Datasets:
Tasks:
Text Generation
Modalities:
Text
Sub-tasks:
language-modeling
Languages:
English
Size:
100K - 1M
License:
(* ========================================================================= *) | |
(* Euclidean GCD algorithm. *) | |
(* ========================================================================= *) | |
needs "Library/prime.ml";; | |
let egcd = define | |
`egcd(m,n) = if m = 0 then n | |
else if n = 0 then m | |
else if m <= n then egcd(m,n - m) | |
else egcd(m - n,n)`;; | |
(* ------------------------------------------------------------------------- *) | |
(* Main theorems. *) | |
(* ------------------------------------------------------------------------- *) | |
let EGCD_INVARIANT = prove | |
(`!m n d. d divides egcd(m,n) <=> d divides m /\ d divides n`, | |
GEN_TAC THEN GEN_TAC THEN WF_INDUCT_TAC `m + n` THEN | |
GEN_TAC THEN ONCE_REWRITE_TAC[egcd] THEN | |
ASM_CASES_TAC `m = 0` THEN ASM_REWRITE_TAC[DIVIDES_0] THEN | |
ASM_CASES_TAC `n = 0` THEN ASM_REWRITE_TAC[DIVIDES_0] THEN | |
COND_CASES_TAC THEN | |
(W(fun (asl,w) -> FIRST_X_ASSUM(fun th -> | |
MP_TAC(PART_MATCH (lhs o snd o dest_forall o rand) th (lhand w)))) THEN | |
ANTS_TAC THENL [ASM_ARITH_TAC; ALL_TAC]) THEN | |
ASM_MESON_TAC[DIVIDES_SUB; DIVIDES_ADD; SUB_ADD; LE_CASES]);; | |
(* ------------------------------------------------------------------------- *) | |
(* Hence we get the proper behaviour, and it's equal to the real GCD. *) | |
(* ------------------------------------------------------------------------- *) | |
let EGCD_GCD = prove | |
(`!m n. egcd(m,n) = gcd(m,n)`, | |
ONCE_REWRITE_TAC[GSYM GCD_UNIQUE] THEN | |
MESON_TAC[EGCD_INVARIANT; DIVIDES_REFL]);; | |
let EGCD = prove | |
(`!a b. (egcd (a,b) divides a /\ egcd (a,b) divides b) /\ | |
(!e. e divides a /\ e divides b ==> e divides egcd (a,b))`, | |
REWRITE_TAC[EGCD_GCD; GCD]);; | |