Datasets:
Tasks:
Text Generation
Modalities:
Text
Sub-tasks:
language-modeling
Languages:
English
Size:
100K - 1M
License:
(* ========================================================================= *) | |
(* Divergence of harmonic series. *) | |
(* ========================================================================= *) | |
prioritize_real();; | |
let HARMONIC_DIVERGES = prove | |
(`~(?s. !e. &0 < e | |
==> ?N. !n. N <= n ==> abs(sum(1..n) (\i. &1 / &i) - s) < e)`, | |
STRIP_TAC THEN FIRST_X_ASSUM(MP_TAC o SPEC `&1 / &4`) THEN | |
CONV_TAC REAL_RAT_REDUCE_CONV THEN STRIP_TAC THEN | |
FIRST_ASSUM(MP_TAC o SPEC `N + 1`) THEN REWRITE_TAC[LE_ADD] THEN | |
FIRST_X_ASSUM(MP_TAC o SPEC `(N + 1) + (N + 1)`) THEN | |
ANTS_TAC THENL [ARITH_TAC; ALL_TAC] THEN | |
SIMP_TAC[SUM_ADD_SPLIT; ARITH_RULE `1 <= (N + 1) + 1`] THEN | |
MATCH_MP_TAC(REAL_ARITH | |
`&1 / &2 <= y | |
==> abs((x + y) - s) < &1 / &4 ==> ~(abs(x - s) < &1 / &4)`) THEN | |
REWRITE_TAC[GSYM MULT_2] THEN MATCH_MP_TAC REAL_LE_TRANS THEN | |
EXISTS_TAC `sum((N + 1) + 1 .. 2 * (N + 1)) (\i. &1 / &(2 * (N + 1)))` THEN | |
CONJ_TAC THENL | |
[SIMP_TAC[SUM_CONST_NUMSEG; ARITH_RULE `(2 * x + 1) - (x + 1) = x`] THEN | |
REWRITE_TAC[GSYM REAL_OF_NUM_MUL; GSYM REAL_OF_NUM_ADD] THEN | |
MP_TAC(SPEC `n:num` REAL_POS) THEN CONV_TAC REAL_FIELD; | |
MATCH_MP_TAC SUM_LE_NUMSEG THEN REPEAT STRIP_TAC THEN | |
REWRITE_TAC[real_div; REAL_MUL_LID] THEN MATCH_MP_TAC REAL_LE_INV2 THEN | |
POP_ASSUM_LIST(MP_TAC o end_itlist CONJ) THEN | |
REWRITE_TAC[REAL_OF_NUM_LE; REAL_OF_NUM_LT] THEN ARITH_TAC]);; | |
(* ------------------------------------------------------------------------- *) | |
(* Formulation in terms of limits. *) | |
(* ------------------------------------------------------------------------- *) | |
needs "Library/analysis.ml";; | |
let HARMONIC_DIVERGES' = prove | |
(`~(convergent (\n. sum(1..n) (\i. &1 / &i)))`, | |
REWRITE_TAC[convergent; SEQ; GE; HARMONIC_DIVERGES]);; | |
(* ------------------------------------------------------------------------- *) | |
(* Lower bound on the partial sums. *) | |
(* ------------------------------------------------------------------------- *) | |
let HARMONIC_LEMMA = prove | |
(`!m. sum(1..2 EXP m) (\n. &1 / &n) >= &m / &2`, | |
REWRITE_TAC[real_ge] THEN INDUCT_TAC THEN | |
REWRITE_TAC[EXP; MULT_2; SUM_SING_NUMSEG] THEN | |
CONV_TAC REAL_RAT_REDUCE_CONV THEN | |
SIMP_TAC[SUM_ADD_SPLIT; ARITH_RULE `1 <= 2 EXP m + 1`] THEN | |
FIRST_X_ASSUM(MATCH_MP_TAC o MATCH_MP (ARITH_RULE | |
`a <= x ==> b - a <= y ==> b <= x + y`)) THEN | |
REWRITE_TAC[GSYM REAL_OF_NUM_SUC; GSYM (CONJUNCT2 EXP); GSYM MULT_2] THEN | |
MATCH_MP_TAC REAL_LE_TRANS THEN | |
EXISTS_TAC `sum(2 EXP m + 1..2 EXP (SUC m))(\n. &1 / &(2 EXP (SUC m)))` THEN | |
CONJ_TAC THENL | |
[SIMP_TAC[SUM_CONST_NUMSEG; EXP; ARITH_RULE `(2 * x + 1) - (x + 1) = x`] THEN | |
REWRITE_TAC[GSYM REAL_OF_NUM_MUL] THEN | |
MP_TAC(SPECL [`2`; `m:num`] EXP_EQ_0) THEN | |
REWRITE_TAC[ARITH] THEN REWRITE_TAC[GSYM REAL_OF_NUM_EQ] THEN | |
CONV_TAC REAL_FIELD; | |
MATCH_MP_TAC SUM_LE_NUMSEG THEN REPEAT STRIP_TAC THEN | |
REWRITE_TAC[real_div; REAL_MUL_LID] THEN MATCH_MP_TAC REAL_LE_INV2 THEN | |
POP_ASSUM_LIST(MP_TAC o end_itlist CONJ) THEN | |
REWRITE_TAC[REAL_OF_NUM_LE; REAL_OF_NUM_LT] THEN ARITH_TAC]);; | |
(* ------------------------------------------------------------------------- *) | |
(* Germ of an alternative proof. *) | |
(* ------------------------------------------------------------------------- *) | |
needs "Library/transc.ml";; | |
let LOG_BOUND = prove | |
(`&0 < x /\ x < &1 ==> ln(&1 + x) >= x / &2`, | |
REWRITE_TAC[real_ge] THEN REPEAT STRIP_TAC THEN | |
GEN_REWRITE_TAC LAND_CONV [GSYM LN_EXP] THEN | |
ASM_SIMP_TAC[LN_MONO_LE; REAL_EXP_POS_LT; REAL_LT_ADD; REAL_LT_01] THEN | |
MP_TAC(SPEC `x / &2` REAL_EXP_BOUND_LEMMA) THEN | |
POP_ASSUM_LIST(MP_TAC o end_itlist CONJ) THEN ARITH_TAC);; | |