Datasets:

Modalities:
Text
Languages:
English
Libraries:
Datasets
License:
Zhangir Azerbayev
squashed?
4365a98
raw
history blame
3.76 kB
/-
Copyright (c) 2021 Floris van Doorn. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Floris van Doorn, Yury Kudryashov
-/
import order.symm_diff
import tactic.monotonicity.basic
/-!
# Implication and equivalence as operations on a boolean algebra
In this file we define `lattice.imp` (notation: `a β‡’β‚’ b`) and `lattice.biimp` (notation: `a ⇔ₒ b`)
to be the implication and equivalence as operations on a boolean algebra. More precisely, we put
`a β‡’β‚’ b = aᢜ βŠ” b` and `a ⇔ₒ b = (a β‡’β‚’ b) βŠ“ (b β‡’β‚’ a)`. Equivalently, `a β‡’β‚’ b = (a \ b)ᢜ` and
`a ⇔ₒ b = (a βˆ† b)ᢜ`. For propositions these operations are equal to the usual implication and `iff`.
-/
variables {Ξ± Ξ² : Type*}
namespace lattice
/-- Implication as a binary operation on a boolean algebra. -/
def imp [has_compl Ξ±] [has_sup Ξ±] (a b : Ξ±) : Ξ± := aᢜ βŠ” b
infix ` β‡’β‚’ `:65 := lattice.imp
/-- Equivalence as a binary operation on a boolean algebra. -/
def biimp [has_compl Ξ±] [has_sup Ξ±] [has_inf Ξ±] (a b : Ξ±) : Ξ± := (a β‡’β‚’ b) βŠ“ (b β‡’β‚’ a)
infix ` ⇔ₒ `:60 := lattice.biimp
@[simp] lemma imp_eq_arrow (p q : Prop) : p β‡’β‚’ q = (p β†’ q) := propext imp_iff_not_or.symm
@[simp] lemma biimp_eq_iff (p q : Prop) : p ⇔ₒ q = (p ↔ q) := by simp [biimp, ← iff_def]
variables [boolean_algebra Ξ±] {a b c d : Ξ±}
@[simp] lemma compl_imp (a b : Ξ±) : (a β‡’β‚’ b)ᢜ = a \ b := by simp [imp, sdiff_eq]
lemma compl_sdiff (a b : Ξ±) : (a \ b)ᢜ = a β‡’β‚’ b := by rw [← compl_imp, compl_compl]
@[mono] lemma imp_mono (h₁ : a ≀ b) (hβ‚‚ : c ≀ d) : b β‡’β‚’ c ≀ a β‡’β‚’ d :=
sup_le_sup (compl_le_compl h₁) hβ‚‚
lemma inf_imp_eq (a b c : Ξ±) : a βŠ“ (b β‡’β‚’ c) = (a β‡’β‚’ b) β‡’β‚’ (a βŠ“ c) :=
by unfold imp; simp [inf_sup_left]
@[simp] lemma imp_eq_top_iff : (a β‡’β‚’ b = ⊀) ↔ a ≀ b :=
by rw [← compl_sdiff, compl_eq_top, sdiff_eq_bot_iff]
@[simp] lemma imp_eq_bot_iff : (a β‡’β‚’ b = βŠ₯) ↔ (a = ⊀ ∧ b = βŠ₯) := by simp [imp]
@[simp] lemma imp_bot (a : Ξ±) : a β‡’β‚’ βŠ₯ = aᢜ := sup_bot_eq
@[simp] lemma top_imp (a : Ξ±) : ⊀ β‡’β‚’ a = a := by simp [imp]
@[simp] lemma bot_imp (a : Ξ±) : βŠ₯ β‡’β‚’ a = ⊀ := imp_eq_top_iff.2 bot_le
@[simp] lemma imp_top (a : Ξ±) : a β‡’β‚’ ⊀ = ⊀ := imp_eq_top_iff.2 le_top
@[simp] lemma imp_self (a : Ξ±) : a β‡’β‚’ a = ⊀ := compl_sup_eq_top
@[simp] lemma compl_imp_compl (a b : Ξ±) : aᢜ β‡’β‚’ bᢜ = b β‡’β‚’ a := by simp [imp, sup_comm]
lemma imp_inf_le {Ξ± : Type*} [boolean_algebra Ξ±] (a b : Ξ±) : (a β‡’β‚’ b) βŠ“ a ≀ b :=
by { unfold imp, rw [inf_sup_right], simp }
lemma inf_imp_eq_imp_imp (a b c : Ξ±) : ((a βŠ“ b) β‡’β‚’ c) = (a β‡’β‚’ (b β‡’β‚’ c)) := by simp [imp, sup_assoc]
lemma le_imp_iff : a ≀ (b β‡’β‚’ c) ↔ a βŠ“ b ≀ c :=
by rw [imp, sup_comm, is_compl_compl.le_sup_right_iff_inf_left_le]
lemma biimp_mp (a b : Ξ±) : (a ⇔ₒ b) ≀ (a β‡’β‚’ b) := inf_le_left
lemma biimp_mpr (a b : Ξ±) : (a ⇔ₒ b) ≀ (b β‡’β‚’ a) := inf_le_right
lemma biimp_comm (a b : Ξ±) : (a ⇔ₒ b) = (b ⇔ₒ a) :=
by {unfold lattice.biimp, rw inf_comm}
@[simp] lemma biimp_eq_top_iff : a ⇔ₒ b = ⊀ ↔ a = b :=
by simp [biimp, ← le_antisymm_iff]
@[simp] lemma biimp_self (a : Ξ±) : a ⇔ₒ a = ⊀ := biimp_eq_top_iff.2 rfl
lemma biimp_symm : a ≀ (b ⇔ₒ c) ↔ a ≀ (c ⇔ₒ b) := by rw biimp_comm
lemma compl_symm_diff (a b : Ξ±) : (a βˆ† b)ᢜ = a ⇔ₒ b :=
by simp only [biimp, imp, symm_diff, sdiff_eq, compl_sup, compl_inf, compl_compl]
lemma compl_biimp (a b : Ξ±) : (a ⇔ₒ b)ᢜ = a βˆ† b := by rw [← compl_symm_diff, compl_compl]
@[simp] lemma compl_biimp_compl : aᢜ ⇔ₒ bᢜ = a ⇔ₒ b := by simp [biimp, inf_comm]
end lattice