Datasets:
Tasks:
Text Generation
Modalities:
Text
Sub-tasks:
language-modeling
Languages:
English
Size:
100K - 1M
License:
/- | |
Copyright (c) 2022 John Nicol. All rights reserved. | |
Released under Apache 2.0 license as described in the file LICENSE. | |
Authors: John Nicol | |
-/ | |
import number_theory.legendre_symbol.gauss_eisenstein_lemmas | |
/-! | |
# Wilson's theorem. | |
This file contains a proof of Wilson's theorem. | |
The heavy lifting is mostly done by the previous `wilsons_lemma`, | |
but here we also prove the other logical direction. | |
This could be generalized to similar results about finite abelian groups. | |
## References | |
* [Wilson's Theorem](https://en.wikipedia.org/wiki/Wilson%27s_theorem) | |
## TODO | |
* Move `wilsons_lemma` into this file, and give it a descriptive name. | |
-/ | |
open_locale nat | |
namespace nat | |
variable {n : ℕ} | |
/-- For `n > 1`, `(n-1)!` is congruent to `-1` modulo `n` only if n is prime. --/ | |
lemma prime_of_fac_equiv_neg_one | |
(h : ((n - 1)! : zmod n) = -1) (h1 : 1 < n) : prime n := | |
begin | |
by_contradiction h2, | |
obtain ⟨m, hm1, hm2 : 1 < m, hm3⟩ := exists_dvd_of_not_prime2 h1 h2, | |
have hm : m ∣ (n - 1)! := nat.dvd_factorial (pos_of_gt hm2) (le_pred_of_lt hm3), | |
refine hm2.ne' (nat.dvd_one.mp ((nat.dvd_add_right hm).mp (hm1.trans _))), | |
rw [←zmod.nat_coe_zmod_eq_zero_iff_dvd, cast_add, cast_one, h, add_left_neg], | |
end | |
/-- **Wilson's Theorem**: For `n > 1`, `(n-1)!` is congruent to `-1` modulo `n` iff n is prime. --/ | |
theorem prime_iff_fac_equiv_neg_one (h : 1 < n) : | |
prime n ↔ ((n - 1)! : zmod n) = -1 := | |
begin | |
refine ⟨λ h1, _, λ h2, prime_of_fac_equiv_neg_one h2 h⟩, | |
haveI := fact.mk h1, | |
exact zmod.wilsons_lemma n, | |
end | |
end nat | |