Datasets:
Tasks:
Text Generation
Modalities:
Text
Sub-tasks:
language-modeling
Languages:
English
Size:
100K - 1M
License:
/- | |
Copyright (c) 2021 Floris van Doorn. All rights reserved. | |
Released under Apache 2.0 license as described in the file LICENSE. | |
Authors: Floris van Doorn, Yury Kudryashov | |
-/ | |
import order.symm_diff | |
import tactic.monotonicity.basic | |
/-! | |
# Implication and equivalence as operations on a boolean algebra | |
In this file we define `lattice.imp` (notation: `a ββ b`) and `lattice.biimp` (notation: `a ββ b`) | |
to be the implication and equivalence as operations on a boolean algebra. More precisely, we put | |
`a ββ b = aαΆ β b` and `a ββ b = (a ββ b) β (b ββ a)`. Equivalently, `a ββ b = (a \ b)αΆ` and | |
`a ββ b = (a β b)αΆ`. For propositions these operations are equal to the usual implication and `iff`. | |
-/ | |
variables {Ξ± Ξ² : Type*} | |
namespace lattice | |
/-- Implication as a binary operation on a boolean algebra. -/ | |
def imp [has_compl Ξ±] [has_sup Ξ±] (a b : Ξ±) : Ξ± := aαΆ β b | |
infix ` ββ `:65 := lattice.imp | |
/-- Equivalence as a binary operation on a boolean algebra. -/ | |
def biimp [has_compl Ξ±] [has_sup Ξ±] [has_inf Ξ±] (a b : Ξ±) : Ξ± := (a ββ b) β (b ββ a) | |
infix ` ββ `:60 := lattice.biimp | |
@[simp] lemma imp_eq_arrow (p q : Prop) : p ββ q = (p β q) := propext imp_iff_not_or.symm | |
@[simp] lemma biimp_eq_iff (p q : Prop) : p ββ q = (p β q) := by simp [biimp, β iff_def] | |
variables [boolean_algebra Ξ±] {a b c d : Ξ±} | |
@[simp] lemma compl_imp (a b : Ξ±) : (a ββ b)αΆ = a \ b := by simp [imp, sdiff_eq] | |
lemma compl_sdiff (a b : Ξ±) : (a \ b)αΆ = a ββ b := by rw [β compl_imp, compl_compl] | |
@[mono] lemma imp_mono (hβ : a β€ b) (hβ : c β€ d) : b ββ c β€ a ββ d := | |
sup_le_sup (compl_le_compl hβ) hβ | |
lemma inf_imp_eq (a b c : Ξ±) : a β (b ββ c) = (a ββ b) ββ (a β c) := | |
by unfold imp; simp [inf_sup_left] | |
@[simp] lemma imp_eq_top_iff : (a ββ b = β€) β a β€ b := | |
by rw [β compl_sdiff, compl_eq_top, sdiff_eq_bot_iff] | |
@[simp] lemma imp_eq_bot_iff : (a ββ b = β₯) β (a = β€ β§ b = β₯) := by simp [imp] | |
@[simp] lemma imp_bot (a : Ξ±) : a ββ β₯ = aαΆ := sup_bot_eq | |
@[simp] lemma top_imp (a : Ξ±) : β€ ββ a = a := by simp [imp] | |
@[simp] lemma bot_imp (a : Ξ±) : β₯ ββ a = β€ := imp_eq_top_iff.2 bot_le | |
@[simp] lemma imp_top (a : Ξ±) : a ββ β€ = β€ := imp_eq_top_iff.2 le_top | |
@[simp] lemma imp_self (a : Ξ±) : a ββ a = β€ := compl_sup_eq_top | |
@[simp] lemma compl_imp_compl (a b : Ξ±) : aαΆ ββ bαΆ = b ββ a := by simp [imp, sup_comm] | |
lemma imp_inf_le {Ξ± : Type*} [boolean_algebra Ξ±] (a b : Ξ±) : (a ββ b) β a β€ b := | |
by { unfold imp, rw [inf_sup_right], simp } | |
lemma inf_imp_eq_imp_imp (a b c : Ξ±) : ((a β b) ββ c) = (a ββ (b ββ c)) := by simp [imp, sup_assoc] | |
lemma le_imp_iff : a β€ (b ββ c) β a β b β€ c := | |
by rw [imp, sup_comm, is_compl_compl.le_sup_right_iff_inf_left_le] | |
lemma biimp_mp (a b : Ξ±) : (a ββ b) β€ (a ββ b) := inf_le_left | |
lemma biimp_mpr (a b : Ξ±) : (a ββ b) β€ (b ββ a) := inf_le_right | |
lemma biimp_comm (a b : Ξ±) : (a ββ b) = (b ββ a) := | |
by {unfold lattice.biimp, rw inf_comm} | |
@[simp] lemma biimp_eq_top_iff : a ββ b = β€ β a = b := | |
by simp [biimp, β le_antisymm_iff] | |
@[simp] lemma biimp_self (a : Ξ±) : a ββ a = β€ := biimp_eq_top_iff.2 rfl | |
lemma biimp_symm : a β€ (b ββ c) β a β€ (c ββ b) := by rw biimp_comm | |
lemma compl_symm_diff (a b : Ξ±) : (a β b)αΆ = a ββ b := | |
by simp only [biimp, imp, symm_diff, sdiff_eq, compl_sup, compl_inf, compl_compl] | |
lemma compl_biimp (a b : Ξ±) : (a ββ b)αΆ = a β b := by rw [β compl_symm_diff, compl_compl] | |
@[simp] lemma compl_biimp_compl : aαΆ ββ bαΆ = a ββ b := by simp [biimp, inf_comm] | |
end lattice | |