimp; axiom_distribimp]);; | |
let imp_add_concl = prove | |
(`!A p q r. A |-- p --> q ==> A |-- (q --> r) --> (p --> r)`, | |
MESON_TAC[modusponens; imp_swap; imp_trans_th]);; | |
let imp_trans2 = prove | |
(`!A p q r s. A |-- p --> q --> r /\ A |-- r --> s ==> A |-- p --> q --> s`, | |
MESON_TAC[imp_add_assum; modusponens; imp_trans_th]);; | |
let imp_swap_th = prove | |
(`!A p q r. A |-- (p --> q --> r) --> (q --> p --> r)`, | |
MESON_TAC[imp_trans; axiom_distribimp; imp_add_concl; axiom_addimp]);; | |
let contrapos = prove | |
(`!A p q. A |-- p --> q ==> A |-- Not q --> Not p`, | |
MESON_TAC[imp_trans; iff_imp1; axiom_not; imp_add_concl; iff_imp2]);; | |
let imp_truefalse = prove | |
(`!p q. A |-- (q --> False) --> p --> (p --> q) --> False`, | |
MESON_TAC[imp_trans; imp_trans_th; imp_swap_th]);; | |
let imp_insert = prove | |
(`!A p q r. A |-- p --> r ==> A |-- p --> q --> r`, | |
MESON_TAC[imp_trans; axiom_addimp]);; | |
let imp_mono_th = prove | |
(`A |-- (p' --> p) --> (q --> q') --> (p --> q) --> (p' --> q')`, | |
MESON_TAC[imp_trans; imp_swap; imp_trans_th]);; | |
let ex_falso = prove | |
(`!A p. A |-- False --> p`, | |
MESON_TAC[imp_trans; axiom_addimp; axiom_doubleneg]);; | |
let imp_contr = prove | |
(`!A p q. A |-- (p --> False) --> (p --> r)`, | |
MESON_TAC[imp_add_assum; ex_falso]);; | |
let imp_contrf = prove | |
(`!A p r. A |-- p --> negatef p --> r`, | |
REPEAT GEN_TAC THEN REWRITE_TAC[negatef; negativef] THEN | |
COND_CASES_TAC THEN POP_ASSUM STRIP_ASSUME_TAC THEN | |
ASM_REWRITE_TAC[form_INJ] THEN | |
ASM_MESON_TAC[imp_contr; imp_swap]);; | |
let contrad = prove | |
(`!A p. A |-- (p --> False) --> p ==> A |-- p`, | |
MESON_TAC[modusponens; axiom_distribimp; imp_refl; axiom_doubleneg]);; | |
let bool_cases = prove | |
(`!p q. A |-- p --> q /\ A |-- (p --> False) --> q ==> A |-- q`, | |
MESON_TAC[contrad; imp_trans; imp_add_concl]);; | |
let imp_false_rule = prove | |
(`!p q r. A |-- (q --> False) --> p --> r | |
==> A |-- ((p --> q) --> False) --> r`, | |
MESON_TAC[imp_add_concl; imp_add_assum; ex_falso; axiom_addimp; imp_swap; | |
imp_trans; axiom_doubleneg; imp_unduplicate]);; | |
let imp_true_rule = prove | |
(`!A p q r. A |-- (p --> False) --> r /\ A |-- q --> r | |
==> A |-- (p --> q) --> r`, | |
MESON_TAC[imp_insert; imp_swap; modusponens; imp_trans_th; bool_cases]);; | |
let truth = prove | |
(`!A. A |-- True`, | |
MESON_TAC[modusponens; axiom_true; imp_refl; iff_imp2]);; | |
let and_left = prove | |
(`!A p q. A |-- p && q --> p`, | |
MESON_TAC[imp_add_assum; axiom_addimp; imp_trans; imp_add_concl; | |
axiom_doubleneg; imp_trans; iff_imp1; axiom_and]);; | |
let and_right = prove | |
(`!A p q. A |-- p && q --> q`, | |
MESON_TAC[axiom_addimp; imp_trans; imp_add_concl; axiom_doubleneg; | |
iff_imp1; axiom_and]);; | |
let and_pair = prove | |
(`!A p q. A |-- p --> q --> p && q`, | |
MESON_TAC[iff_imp2; axiom_and; imp_swap_th; imp_add_assum; imp_trans2; | |
modusponens; imp_swap; imp_refl]);; | |
let META_AND = prove | |
(`!A p q. A |-- p && q <=> A |-- p /\ A |-- q`, | |
MESON_TAC[and_left; and_right; and_pair; modusponens]);; | |
let shunt = prove | |
(`!A p q r. A |-- p && q --> r ==> A |-- p --> q --> r`, | |
MESON_TAC[modusponens; imp_add_assum; and_pair]);; | |
let ante_conj = prove | |
(`!A p q r. A |-- p --> q --> r ==> A |-- p && q --> r`, | |
MESON_TAC[imp_trans_chain_2; and_left; and_right]);; | |
let not_not_false = prove | |
(`!A p. A |-- (p --> False) --> False <-> p`, | |
MESON_TAC[imp_antisym; axiom_doubleneg; imp_swap; imp_refl]);; | |
let iff_sym = prove | |
(`!A p q. A |-- p <-> q <=> A |-- q <-> p`, | |
MESON_TAC[iff_imp1; iff_imp2; imp_antisym]);; | |
let iff_trans = prove | |
(`!A p q r. A |-- p <-> q /\ A |-- q <-> r ==> A |-- p <-> r`, | |
MESON_TAC[iff_imp1; iff_imp2; imp_trans; imp_antisym]);; | |
let not_not = prove | |
(`!A p. A |-- Not(Not p) <-> p`, | |
MESON_TAC[iff_trans; not_not_false; axiom_not; imp_antisym; imp_add_concl; | |
iff_imp1; iff_imp2]);; | |
let contrapos_eq = prove | |
(`!A p q. A |-- Not p --> Not q <=> A |-- q --> p`, | |
MESON_TAC[contrapos; not_not; iff_imp1; iff_imp2; imp_trans]);; | |
let or_left = prove | |
(`!A p q. A |-- q --> p || q`, | |
MESON_TAC[imp_trans; not_not; iff_imp2; and_right; contrapos; axiom_or]);; | |
let or_right = prove | |
(`!A p q. A |-- p --> p || q`, | |
MESON_TAC[imp_trans; not_not; iff_imp2; and_left; contrapos; axiom_or]);; | |
let ante_disj = prove | |
(`!A p q r. A |-- p --> r /\ A |-- q --> r | |
==> A |-- p || q --> r`, | |
REPEAT GEN_TAC THEN ONCE_REWRITE_TAC[GSYM contrapos_eq] THEN | |
MESON_TAC[imp_trans; imp_trans_chain_2; and_pair; contrapos_eq; not_not; | |
axiom_or; iff_imp1; iff_imp2; imp_trans]);; | |
let iff_def = prove | |
(`!A p q. A |-- (p <-> q) <-> (p --> q) && (q --> p)`, | |
MESON_TAC[imp_antisym; imp_trans_chain_2; axiom_iffimp1; axiom_iffimp2; | |
and_pair; axiom_impiff; imp_trans_chain_2; and_left; and_right]);; | |
let iff_refl = prove | |
(`!A p. A |-- p <-> p`, | |
MESON_TAC[imp_antisym; imp_refl]);; | |
(* ------------------------------------------------------------------------- *) | |
(* Equality rules. *) | |
(* ------------------------------------------------------------------------- *) | |
let eq_sym = prove | |
(`!A s t. A |-- s === t --> t === s`, | |
MESON_TAC[axiom_eqrefl; modusponens; imp_swap; axiom_predcong]);; | |
let icongruence_general = prove | |
(`!A p x s t tm. | |
A |-- s === t --> | |
termsubst ((x |-> s) v) tm === termsubst ((x |-> t) v) tm`, | |
GEN_TAC THEN GEN_TAC THEN GEN_TAC THEN GEN_TAC THEN GEN_TAC THEN | |
MATCH_MP_TAC term_INDUCT THEN REWRITE_TAC[termsubst] THEN | |
REPEAT CONJ_TAC THENL | |
[MESON_TAC[axiom_eqrefl; add_assum]; | |
GEN_TAC THEN REWRITE_TAC[valmod] THEN | |
COND_CASES_TAC THEN REWRITE_TAC[imp_refl] THEN | |
MESON_TAC[axiom_eqrefl; add_assum]; | |
MESON_TAC[imp_trans; axiom_funcong]; | |
MESON_TAC[imp_trans; axiom_funcong; imp_swap; imp_unduplicate]; | |
MESON_TAC[imp_trans; axiom_funcong; imp_swap; imp_unduplicate]]);; | |
let icongruence = prove | |
(`!A x s t tm. | |
A |-- s === t --> termsubst (x |=> s) tm === termsubst (x |=> t) tm`, | |
REWRITE_TAC[assign; icongruence_general]);; | |
let icongruence_var = prove | |
(`!A x t tm. | |
A |-- V x === t --> tm === termsubst (x |=> t) tm`, | |
MESON_TAC[icongruence; TERMSUBST_TRIV; ASSIGN_TRIV]);; | |
(* ------------------------------------------------------------------------- *) | |
(* First-order rules. *) | |
(* ------------------------------------------------------------------------- *) | |
let gen_right = prove | |
(`!A x p q. ~(x IN FV(p)) /\ A |-- p --> q | |
==> A |-- p --> !!x q`, | |
MESON_TAC[axiom_allimp; modusponens; gen; imp_trans; axiom_impall]);; | |
let genimp = prove | |
(`!x p q. A |-- p --> q ==> A |-- (!!x p) --> (!!x q)`, | |
MESON_TAC[modusponens; axiom_allimp; gen]);; | |
let eximp = prove | |
(`!x p q. A |-- p --> q ==> A |-- (??x p) --> (??x q)`, | |
MESON_TAC[contrapos; genimp; contrapos; imp_trans; iff_imp1; iff_imp2; | |
axiom_exists]);; | |
let exists_imp = prove | |
(`!A x p q. A |-- ??x (p --> q) /\ ~(x IN FV(q)) ==> A |-- (!!x p) --> q`, | |
REPEAT STRIP_TAC THEN | |
SUBGOAL_THEN `A |-- (q --> False) --> !!x (p --> Not(p --> q))` | |
ASSUME_TAC THENL | |
[MATCH_MP_TAC gen_right THEN | |
ASM_REWRITE_TAC[FV; IN_UNION; NOT_IN_EMPTY] THEN | |
ASM_MESON_TAC[iff_imp2; axiom_not; imp_trans2; imp_truefalse]; | |
ALL_TAC] THEN | |
SUBGOAL_THEN `A |-- (q --> False) --> !!x p --> !!x (Not(p --> q))` | |
ASSUME_TAC THENL | |
[ASM_MESON_TAC[imp_trans; axiom_allimp]; ALL_TAC] THEN | |
SUBGOAL_THEN `A |-- ((q --> False) --> !!x (Not(p --> q))) | |
--> (q --> False) --> False` | |
ASSUME_TAC THENL | |
[ASM_MESON_TAC[modusponens; iff_imp1; axiom_exists; axiom_not; imp_trans_th]; | |
ALL_TAC] THEN | |
ASM_MESON_TAC[imp_trans; imp_swap; axiom_doubleneg]);; | |
let subspec = prove | |
(`!A x t p q. ~(x IN FVT(t)) /\ ~(x IN FV(q)) /\ A |-- V x === t --> p --> q | |
==> A |-- (!!x p) --> q`, | |
MESON_TAC[exists_imp; modusponens; eximp; axiom_existseq]);; | |
let subalpha = prove | |
(`!A x y p q. ((x = y) \/ ~(x IN FV(q)) /\ ~(y IN FV(p))) /\ | |
A |-- V x === V y --> p --> q | |
==> A |-- (!!x p) --> (!!y q)`, | |
REPEAT GEN_TAC THEN ASM_CASES_TAC `x = y:num` THEN ASM_REWRITE_TAC[] THEN | |
STRIP_TAC THENL | |
[FIRST_X_ASSUM SUBST_ALL_TAC THEN | |
ASM_MESON_TAC[genimp; modusponens; axiom_eqrefl]; | |
ALL_TAC] THEN | |
MATCH_MP_TAC gen_right THEN ASM_REWRITE_TAC[FV; IN_DELETE] THEN | |
MATCH_MP_TAC subspec THEN EXISTS_TAC `V y` THEN | |
ASM_REWRITE_TAC[FVT; IN_SING]);; | |
(* ------------------------------------------------------------------------- *) | |
(* We'll perform induction on this measure. *) | |
(* ------------------------------------------------------------------------- *) | |
let complexity = new_recursive_definition form_RECURSION | |
`(complexity False = 1) /\ | |
(complexity True = 1) /\ | |
(!s t. complexity (s === t) = 1) /\ | |
(!s t. complexity (s << t) = 1) /\ | |
(!s t. complexity (s <<= t) = 1) /\ | |
(!p. complexity (Not p) = complexity p + 3) /\ | |
(!p q. complexity (p && q) = complexity p + complexity q + 6) /\ | |
(!p q. complexity (p || q) = complexity p + complexity q + 16) /\ | |
(!p q. complexity (p --> q) = complexity p + complexity q + 1) /\ | |
(!p q. complexity (p <-> q) = 2 * (complexity p + complexity q) + 9) /\ | |
(!x p. complexity (!!x p) = complexity p + 1) /\ | |
(!x p. complexity (??x p) = complexity p + 8)`;; | |
let COMPLEXITY_FORMSUBST = prove | |
(`!p i. complexity(formsubst i p) = complexity p`, | |
MATCH_MP_TAC form_INDUCT THEN | |
SIMP_TAC[formsubst; complexity; LET_DEF; LET_END_DEF]);; | |
let isubst_general = prove | |
(`!A p x v s t. A |-- s === t | |
--> formsubst ((x |-> s) v) p | |
--> formsubst ((x |-> t) v) p`, | |
GEN_TAC THEN GEN_TAC THEN WF_INDUCT_TAC `complexity p` THEN | |
POP_ASSUM MP_TAC THEN SPEC_TAC(`p:form`,`p:form`) THEN | |
MATCH_MP_TAC form_INDUCT THEN REWRITE_TAC[formsubst; complexity] THEN | |
REPEAT CONJ_TAC THENL | |
[MESON_TAC[imp_refl; add_assum]; | |
MESON_TAC[imp_refl; add_assum]; | |
MESON_TAC[imp_trans_chain_2; axiom_predcong; icongruence_general]; | |
MESON_TAC[imp_trans_chain_2; axiom_predcong; icongruence_general]; | |
MESON_TAC[imp_trans_chain_2; axiom_predcong; icongruence_general]; | |
X_GEN_TAC `p:form` THEN DISCH_THEN(K ALL_TAC) THEN | |
DISCH_THEN(MP_TAC o SPEC `p --> False`) THEN | |
REWRITE_TAC[complexity] THEN ANTS_TAC THENL [ARITH_TAC; ALL_TAC] THEN | |
REWRITE_TAC[formsubst] THEN | |
MESON_TAC[axiom_not; iff_imp1; iff_imp2; imp_swap; imp_trans; imp_trans2]; | |
MAP_EVERY X_GEN_TAC [`p:form`; `q:form`] THEN DISCH_THEN(K ALL_TAC) THEN | |
DISCH_THEN(MP_TAC o SPEC `(p --> q --> False) --> False`) THEN | |
REWRITE_TAC[complexity] THEN ANTS_TAC THENL [ARITH_TAC; ALL_TAC] THEN | |
REWRITE_TAC[formsubst] THEN | |
MESON_TAC[axiom_and; iff_imp1; iff_imp2; imp_swap; imp_trans; imp_trans2]; | |
MAP_EVERY X_GEN_TAC [`p:form`; `q:form`] THEN DISCH_THEN(K ALL_TAC) THEN | |
DISCH_THEN(MP_TAC o SPEC `Not(Not p && Not q)`) THEN | |
REWRITE_TAC[complexity] THEN ANTS_TAC THENL [ARITH_TAC; ALL_TAC] THEN | |
REWRITE_TAC[formsubst] THEN | |
MESON_TAC[axiom_or; iff_imp1; iff_imp2; imp_swap; imp_trans; imp_trans2]; | |
MAP_EVERY X_GEN_TAC [`p:form`; `q:form`] THEN DISCH_THEN(K ALL_TAC) THEN | |
DISCH_THEN(fun th -> MP_TAC(SPEC `p:form` th) THEN | |
MP_TAC(SPEC `q:form` th)) THEN | |
REWRITE_TAC[ARITH_RULE `p < p + q + 1 /\ q < p + q + 1`] THEN | |
MESON_TAC[imp_mono_th; eq_sym; imp_trans; imp_trans_chain_2]; | |
MAP_EVERY X_GEN_TAC [`p:form`; `q:form`] THEN DISCH_THEN(K ALL_TAC) THEN | |
DISCH_THEN(MP_TAC o SPEC `(p --> q) && (q --> p)`) THEN | |
REWRITE_TAC[complexity] THEN ANTS_TAC THENL [ARITH_TAC; ALL_TAC] THEN | |
REWRITE_TAC[formsubst] THEN | |
MESON_TAC[iff_def; iff_imp1; iff_imp2; imp_swap; imp_trans; imp_trans2]; | |
ALL_TAC; | |
MAP_EVERY X_GEN_TAC [`x:num`; `p:form`] THEN DISCH_THEN(K ALL_TAC) THEN | |
DISCH_THEN(MP_TAC o SPEC `Not(!!x (Not p))`) THEN | |
REWRITE_TAC[complexity] THEN ANTS_TAC THENL [ARITH_TAC; ALL_TAC] THEN | |
REWRITE_TAC[formsubst] THEN | |
REPEAT(MATCH_MP_TAC MONO_FORALL THEN GEN_TAC) THEN | |
REWRITE_TAC[FV] THEN REPEAT LET_TAC THEN | |
ASM_MESON_TAC[axiom_exists; iff_imp1; iff_imp2; imp_swap; imp_trans; | |
imp_trans2]] THEN | |
MAP_EVERY X_GEN_TAC [`u:num`; `p:form`] THEN DISCH_THEN(K ALL_TAC) THEN | |
REWRITE_TAC[ARITH_RULE `a < b + 1 <=> a <= b`] THEN DISCH_TAC THEN | |
MAP_EVERY X_GEN_TAC [`v:num`; `i:num->term`; `s:term`; `t:term`] THEN | |
MAP_EVERY ABBREV_TAC | |
[`x = if ?y. y IN FV (!! u p) /\ u IN FVT ((v |-> s) i y) | |
then VARIANT (FV (formsubst ((u |-> V u) ((v |-> s) i)) p)) | |
else u`; | |
`y = if ?y. y IN FV (!! u p) /\ u IN FVT ((v |-> t) i y) | |
then VARIANT (FV (formsubst ((u |-> V u) ((v |-> t) i)) p)) | |
else u`] THEN | |
REWRITE_TAC[LET_DEF; LET_END_DEF] THEN | |
SUBGOAL_THEN `~(x IN FV(formsubst ((v |-> s) i) (!!u p))) /\ | |
~(y IN FV(formsubst ((v |-> t) i) (!!u p)))` | |
STRIP_ASSUME_TAC THENL | |
[MAP_EVERY EXPAND_TAC ["x"; "y"] THEN CONJ_TAC THEN | |
(COND_CASES_TAC THENL | |
[ALL_TAC; ASM_REWRITE_TAC[FORMSUBST_FV; IN_ELIM_THM]] THEN | |
MATCH_MP_TAC NOT_IN_VARIANT THEN REWRITE_TAC[FV_FINITE] THEN | |
REWRITE_TAC[SUBSET; FORMSUBST_FV; IN_ELIM_THM; FV; IN_DELETE] THEN | |
REWRITE_TAC[valmod] THEN MESON_TAC[FVT; IN_SING]); | |
ALL_TAC] THEN | |
ASM_CASES_TAC `v:num = u` THENL | |
[ASM_REWRITE_TAC[VALMOD_VALMOD_BASIC] THEN | |
MATCH_MP_TAC add_assum THEN MATCH_MP_TAC subalpha THEN | |
ASM_SIMP_TAC[LE_REFL] THEN | |
ASM_CASES_TAC `y:num = x` THEN ASM_REWRITE_TAC[] THEN CONJ_TAC THENL | |
[UNDISCH_TAC `~(x IN FV (formsubst ((v |-> s) i) (!! u p)))`; | |
UNDISCH_TAC `~(y IN FV (formsubst ((v |-> t) i) (!! u p)))`] THEN | |
ASM_REWRITE_TAC[FORMSUBST_FV; FV; IN_ELIM_THM; IN_DELETE] THEN | |
MATCH_MP_TAC MONO_NOT THEN MATCH_MP_TAC MONO_EXISTS THEN | |
X_GEN_TAC `w:num` THEN ASM_CASES_TAC `w:num = u` THEN | |
ASM_REWRITE_TAC[VALMOD_BASIC; FVT; IN_SING] THEN | |
ASM_REWRITE_TAC[valmod; FVT; IN_SING]; | |
ALL_TAC] THEN | |
SUBGOAL_THEN | |
`?z. ~(z IN FVT s) /\ ~(z IN FVT t) /\ | |
A |-- !!x (formsubst ((u |-> V x) ((v |-> s) i)) p) | |
--> !!z (formsubst ((u |-> V z) ((v |-> s) i)) p) /\ | |
A |-- !!z (formsubst ((u |-> V z) ((v |-> t) i)) p) | |
--> !!y (formsubst ((u |-> V y) ((v |-> t) i)) p)` | |
MP_TAC THENL | |
[ALL_TAC; | |
DISCH_THEN(X_CHOOSE_THEN `z:num` STRIP_ASSUME_TAC) THEN | |
MATCH_MP_TAC imp_trans THEN | |
EXISTS_TAC `(!!z (formsubst ((v |-> s) ((u |-> V z) i)) p)) | |
--> (!!z (formsubst ((v |-> t) ((u |-> V z) i)) p))` THEN | |
CONJ_TAC THENL | |
[MATCH_MP_TAC imp_trans THEN | |
EXISTS_TAC `!!z (formsubst ((v |-> s) ((u |-> V z) i)) p | |
--> formsubst ((v |-> t) ((u |-> V z) i)) p)` THEN | |
REWRITE_TAC[axiom_allimp] THEN | |
ASM_SIMP_TAC[complexity; LE_REFL; FV; IN_UNION; gen_right]; | |
ALL_TAC] THEN | |
FIRST_ASSUM(fun th -> ONCE_REWRITE_TAC[MATCH_MP VALMOD_SWAP th]) THEN | |
ASM_MESON_TAC[imp_mono_th; modusponens]] THEN | |
MP_TAC(SPEC | |
`FVT(s) UNION FVT(t) UNION | |
FV(formsubst ((u |-> V x) ((v |-> s) i)) p) UNION | |
FV(formsubst ((u |-> V y) ((v |-> t) i)) p)` VARIANT_FINITE) THEN | |
REWRITE_TAC[FINITE_UNION; FV_FINITE; FVT_FINITE] THEN | |
W(fun (_,w) -> ABBREV_TAC(mk_comb(`(=) (z:num)`,lhand(rand(lhand w))))) THEN | |
REWRITE_TAC[IN_UNION; DE_MORGAN_THM] THEN STRIP_TAC THEN | |
EXISTS_TAC `z:num` THEN ASM_REWRITE_TAC[] THEN | |
CONJ_TAC THEN MATCH_MP_TAC subalpha THEN ASM_SIMP_TAC[LE_REFL] THENL | |
[ASM_CASES_TAC `z:num = x` THEN ASM_REWRITE_TAC[] THEN | |
UNDISCH_TAC `~(x IN FV (formsubst ((v |-> s) i) (!! u p)))`; | |
ASM_CASES_TAC `z:num = y` THEN ASM_REWRITE_TAC[] THEN | |
UNDISCH_TAC `~(y IN FV (formsubst ((v |-> t) i) (!! u p)))`] THEN | |
ASM_REWRITE_TAC[FORMSUBST_FV; FV; IN_ELIM_THM; IN_DELETE] THEN | |
MATCH_MP_TAC MONO_NOT THEN MATCH_MP_TAC MONO_EXISTS THEN | |
X_GEN_TAC `w:num` THEN ASM_CASES_TAC `w:num = u` THEN | |
ASM_REWRITE_TAC[VALMOD_BASIC; FVT; IN_SING] THEN | |
ASM_REWRITE_TAC[valmod; FVT; IN_SING]);; | |
let isubst = prove | |
(`!A p x s t. A |-- s === t | |
--> formsubst (x |=> s) p --> formsubst (x |=> t) p`, | |
REWRITE_TAC[assign; isubst_general]);; | |
let isubst_var = prove | |
(`!A p x t. A |-- V x === t --> p --> formsubst (x |=> t) p`, | |
MESON_TAC[FORMSUBST_TRIV; ASSIGN_TRIV; isubst]);; | |
let alpha = prove | |
(`!A x z p. ~(z IN FV p) ==> A |-- (!!x p) --> !!z (formsubst (x |=> V z) p)`, | |
REPEAT STRIP_TAC THEN MATCH_MP_TAC subalpha THEN CONJ_TAC THENL | |
[ALL_TAC; MESON_TAC[isubst_var]] THEN | |
REWRITE_TAC[FORMSUBST_FV; IN_ELIM_THM; ASSIGN] THEN | |
ASM_MESON_TAC[IN_SING; FVT]);; | |
(* ------------------------------------------------------------------------- *) | |
(* To conclude cleanly, useful to have all variables. *) | |
(* ------------------------------------------------------------------------- *) | |
let VARS = new_recursive_definition form_RECURSION | |
`(VARS False = {}) /\ | |
(VARS True = {}) /\ | |
(VARS (s === t) = FVT s UNION FVT t) /\ | |
(VARS (s << t) = FVT s UNION FVT t) /\ | |
(VARS (s <<= t) = FVT s UNION FVT t) /\ | |
(VARS (Not p) = VARS p) /\ | |
(VARS (p && q) = VARS p UNION VARS q) /\ | |
(VARS (p || q) = VARS p UNION VARS q) /\ | |
(VARS (p --> q) = VARS p UNION VARS q) /\ | |
(VARS (p <-> q) = VARS p UNION VARS q) /\ | |
(VARS (!! x p) = x INSERT VARS p) /\ | |
(VARS (?? x p) = x INSERT VARS p)`;; | |
let VARS_FINITE = prove | |
(`!p. FINITE(VARS p)`, | |
MATCH_MP_TAC form_INDUCT THEN | |
ASM_SIMP_TAC[VARS; FINITE_RULES; FVT_FINITE; FINITE_UNION; FINITE_DELETE]);; | |
let FV_SUBSET_VARS = prove | |
(`!p. FV(p) SUBSET VARS(p)`, | |
REWRITE_TAC[SUBSET] THEN | |
MATCH_MP_TAC form_INDUCT THEN REWRITE_TAC[FV; VARS] THEN | |
REWRITE_TAC[IN_INSERT; IN_UNION; IN_DELETE] THEN MESON_TAC[]);; | |
let TERMSUBST_TWICE_GENERAL = prove | |
(`!x z t v s. ~(z IN FVT s) | |
==> (termsubst ((x |-> t) v) s = | |
termsubst ((z |-> t) v) (termsubst (x |=> V z) s))`, | |
GEN_TAC THEN GEN_TAC THEN GEN_TAC THEN GEN_TAC THEN | |
MATCH_MP_TAC term_INDUCT THEN | |
REWRITE_TAC[termsubst; ASSIGN; valmod; FVT; IN_SING; IN_UNION] THEN | |
MESON_TAC[termsubst; ASSIGN]);; | |
let TERMSUBST_TWICE = prove | |
(`!x z t s. ~(z IN FVT s) | |
==> (termsubst (x |=> t) s = | |
termsubst (z |=> t) (termsubst (x |=> V z) s))`, | |
MESON_TAC[assign; TERMSUBST_TWICE_GENERAL]);; | |
let FORMSUBST_TWICE_GENERAL = prove | |
(`!p i j. | |
(!x. x IN VARS p ==> safe_for x i) | |
==> formsubst j (formsubst i p) = formsubst (termsubst j o i) p`, | |
MATCH_MP_TAC form_INDUCT THEN | |
REWRITE_TAC[VARS; FORALL_IN_INSERT; IN_UNION; NOT_IN_EMPTY; FORALL_AND_THM; | |
TAUT `p \/ q ==> r <=> (p ==> r) /\ (q ==> r)`] THEN | |
SIMP_TAC[FORMSUBST_SAFE_FOR] THEN | |
REWRITE_TAC[formsubst; TERMSUBST_TERMSUBST] THEN SIMP_TAC[] THEN | |
CONJ_TAC THEN MAP_EVERY X_GEN_TAC [`x:num`; `p:form`] THEN | |
STRIP_TAC THEN MAP_EVERY X_GEN_TAC [`i:num->term`; `j:num->term`] THEN | |
STRIP_TAC THEN | |
REWRITE_TAC[FV; FORMSUBST_FV; TERMSUBST_FVT; o_THM; | |
IN_ELIM_THM; IN_DELETE] THEN | |
(SUBGOAL_THEN | |
`(?y. ((?y'. y' IN FV p /\ y IN FVT ((x |-> V x) i y')) /\ ~(y = x)) /\ | |
x IN FVT (j y)) <=> | |
(?y. (y IN FV p /\ ~(y = x)) /\ | |
(?y'. y' IN FVT (i y) /\ x IN FVT (j y')))` | |
(fun th -> REWRITE_TAC[th]) | |
THENL | |
[REWRITE_TAC[LEFT_AND_EXISTS_THM] THEN | |
ONCE_REWRITE_TAC[SWAP_EXISTS_THM] THEN | |
AP_TERM_TAC THEN GEN_REWRITE_TAC I [FUN_EQ_THM] THEN | |
X_GEN_TAC `y:num` THEN | |
ASM_CASES_TAC `y IN FV p` THEN ASM_REWRITE_TAC[] THEN | |
ASM_CASES_TAC `y:num = x` THEN ASM_REWRITE_TAC[] THENL | |
[ASM_REWRITE_TAC[VALMOD; FVT; IN_SING] THEN MESON_TAC[]; ALL_TAC] THEN | |
AP_TERM_TAC THEN GEN_REWRITE_TAC I [FUN_EQ_THM] THEN | |
X_GEN_TAC `z:num` THEN | |
ASM_CASES_TAC `x IN FVT(j(z:num))` THEN ASM_REWRITE_TAC[] THEN | |
ASM_REWRITE_TAC[VALMOD] THEN ASM_MESON_TAC[safe_for]; | |
ALL_TAC] THEN | |
CONV_TAC(ONCE_DEPTH_CONV let_CONV) THEN | |
COND_CASES_TAC THEN ASM_REWRITE_TAC[] THENL | |
[SUBGOAL_THEN | |
`{x' | ?y. (?y'. y' IN FV p /\ y IN FVT ((x |-> V x) i y')) /\ | |
x' IN FVT ((x |-> V x) j y)} = | |
{x' | ?y. y IN FV p /\ x' IN FVT ((x |-> V x) (termsubst j o i) y)}` | |
(fun th -> REWRITE_TAC[th]) | |
THENL | |
[REWRITE_TAC[EXTENSION; IN_ELIM_THM] THEN X_GEN_TAC `z:num` THEN | |
REWRITE_TAC[LEFT_AND_EXISTS_THM] THEN | |
ONCE_REWRITE_TAC[SWAP_EXISTS_THM] THEN | |
AP_TERM_TAC THEN GEN_REWRITE_TAC I [FUN_EQ_THM] THEN | |
X_GEN_TAC `y:num` THEN | |
ASM_CASES_TAC `y IN FV p` THEN ASM_REWRITE_TAC[] THEN | |
ASM_CASES_TAC `y:num = x` THEN ASM_REWRITE_TAC[] THEN | |
ASM_REWRITE_TAC[VALMOD; FVT; IN_SING; UNWIND_THM2] THEN | |
REWRITE_TAC[o_THM; TERMSUBST_FVT; IN_ELIM_THM] THEN | |
ASM_MESON_TAC[safe_for]; | |
ABBREV_TAC `z = VARIANT | |
{x' | ?y. y IN FV p /\ x' IN FVT ((x |-> V x) (termsubst j o i) y)}`]; | |
ALL_TAC]) THEN | |
AP_TERM_TAC THEN FIRST_X_ASSUM(fun th -> | |
W(MP_TAC o PART_MATCH (lhs o rand) th o lhs o snd)) THEN | |
ASM_SIMP_TAC[SAFE_FOR_VALMOD; FVT; IN_SING] THEN | |
DISCH_THEN SUBST1_TAC THEN MATCH_MP_TAC FORMSUBST_EQ THEN | |
X_GEN_TAC `y:num` THEN DISCH_TAC THEN | |
REWRITE_TAC[VALMOD; o_THM] THEN | |
COND_CASES_TAC THEN ASM_REWRITE_TAC[termsubst; VALMOD] THEN | |
MATCH_MP_TAC TERMSUBST_EQ THEN | |
X_GEN_TAC `w:num` THEN REWRITE_TAC[VALMOD] THEN | |
COND_CASES_TAC THEN ASM_REWRITE_TAC[] THEN ASM_MESON_TAC[safe_for]);; | |
let FORMSUBST_TWICE = prove | |
(`!z p x t. ~(z IN VARS p) | |
==> (formsubst (z |=> t) (formsubst (x |=> V z) p) = | |
formsubst (x |=> t) p)`, | |
REPEAT STRIP_TAC THEN | |
W(MP_TAC o PART_MATCH (lhs o rand) FORMSUBST_TWICE_GENERAL o lhs o snd) THEN | |
REWRITE_TAC[SAFE_FOR_ASSIGN; FVT; IN_SING] THEN | |
ANTS_TAC THENL [ASM_MESON_TAC[]; DISCH_THEN SUBST1_TAC] THEN | |
MATCH_MP_TAC FORMSUBST_EQ THEN REPEAT STRIP_TAC THEN | |
REWRITE_TAC[o_THM; VALMOD; ASSIGN] THEN | |
COND_CASES_TAC THEN ASM_REWRITE_TAC[termsubst; ASSIGN] THEN | |
ASM_MESON_TAC[FV_SUBSET_VARS; SUBSET]);; | |
let ispec_lemma = prove | |
(`!A x p t. ~(x IN FVT(t)) ==> A |-- !!x p --> formsubst (x |=> t) p`, | |
REPEAT STRIP_TAC THEN MATCH_MP_TAC subspec THEN | |
EXISTS_TAC `t:term` THEN ASM_REWRITE_TAC[isubst_var] THEN | |
ASM_REWRITE_TAC[FORMSUBST_FV; IN_ELIM_THM; ASSIGN] THEN | |
ASM_MESON_TAC[FVT; IN_SING]);; | |
let ispec = prove | |
(`!A x p t. A |-- !!x p --> formsubst (x |=> t) p`, | |
REPEAT STRIP_TAC THEN ASM_CASES_TAC `x IN FVT(t)` THEN | |
ASM_SIMP_TAC[ispec_lemma] THEN | |
ABBREV_TAC `z = VARIANT (FVT t UNION VARS p)` THEN | |
MATCH_MP_TAC imp_trans THEN | |
EXISTS_TAC `!!z (formsubst (x |=> V z) p)` THEN CONJ_TAC THENL | |
[MATCH_MP_TAC alpha THEN EXPAND_TAC "z" THEN | |
MATCH_MP_TAC NOT_IN_VARIANT THEN | |
REWRITE_TAC[FINITE_UNION; SUBSET; IN_UNION] THEN | |
MESON_TAC[SUBSET; FVT_FINITE; VARS_FINITE; FV_SUBSET_VARS]; | |
SUBGOAL_THEN | |
`formsubst (x |=> t) p = | |
formsubst (z |=> t) (formsubst (x |=> V z) p)` | |
SUBST1_TAC THENL | |
[MATCH_MP_TAC(GSYM FORMSUBST_TWICE); MATCH_MP_TAC ispec_lemma] THEN | |
EXPAND_TAC "z" THEN MATCH_MP_TAC NOT_IN_VARIANT THEN | |
REWRITE_TAC[VARS_FINITE; FVT_FINITE; FINITE_UNION] THEN | |
SIMP_TAC[SUBSET; IN_UNION]]);; | |
let spec = prove | |
(`!A x p t. A |-- !!x p ==> A |-- formsubst (x |=> t) p`, | |
MESON_TAC[ispec; modusponens]);; | |
let spec_var = prove | |
(`!A x p. A |-- !!x p ==> A |-- p`, | |
REPEAT GEN_TAC THEN | |
DISCH_THEN(MP_TAC o SPEC `V x` o MATCH_MP spec) THEN | |
SIMP_TAC[ASSIGN_TRIV; FORMSUBST_TRIVIAL]);; | |
let instantiation = prove | |
(`!A v p. A |-- p ==> A |-- formsubst v p`, | |
let lemma = prove | |
(`!A p v. (!x y. x IN FV p /\ y IN FV p /\ x IN FVT(v y) | |
==> x = y /\ v x = V x) /\ | |
A |-- p | |
==> A |-- formsubst v p`, | |
REPEAT GEN_TAC THEN | |
WF_INDUCT_TAC `CARD {x | x IN FV(p) /\ ~(v x = V x)}` THEN | |
ASM_CASES_TAC `!x. x IN FV p ==> v x = V x` THEN | |
ASM_SIMP_TAC[FORMSUBST_TRIVIAL] THEN | |
FIRST_X_ASSUM(MP_TAC o GEN_REWRITE_RULE I [NOT_FORALL_THM]) THEN | |
REWRITE_TAC[NOT_IMP; LEFT_IMP_EXISTS_THM] THEN | |
X_GEN_TAC `x:num` THEN REPEAT STRIP_TAC THEN | |
FIRST_X_ASSUM(MP_TAC o SPECL [`p:form`; `(x |-> V x) v`]) THEN | |
ASM_REWRITE_TAC[] THEN ANTS_TAC THENL | |
[MATCH_MP_TAC CARD_PSUBSET THEN SIMP_TAC[FINITE_RESTRICT; FV_FINITE] THEN | |
REWRITE_TAC[PSUBSET_ALT] THEN CONJ_TAC THENL | |
[REWRITE_TAC[SUBSET; VALMOD; IN_ELIM_THM] THEN ASM_MESON_TAC[]; | |
EXISTS_TAC `x:num` THEN ASM_REWRITE_TAC[VALMOD; IN_ELIM_THM] THEN | |
ASM_MESON_TAC[]]; | |
ALL_TAC] THEN | |
ANTS_TAC THENL | |
[REPEAT GEN_TAC THEN REWRITE_TAC[VALMOD] THEN | |
COND_CASES_TAC THEN ASM_SIMP_TAC[FVT; IN_SING] THEN ASM_MESON_TAC[]; | |
ALL_TAC] THEN | |
SUBGOAL_THEN | |
`formsubst v p = formsubst ((x |-> v x) v) p` | |
SUBST1_TAC THENL [SIMP_TAC[VALMOD_TRIVIAL]; ALL_TAC] THEN | |
DISCH_THEN(MP_TAC o SPEC `x:num` o MATCH_MP gen) THEN | |
MATCH_MP_TAC(REWRITE_RULE[IMP_CONJ] modusponens) THEN | |
MATCH_MP_TAC exists_imp THEN CONJ_TAC THENL | |
[ALL_TAC; | |
REWRITE_TAC[FORMSUBST_FV; IN_ELIM_THM; NOT_EXISTS_THM; VALMOD] THEN | |
ASM SET_TAC[]] THEN | |
MATCH_MP_TAC modusponens THEN EXISTS_TAC `??x (V x === v x)` THEN | |
SIMP_TAC[eximp; isubst_general] THEN ASM_MESON_TAC[axiom_existseq]) in | |
REPEAT STRIP_TAC THEN | |
SUBGOAL_THEN | |
`?n. !x. x IN VARS p \/ x IN FV(formsubst v p) ==> x < n` | |
STRIP_ASSUME_TAC THENL | |
[EXISTS_TAC `SUC(SETMAX(VARS p UNION FV(formsubst v p)))` THEN | |
REWRITE_TAC[GSYM IN_UNION; LT_SUC_LE] THEN MATCH_MP_TAC SETMAX_MEMBER THEN | |
REWRITE_TAC[FINITE_UNION; VARS_FINITE; FV_FINITE]; | |
ALL_TAC] THEN | |
SUBGOAL_THEN | |
`formsubst v p = | |
formsubst (\i. v(i - n)) (formsubst (\i. V(i + n)) p)` | |
SUBST1_TAC THENL | |
[W(MP_TAC o PART_MATCH (lhs o rand) FORMSUBST_TWICE_GENERAL o | |
rand o snd) THEN | |
REWRITE_TAC[safe_for; FVT; IN_SING] THEN ANTS_TAC THENL | |
[ASM_MESON_TAC[ARITH_RULE `~(x + n:num < n)`]; | |
DISCH_THEN SUBST1_TAC THEN | |
REWRITE_TAC[o_DEF; termsubst; ADD_SUB; ETA_AX]]; | |
MATCH_MP_TAC lemma THEN REWRITE_TAC[FVT] THEN CONJ_TAC THENL | |
[REWRITE_TAC[FORMSUBST_FV; FVT; IN_SING] THEN | |
REWRITE_TAC[SET_RULE `{x | ?y. y IN s /\ x = f y} = IMAGE f s`] THEN | |
REWRITE_TAC[IMP_CONJ; RIGHT_FORALL_IMP_THM; FORALL_IN_IMAGE] THEN | |
X_GEN_TAC `x:num` THEN DISCH_TAC THEN REWRITE_TAC[ADD_SUB; FVT] THEN | |
X_GEN_TAC `y:num` THEN REPEAT DISCH_TAC THEN | |
FIRST_X_ASSUM(MP_TAC o SPEC `x + n:num`) THEN | |
MATCH_MP_TAC(TAUT `~p /\ q ==> (r \/ q ==> p) ==> s`) THEN | |
CONJ_TAC THENL [ARITH_TAC; REWRITE_TAC[FORMSUBST_FV; IN_ELIM_THM]] THEN | |
ASM_MESON_TAC[]; | |
MATCH_MP_TAC lemma THEN REWRITE_TAC[FVT; IN_SING] THEN | |
ASM_MESON_TAC[ARITH_RULE `x < n /\ y < n ==> ~(x = y + n)`; | |
FV_SUBSET_VARS; SUBSET]]]);; | |
(* ------------------------------------------------------------------------- *) | |
(* Monotonicity and the deduction theorem. *) | |
(* ------------------------------------------------------------------------- *) | |
let PROVES_MONO = prove | |
(`!A B p. A SUBSET B /\ A |-- p ==> B |-- p`, | |
GEN_TAC THEN GEN_TAC THEN | |
REWRITE_TAC[IMP_CONJ; RIGHT_FORALL_IMP_THM] THEN DISCH_TAC THEN | |
MATCH_MP_TAC proves_INDUCT THEN ASM_MESON_TAC[proves_RULES; SUBSET]);; | |
let DEDUCTION_LEMMA = prove | |
(`!A p q. p INSERT A |-- q /\ closed p ==> A |-- p --> q`, | |
GEN_TAC THEN ONCE_REWRITE_TAC[CONJ_SYM] THEN | |
REWRITE_TAC[IMP_CONJ; RIGHT_FORALL_IMP_THM] THEN | |
GEN_TAC THEN DISCH_TAC THEN MATCH_MP_TAC proves_INDUCT THEN | |
REPEAT CONJ_TAC THEN X_GEN_TAC `r:form` THENL | |
[REWRITE_TAC[IN_INSERT] THEN MESON_TAC[proves_RULES; add_assum; imp_refl]; | |
MESON_TAC[modusponens; axiom_distribimp]; | |
ASM_MESON_TAC[gen_right; closed; NOT_IN_EMPTY]]);; | |
let DEDUCTION = prove | |
(`!A p q. closed p ==> (A |-- p --> q <=> p INSERT A |-- q)`, | |
MESON_TAC[DEDUCTION_LEMMA; modusponens; IN_INSERT; proves_RULES; | |
PROVES_MONO; SUBSET]);; | |
(* ------------------------------------------------------------------------- *) | |
(* A few more derived rules. *) | |
(* ------------------------------------------------------------------------- *) | |
let eq_trans = prove | |
(`!A s t u. A |-- s === t --> t === u --> s === u`, | |
MESON_TAC[axiom_predcong; modusponens; imp_swap; axiom_eqrefl; imp_trans; | |
eq_sym]);; | |
let spec_right = prove | |
(`!A p q x. A |-- p --> !!x q ==> A |-- p --> formsubst (x |=> t) q`, | |
MESON_TAC[imp_trans; ispec]);; | |
let eq_trans_rule = prove | |
(`!A s t u. A |-- s === t /\ A |-- t === u ==> A |-- s === u`, | |
MESON_TAC[modusponens; eq_trans]);; | |
let eq_sym_rule = prove | |
(`!A s t. A |-- s === t <=> A |-- t === s`, | |
MESON_TAC[modusponens; eq_sym]);; | |
let allimp = prove | |
(`!A x p q. A |-- p --> q ==> A |-- !!x p --> !!x q`, | |
MESON_TAC[axiom_allimp; modusponens; gen]);; | |
let alliff = prove | |
(`!A x p q. A |-- p <-> q ==> A |-- !!x p <-> !!x q`, | |
MESON_TAC[allimp; iff_imp1; iff_imp2; imp_antisym]);; | |
let exiff = prove | |
(`!A x p q. A |-- p <-> q ==> A |-- ??x p <-> ??x q`, | |
MESON_TAC[eximp; iff_imp1; iff_imp2; imp_antisym]);; | |
let cong_suc = prove | |
(`!A s t. A |-- s === t ==> A |-- Suc s === Suc t`, | |
MESON_TAC[modusponens; axiom_funcong]);; | |
let cong_add = prove | |
(`!A s t u v. A |-- s === t /\ A |-- u === v ==> A |-- s ++ u === t ++ v`, | |
MESON_TAC[modusponens; axiom_funcong]);; | |
let cong_mul = prove | |
(`!A s t u v. A |-- s === t /\ A |-- u === v ==> A |-- s ** u === t ** v`, | |
MESON_TAC[modusponens; axiom_funcong]);; | |
let cong_eq = prove | |
(`!A s t u v. A |-- s === t /\ A |-- u === v ==> A |-- s === u <-> t === v`, | |
REPEAT STRIP_TAC THEN MATCH_MP_TAC imp_antisym THEN | |
ASM_MESON_TAC[modusponens; axiom_predcong; eq_sym]);; | |
let cong_le = prove | |
(`!A s t u v. A |-- s === t /\ A |-- u === v ==> A |-- s <<= u <-> t <<= v`, | |
REPEAT STRIP_TAC THEN MATCH_MP_TAC imp_antisym THEN | |
ASM_MESON_TAC[modusponens; axiom_predcong; eq_sym]);; | |
let cong_lt = prove | |
(`!A s t u v. A |-- s === t /\ A |-- u === v ==> A |-- s << u <-> t << v`, | |
REPEAT STRIP_TAC THEN MATCH_MP_TAC imp_antisym THEN | |
ASM_MESON_TAC[modusponens; axiom_predcong; eq_sym]);; | |
let iexists = prove | |
(`!A x t p. A |-- formsubst (x |=> t) p --> ??x p`, | |
REPEAT GEN_TAC THEN TRANS_TAC imp_trans `Not(!!x (Not p))` THEN | |
CONJ_TAC THENL [ALL_TAC; MESON_TAC[axiom_exists; iff_imp2]] THEN | |
TRANS_TAC imp_trans `Not(formsubst (x |=> t) (Not p))` THEN | |
REWRITE_TAC[contrapos_eq; ispec] THEN REWRITE_TAC[formsubst] THEN | |
MESON_TAC[not_not; iff_imp2]);; | |
let exists_intro = prove | |
(`!A x t p. A |-- formsubst (x |=> t) p ==> A |-- ??x p`, | |
MESON_TAC[iexists; modusponens]);; | |
let impex = prove | |
(`!A x p. ~(x IN FV p) ==> A |-- (??x p) --> p`, | |
REPEAT STRIP_TAC THEN TRANS_TAC imp_trans `Not(Not p)` THEN | |
CONJ_TAC THENL [ALL_TAC; MESON_TAC[not_not; iff_imp1]] THEN | |
TRANS_TAC imp_trans `Not(!!x (Not p))` THEN | |
ASM_SIMP_TAC[contrapos_eq; axiom_impall; FV] THEN | |
MESON_TAC[axiom_exists; iff_imp1]);; | |
let ichoose = prove | |
(`!A x p q. A |-- !!x (p --> q) /\ ~(x IN FV q) ==> A |-- (??x p) --> q`, | |
REPEAT STRIP_TAC THEN | |
FIRST_ASSUM(MP_TAC o MATCH_MP spec_var) THEN | |
DISCH_THEN(MP_TAC o SPEC `x:num` o MATCH_MP eximp) THEN | |
MATCH_MP_TAC(REWRITE_RULE[IMP_CONJ_ALT] imp_trans) THEN | |
ASM_SIMP_TAC[impex]);; | |
let eq_trans_imp = prove | |
(`A |-- s === s' /\ A |-- t === t' ==> A |-- s === t --> s' === t'`, | |
MESON_TAC[axiom_predcong; modusponens]);; | |
(* ------------------------------------------------------------------------- *) | |
(* Some conversions for performing explicit substitution operations in what *) | |
(* we hope is the common case where no variable renaming occurs. *) | |
(* ------------------------------------------------------------------------- *) | |
let fv_theorems = ref | |
[FV; FV_AXIOM; FV_DIAGONALIZE; FV_DIVIDES; FV_FINITE; FV_FIXPOINT; FV_FORM; | |
FV_FORM1; FV_FREEFORM; FV_FREEFORM1; FV_FREETERM; FV_FREETERM1; | |
FV_GNUMERAL; FV_GNUMERAL1; FV_GNUMERAL1'; FV_GSENTENCE; | |
FV_HSENTENCE; FV_PRIME; FV_PRIMEPOW; FV_PRIMREC; FV_PRIMRECSTEP; FV_PROV; | |
FV_PROV1; FV_QDIAG; FV_QSUBST; FV_RTC; FV_RTCP; FV_SUBSET_VARS; FV_TERM; | |
FV_TERM1; FVT; FVT_NUMERAL];; | |
let IN_FV_RULE ths tm = | |
try EQT_ELIM | |
((GEN_REWRITE_CONV TOP_DEPTH_CONV | |
([IN_UNION; IN_DELETE; NOT_IN_EMPTY; IN_INSERT] @ | |
ths @ !fv_theorems) THENC | |
NUM_REDUCE_CONV) tm) | |
with Failure _ -> ASSUME tm;; | |
let rec SAFE_FOR_RULE tm = | |
try PART_MATCH I SAFE_FOR_V tm | |
with Failure _ -> | |
try let th1 = PART_MATCH lhand SAFE_FOR_ASSIGN tm in | |
let th2 = IN_FV_RULE [] (rand(concl th1)) in | |
EQ_MP (SYM th1) th2 | |
with Failure _ -> | |
let th1 = PART_MATCH rand SAFE_FOR_VALMOD tm in | |
let l,r = dest_conj(lhand(concl th1)) in | |
let th2 = CONJ (SAFE_FOR_RULE l) (IN_FV_RULE [] r) in | |
MP th1 th2;; | |
let VALMOD_CONV = | |
GEN_REWRITE_CONV TOP_DEPTH_CONV [ASSIGN; VALMOD] THENC NUM_REDUCE_CONV;; | |
let TERMSUBST_NUMERAL = prove | |
(`!v n. termsubst v (numeral n) = numeral n`, | |
SIMP_TAC[TERMSUBST_TRIVIAL; FVT_NUMERAL; NOT_IN_EMPTY]);; | |
let rec TERMSUBST_CONV tm = | |
(GEN_REWRITE_CONV I [CONJ TERMSUBST_NUMERAL (CONJUNCT1 termsubst)] ORELSEC | |
(GEN_REWRITE_CONV I [el 1 (CONJUNCTS termsubst)] THENC | |
VALMOD_CONV) ORELSEC | |
(GEN_REWRITE_CONV I [el 2 (CONJUNCTS termsubst)] THENC | |
RAND_CONV TERMSUBST_CONV) ORELSEC | |
(GEN_REWRITE_CONV I [funpow 3 CONJUNCT2 termsubst] THENC | |
BINOP_CONV TERMSUBST_CONV)) tm;; | |
let rec FORMSUBST_CONV tm = | |
(GEN_REWRITE_CONV I | |
[el 0 (CONJUNCTS formsubst); el 1 (CONJUNCTS formsubst)] ORELSEC | |
(GEN_REWRITE_CONV I | |
[el 2 (CONJUNCTS formsubst); el 3 (CONJUNCTS formsubst); | |
el 4 (CONJUNCTS formsubst)] THENC BINOP_CONV TERMSUBST_CONV) ORELSEC | |
(GEN_REWRITE_CONV I [el 5 (CONJUNCTS formsubst)] THENC | |
RAND_CONV FORMSUBST_CONV) ORELSEC | |
(GEN_REWRITE_CONV I | |
[el 6 (CONJUNCTS formsubst); el 7 (CONJUNCTS formsubst); | |
el 8 (CONJUNCTS formsubst); el 9 (CONJUNCTS formsubst)] THENC | |
BINOP_CONV FORMSUBST_CONV) ORELSEC | |
((fun tm -> | |
let th = | |
try PART_MATCH (lhand o rand) (CONJUNCT1 FORMSUBST_SAFE_FOR) tm | |
with Failure _ -> | |
PART_MATCH (lhand o rand) (CONJUNCT2 FORMSUBST_SAFE_FOR) tm in | |
MP th (SAFE_FOR_RULE (lhand(concl th)))) THENC | |
RAND_CONV FORMSUBST_CONV)) tm;; | |
(* ------------------------------------------------------------------------- *) | |
(* Hence a more convenient specialization rule. *) | |
(* ------------------------------------------------------------------------- *) | |
let spec_var_rule th = MATCH_MP spec_var th;; | |
let spec_all_rule = repeat spec_var_rule;; | |
let instantiate_rule ilist th = | |
let v_tm = `(|->):num->term->(num->term)->(num->term)` in | |
let v = itlist (fun (t,x) v -> | |
mk_comb(mk_comb(mk_comb(v_tm,mk_small_numeral x),t),v)) ilist `V` in | |
CONV_RULE (RAND_CONV FORMSUBST_CONV) | |
(SPEC v (MATCH_MP instantiation th));; | |
let specl_rule tms th = | |
let avs = striplist (dest_binop `!!`) (rand(concl th)) in | |
let vs = fst(chop_list(length tms) avs) in | |
let ilist = map2 (fun t v -> (t,dest_small_numeral v)) tms vs in | |
instantiate_rule ilist (funpow (length vs) spec_var_rule th);; | |
let spec_rule t th = specl_rule [t] th;; | |
let gen_rule t th = SPEC (mk_small_numeral t) (MATCH_MP gen th);; | |
let gens_tac ns (asl,w) = | |
let avs,bod = nsplit dest_forall ns w in | |
let nvs = map (curry mk_comb `V` o mk_small_numeral) ns in | |
let bod' = subst (zip nvs avs) bod in | |
let th = GENL avs (instantiate_rule (zip avs ns) (ASSUME bod')) in | |
MATCH_MP_TAC (DISCH_ALL th) (asl,w);; | |
let gen_tac n = gens_tac [n];; | |