Datasets:
Tasks:
Text Generation
Modalities:
Text
Sub-tasks:
language-modeling
Languages:
English
Size:
100K - 1M
License:
(* ========================================================================= *) | |
(* Cubic formula. *) | |
(* ========================================================================= *) | |
needs "Complex/complex_transc.ml";; | |
prioritize_complex();; | |
(* ------------------------------------------------------------------------- *) | |
(* Define cube roots (it doesn't matter which one we choose here) *) | |
(* ------------------------------------------------------------------------- *) | |
let ccbrt = new_definition | |
`ccbrt(z) = if z = Cx(&0) then Cx(&0) else cexp(clog(z) / Cx(&3))`;; | |
let CCBRT = prove | |
(`!z. ccbrt(z) pow 3 = z`, | |
GEN_TAC THEN REWRITE_TAC[ccbrt] THEN COND_CASES_TAC THEN | |
ASM_REWRITE_TAC[] THENL [CONV_TAC COMPLEX_RING; ALL_TAC] THEN | |
REWRITE_TAC[COMPLEX_FIELD `z pow 3 = z * z * z:complex`; GSYM CEXP_ADD] THEN | |
REWRITE_TAC[COMPLEX_FIELD `z / Cx(&3) + z / Cx(&3) + z / Cx(&3) = z`] THEN | |
ASM_SIMP_TAC[CEXP_CLOG]);; | |
(* ------------------------------------------------------------------------- *) | |
(* The reduction to a simpler form. *) | |
(* ------------------------------------------------------------------------- *) | |
let CUBIC_REDUCTION = COMPLEX_FIELD | |
`~(a = Cx(&0)) /\ | |
x = y - b / (Cx(&3) * a) /\ | |
p = (Cx(&3) * a * c - b pow 2) / (Cx(&9) * a pow 2) /\ | |
q = (Cx(&9) * a * b * c - Cx(&2) * b pow 3 - Cx(&27) * a pow 2 * d) / | |
(Cx(&54) * a pow 3) | |
==> (a * x pow 3 + b * x pow 2 + c * x + d = Cx(&0) <=> | |
y pow 3 + Cx(&3) * p * y - Cx(&2) * q = Cx(&0))`;; | |
(* ------------------------------------------------------------------------- *) | |
(* The solutions of the special form. *) | |
(* ------------------------------------------------------------------------- *) | |
let CUBIC_BASIC = COMPLEX_FIELD | |
`!i t s. | |
s pow 2 = q pow 2 + p pow 3 /\ | |
(s1 pow 3 = if p = Cx(&0) then Cx(&2) * q else q + s) /\ | |
s2 = --s1 * (Cx(&1) + i * t) / Cx(&2) /\ | |
s3 = --s1 * (Cx(&1) - i * t) / Cx(&2) /\ | |
i pow 2 + Cx(&1) = Cx(&0) /\ | |
t pow 2 = Cx(&3) | |
==> if p = Cx(&0) then | |
(y pow 3 + Cx(&3) * p * y - Cx(&2) * q = Cx(&0) <=> | |
y = s1 \/ y = s2 \/ y = s3) | |
else | |
~(s1 = Cx(&0)) /\ | |
(y pow 3 + Cx(&3) * p * y - Cx(&2) * q = Cx(&0) <=> | |
(y = s1 - p / s1 \/ y = s2 - p / s2 \/ y = s3 - p / s3))`;; | |
(* ------------------------------------------------------------------------- *) | |
(* Explicit formula for the roots (doesn't matter which square/cube roots). *) | |
(* ------------------------------------------------------------------------- *) | |
let CUBIC = prove | |
(`~(a = Cx(&0)) | |
==> let p = (Cx(&3) * a * c - b pow 2) / (Cx(&9) * a pow 2) | |
and q = (Cx(&9) * a * b * c - Cx(&2) * b pow 3 - Cx(&27) * a pow 2 * d) / | |
(Cx(&54) * a pow 3) in | |
let s = csqrt(q pow 2 + p pow 3) in | |
let s1 = if p = Cx(&0) then ccbrt(Cx(&2) * q) else ccbrt(q + s) in | |
let s2 = --s1 * (Cx(&1) + ii * csqrt(Cx(&3))) / Cx(&2) | |
and s3 = --s1 * (Cx(&1) - ii * csqrt(Cx(&3))) / Cx(&2) in | |
if p = Cx(&0) then | |
a * x pow 3 + b * x pow 2 + c * x + d = Cx(&0) <=> | |
x = s1 - b / (Cx(&3) * a) \/ | |
x = s2 - b / (Cx(&3) * a) \/ | |
x = s3 - b / (Cx(&3) * a) | |
else | |
~(s1 = Cx(&0)) /\ | |
(a * x pow 3 + b * x pow 2 + c * x + d = Cx(&0) <=> | |
x = s1 - p / s1 - b / (Cx(&3) * a) \/ | |
x = s2 - p / s2 - b / (Cx(&3) * a) \/ | |
x = s3 - p / s3 - b / (Cx(&3) * a))`, | |
DISCH_TAC THEN REPEAT LET_TAC THEN | |
ABBREV_TAC `y = x + b / (Cx(&3) * a)` THEN | |
SUBGOAL_THEN | |
`a * x pow 3 + b * x pow 2 + c * x + d = Cx(&0) <=> | |
y pow 3 + Cx(&3) * p * y - Cx(&2) * q = Cx(&0)` | |
SUBST1_TAC THENL | |
[MATCH_MP_TAC CUBIC_REDUCTION THEN ASM_REWRITE_TAC[] THEN | |
EXPAND_TAC "y" THEN CONV_TAC COMPLEX_RING; | |
ALL_TAC] THEN | |
ONCE_REWRITE_TAC[COMPLEX_RING `x = a - b <=> x + b = (a:complex)`] THEN | |
ASM_REWRITE_TAC[] THEN MATCH_MP_TAC CUBIC_BASIC THEN | |
MAP_EVERY EXISTS_TAC | |
[`ii`; `csqrt(Cx(&3))`; `csqrt (q pow 2 + p pow 3)`] THEN | |
ASM_REWRITE_TAC[] THEN REPEAT CONJ_TAC THENL | |
[ASM_MESON_TAC[CSQRT]; | |
ASM_MESON_TAC[CCBRT]; | |
MP_TAC COMPLEX_POW_II_2 THEN CONV_TAC COMPLEX_RING; | |
ASM_MESON_TAC[CSQRT]]);; | |