Datasets:
Tasks:
Text Generation
Modalities:
Text
Sub-tasks:
language-modeling
Languages:
English
Size:
100K - 1M
License:
/- | |
Copyright (c) 2022 Anne Baanen. All rights reserved. | |
Released under Apache 2.0 license as described in the file LICENSE. | |
Authors: Anne Baanen | |
-/ | |
import algebra.is_prime_pow | |
import field_theory.separable | |
import linear_algebra.free_module.finite.rank | |
import linear_algebra.free_module.pid | |
import linear_algebra.matrix.nonsingular_inverse | |
import ring_theory.dedekind_domain.ideal | |
import ring_theory.localization.module | |
/-! | |
# Ramification index and inertia degree | |
Given `P : ideal S` lying over `p : ideal R` for the ring extension `f : R →+* S` | |
(assuming `P` and `p` are prime or maximal where needed), | |
the **ramification index** `ideal.ramification_idx f p P` is the multiplicity of `P` in `map f p`, | |
and the **inertia degree** `ideal.inertia_deg f p P` is the degree of the field extension | |
`(S / P) : (R / p)`. | |
## TODO (#12287) | |
The main theorem `ideal.sum_ramification_inertia` states that for all coprime `P` lying over `p`, | |
`Σ P, ramification_idx f p P * inertia_deg f p P` equals the degree of the field extension | |
`Frac(S) : Frac(R)`. | |
## Implementation notes | |
Often the above theory is set up in the case where: | |
* `R` is the ring of integers of a number field `K`, | |
* `L` is a finite separable extension of `K`, | |
* `S` is the integral closure of `R` in `L`, | |
* `p` and `P` are maximal ideals, | |
* `P` is an ideal lying over `p` | |
We will try to relax the above hypotheses as much as possible. | |
-/ | |
namespace ideal | |
universes u v | |
variables {R : Type u} [comm_ring R] | |
variables {S : Type v} [comm_ring S] (f : R →+* S) | |
variables (p : ideal R) (P : ideal S) | |
open finite_dimensional | |
open unique_factorization_monoid | |
section dec_eq | |
open_locale classical | |
/-- The ramification index of `P` over `p` is the largest exponent `n` such that | |
`p` is contained in `P^n`. | |
In particular, if `p` is not contained in `P^n`, then the ramification index is 0. | |
If there is no largest such `n` (e.g. because `p = ⊥`), then `ramification_idx` is | |
defined to be 0. | |
-/ | |
noncomputable def ramification_idx : ℕ := | |
Sup {n | map f p ≤ P ^ n} | |
variables {f p P} | |
lemma ramification_idx_eq_find (h : ∃ n, ∀ k, map f p ≤ P ^ k → k ≤ n) : | |
ramification_idx f p P = nat.find h := | |
nat.Sup_def h | |
lemma ramification_idx_eq_zero (h : ∀ n : ℕ, ∃ k, map f p ≤ P ^ k ∧ n < k) : | |
ramification_idx f p P = 0 := | |
dif_neg (by push_neg; exact h) | |
lemma ramification_idx_spec {n : ℕ} (hle : map f p ≤ P ^ n) (hgt : ¬ map f p ≤ P ^ (n + 1)) : | |
ramification_idx f p P = n := | |
begin | |
have : ∀ (k : ℕ), map f p ≤ P ^ k → k ≤ n, | |
{ intros k hk, | |
refine le_of_not_lt (λ hnk, _), | |
exact hgt (hk.trans (ideal.pow_le_pow hnk)) }, | |
rw ramification_idx_eq_find ⟨n, this⟩, | |
{ refine le_antisymm (nat.find_min' _ this) (le_of_not_gt (λ (h : nat.find _ < n), _)), | |
obtain this' := nat.find_spec ⟨n, this⟩, | |
exact h.not_le (this' _ hle) }, | |
end | |
lemma ramification_idx_lt {n : ℕ} (hgt : ¬ (map f p ≤ P ^ n)) : | |
ramification_idx f p P < n := | |
begin | |
cases n, | |
{ simpa using hgt }, | |
rw nat.lt_succ_iff, | |
have : ∀ k, map f p ≤ P ^ k → k ≤ n, | |
{ refine λ k hk, le_of_not_lt (λ hnk, _), | |
exact hgt (hk.trans (ideal.pow_le_pow hnk)) }, | |
rw ramification_idx_eq_find ⟨n, this⟩, | |
exact nat.find_min' ⟨n, this⟩ this | |
end | |
@[simp] lemma ramification_idx_bot : ramification_idx f ⊥ P = 0 := | |
dif_neg $ not_exists.mpr $ λ n hn, n.lt_succ_self.not_le (hn _ (by simp)) | |
@[simp] lemma ramification_idx_of_not_le (h : ¬ map f p ≤ P) : ramification_idx f p P = 0 := | |
ramification_idx_spec (by simp) (by simpa using h) | |
lemma ramification_idx_ne_zero {e : ℕ} (he : e ≠ 0) | |
(hle : map f p ≤ P ^ e) (hnle : ¬ map f p ≤ P ^ (e + 1)): | |
ramification_idx f p P ≠ 0 := | |
by rwa ramification_idx_spec hle hnle | |
lemma le_pow_of_le_ramification_idx {n : ℕ} (hn : n ≤ ramification_idx f p P) : | |
map f p ≤ P ^ n := | |
begin | |
contrapose! hn, | |
exact ramification_idx_lt hn | |
end | |
lemma le_pow_ramification_idx : | |
map f p ≤ P ^ ramification_idx f p P := | |
le_pow_of_le_ramification_idx (le_refl _) | |
namespace is_dedekind_domain | |
variables [is_domain S] [is_dedekind_domain S] | |
lemma ramification_idx_eq_normalized_factors_count | |
(hp0 : map f p ≠ ⊥) (hP : P.is_prime) (hP0 : P ≠ ⊥) : | |
ramification_idx f p P = (normalized_factors (map f p)).count P := | |
begin | |
have hPirr := (ideal.prime_of_is_prime hP0 hP).irreducible, | |
refine ramification_idx_spec (ideal.le_of_dvd _) (mt ideal.dvd_iff_le.mpr _); | |
rw [dvd_iff_normalized_factors_le_normalized_factors (pow_ne_zero _ hP0) hp0, | |
normalized_factors_pow, normalized_factors_irreducible hPirr, normalize_eq, | |
multiset.nsmul_singleton, ← multiset.le_count_iff_repeat_le], | |
{ exact (nat.lt_succ_self _).not_le }, | |
end | |
lemma ramification_idx_eq_factors_count (hp0 : map f p ≠ ⊥) (hP : P.is_prime) (hP0 : P ≠ ⊥) : | |
ramification_idx f p P = (factors (map f p)).count P := | |
by rw [is_dedekind_domain.ramification_idx_eq_normalized_factors_count hp0 hP hP0, | |
factors_eq_normalized_factors] | |
lemma ramification_idx_ne_zero (hp0 : map f p ≠ ⊥) (hP : P.is_prime) (le : map f p ≤ P) : | |
ramification_idx f p P ≠ 0 := | |
begin | |
have hP0 : P ≠ ⊥, | |
{ unfreezingI { rintro rfl }, | |
have := le_bot_iff.mp le, | |
contradiction }, | |
have hPirr := (ideal.prime_of_is_prime hP0 hP).irreducible, | |
rw is_dedekind_domain.ramification_idx_eq_normalized_factors_count hp0 hP hP0, | |
obtain ⟨P', hP', P'_eq⟩ := | |
exists_mem_normalized_factors_of_dvd hp0 hPirr (ideal.dvd_iff_le.mpr le), | |
rwa [multiset.count_ne_zero, associated_iff_eq.mp P'_eq], | |
end | |
end is_dedekind_domain | |
variables (f p P) | |
local attribute [instance] ideal.quotient.field | |
/-- The inertia degree of `P : ideal S` lying over `p : ideal R` is the degree of the | |
extension `(S / P) : (R / p)`. | |
We do not assume `P` lies over `p` in the definition; we return `0` instead. | |
See `inertia_deg_algebra_map` for the common case where `f = algebra_map R S` | |
and there is an algebra structure `R / p → S / P`. | |
-/ | |
noncomputable def inertia_deg [hp : p.is_maximal] : ℕ := | |
if hPp : comap f P = p | |
then @finrank (R ⧸ p) (S ⧸ P) _ _ $ @algebra.to_module _ _ _ _ $ ring_hom.to_algebra $ | |
ideal.quotient.lift p (P^.quotient.mk^.comp f) $ | |
λ a ha, quotient.eq_zero_iff_mem.mpr $ mem_comap.mp $ hPp.symm ▸ ha | |
else 0 | |
-- Useful for the `nontriviality` tactic using `comap_eq_of_scalar_tower_quotient`. | |
@[simp] lemma inertia_deg_of_subsingleton [hp : p.is_maximal] [hQ : subsingleton (S ⧸ P)] : | |
inertia_deg f p P = 0 := | |
begin | |
have := ideal.quotient.subsingleton_iff.mp hQ, | |
unfreezingI { subst this }, | |
exact dif_neg (λ h, hp.ne_top $ h.symm.trans comap_top) | |
end | |
@[simp] lemma inertia_deg_algebra_map [algebra R S] [algebra (R ⧸ p) (S ⧸ P)] | |
[is_scalar_tower R (R ⧸ p) (S ⧸ P)] | |
[hp : p.is_maximal] : | |
inertia_deg (algebra_map R S) p P = finrank (R ⧸ p) (S ⧸ P) := | |
begin | |
nontriviality (S ⧸ P) using [inertia_deg_of_subsingleton, finrank_zero_of_subsingleton], | |
have := comap_eq_of_scalar_tower_quotient (algebra_map (R ⧸ p) (S ⧸ P)).injective, | |
rw [inertia_deg, dif_pos this], | |
congr, | |
refine algebra.algebra_ext _ _ (λ x', quotient.induction_on' x' $ λ x, _), | |
change ideal.quotient.lift p _ _ (ideal.quotient.mk p x) = | |
algebra_map _ _ (ideal.quotient.mk p x), | |
rw [ideal.quotient.lift_mk, ← ideal.quotient.algebra_map_eq, ← is_scalar_tower.algebra_map_eq, | |
← ideal.quotient.algebra_map_eq, ← is_scalar_tower.algebra_map_apply] | |
end | |
end dec_eq | |
open_locale big_operators | |
open_locale non_zero_divisors | |
variables [algebra R S] | |
variables {K : Type*} [field K] [algebra R K] [hRK : is_fraction_ring R K] | |
variables {L : Type*} [field L] [algebra S L] [is_fraction_ring S L] | |
variables {V V' V'' : Type*} | |
variables [add_comm_group V] [module R V] [module K V] [is_scalar_tower R K V] | |
variables [add_comm_group V'] [module R V'] [module S V'] [is_scalar_tower R S V'] | |
variables [add_comm_group V''] [module R V''] | |
variables (K) | |
include hRK | |
/-- Let `V` be a vector space over `K = Frac(R)`, `S / R` a ring extension | |
and `V'` a module over `S`. If `b`, in the intersection `V''` of `V` and `V'`, | |
is linear independent over `S` in `V'`, then it is linear independent over `R` in `V`. | |
The statement we prove is actually slightly more general: | |
* it suffices that the inclusion `algebra_map R S : R → S` is nontrivial | |
* the function `f' : V'' → V'` doesn't need to be injective | |
-/ | |
lemma finrank_quotient_map.linear_independent_of_nontrivial | |
[is_domain R] [is_dedekind_domain R] (hRS : (algebra_map R S).ker ≠ ⊤) | |
(f : V'' →ₗ[R] V) (hf : function.injective f) (f' : V'' →ₗ[R] V') | |
{ι : Type*} {b : ι → V''} (hb' : linear_independent S (f' ∘ b)) : | |
linear_independent K (f ∘ b) := | |
begin | |
contrapose! hb' with hb, | |
-- Informally, if we have a nontrivial linear dependence with coefficients `g` in `K`, | |
-- then we can find a linear dependence with coefficients `I.quotient.mk g'` in `R/I`, | |
-- where `I = ker (algebra_map R S)`. | |
-- We make use of the same principle but stay in `R` everywhere. | |
simp only [linear_independent_iff', not_forall] at hb ⊢, | |
obtain ⟨s, g, eq, j', hj's, hj'g⟩ := hb, | |
use s, | |
obtain ⟨a, hag, j, hjs, hgI⟩ := | |
ideal.exist_integer_multiples_not_mem hRS s g hj's hj'g, | |
choose g'' hg'' using hag, | |
letI := classical.prop_decidable, | |
let g' := λ i, if h : i ∈ s then g'' i h else 0, | |
have hg' : ∀ i ∈ s, algebra_map _ _ (g' i) = a * g i, | |
{ intros i hi, exact (congr_arg _ (dif_pos hi)).trans (hg'' i hi) }, | |
-- Because `R/I` is nontrivial, we can lift `g` to a nontrivial linear dependence in `S`. | |
have hgI : algebra_map R S (g' j) ≠ 0, | |
{ simp only [fractional_ideal.mem_coe_ideal, not_exists, not_and'] at hgI, | |
exact hgI _ (hg' j hjs) }, | |
refine ⟨λ i, algebra_map R S (g' i), _, j, hjs, hgI⟩, | |
have eq : f (∑ i in s, g' i • (b i)) = 0, | |
{ rw [linear_map.map_sum, ← smul_zero a, ← eq, finset.smul_sum, finset.sum_congr rfl], | |
intros i hi, | |
rw [linear_map.map_smul, ← is_scalar_tower.algebra_map_smul K, hg' i hi, ← smul_assoc, | |
smul_eq_mul], | |
apply_instance }, | |
simp only [is_scalar_tower.algebra_map_smul, ← linear_map.map_smul, ← linear_map.map_sum, | |
(f.map_eq_zero_iff hf).mp eq, linear_map.map_zero], | |
end | |
open_locale matrix | |
variables {K} | |
omit hRK | |
/-- If `b` mod `p` spans `S/p` as `R/p`-space, then `b` itself spans `Frac(S)` as `K`-space. | |
Here, | |
* `p` is an ideal of `R` such that `R / p` is nontrivial | |
* `K` is a field that has an embedding of `R` (in particular we can take `K = Frac(R)`) | |
* `L` is a field extension of `K` | |
* `S` is the integral closure of `R` in `L` | |
More precisely, we avoid quotients in this statement and instead require that `b ∪ pS` spans `S`. | |
-/ | |
lemma finrank_quotient_map.span_eq_top [is_domain R] [is_domain S] [algebra K L] [is_noetherian R S] | |
[algebra R L] [is_scalar_tower R S L] [is_scalar_tower R K L] [is_integral_closure S R L] | |
[no_zero_smul_divisors R K] | |
(hp : p ≠ ⊤) | |
(b : set S) (hb' : submodule.span R b ⊔ (p.map (algebra_map R S)).restrict_scalars R = ⊤) : | |
submodule.span K (algebra_map S L '' b) = ⊤ := | |
begin | |
have hRL : function.injective (algebra_map R L), | |
{ rw is_scalar_tower.algebra_map_eq R K L, | |
exact (algebra_map K L).injective.comp (no_zero_smul_divisors.algebra_map_injective R K) }, | |
-- Let `M` be the `R`-module spanned by the proposed basis elements. | |
set M : submodule R S := submodule.span R b with hM, | |
-- Then `S / M` is generated by some finite set of `n` vectors `a`. | |
letI h : module.finite R (S ⧸ M) := | |
module.finite.of_surjective (submodule.mkq _) (submodule.quotient.mk_surjective _), | |
obtain ⟨n, a, ha⟩ := @@module.finite.exists_fin _ _ _ h, | |
-- Because the image of `p` in `S / M` is `⊤`, | |
have smul_top_eq : p • (⊤ : submodule R (S ⧸ M)) = ⊤, | |
{ calc p • ⊤ = submodule.map M.mkq (p • ⊤) : | |
by rw [submodule.map_smul'', submodule.map_top, M.range_mkq] | |
... = ⊤ : by rw [ideal.smul_top_eq_map, (submodule.map_mkq_eq_top M _).mpr hb'] }, | |
-- we can write the elements of `a` as `p`-linear combinations of other elements of `a`. | |
have exists_sum : ∀ x : (S ⧸ M), ∃ a' : fin n → R, (∀ i, a' i ∈ p) ∧ ∑ i, a' i • a i = x, | |
{ intro x, | |
obtain ⟨a'', ha'', hx⟩ := submodule.exists_sum_of_mem_ideal_smul_span p set.univ a x _, | |
refine ⟨λ i, a'' ⟨i, set.mem_univ _⟩, λ i, ha'' _, _⟩, | |
rwa [finsupp.sum_fintype, fintype.sum_equiv (equiv.set.univ (fin n))] at hx, | |
{ intros, simp only [eq_self_iff_true, subtype.coe_eta, equiv.set.univ_apply] }, | |
{ intros, simp only [zero_smul] }, | |
rw [set.image_univ, ha, smul_top_eq], | |
exact submodule.mem_top }, | |
choose A' hA'p hA' using λ i, exists_sum (a i), | |
-- This gives us a(n invertible) matrix `A` such that `det A ∈ (M = span R b)`, | |
let A : matrix (fin n) (fin n) R := A' - 1, | |
let B := A.adjugate, | |
have A_smul : ∀ i, ∑ j, A i j • a j = 0, | |
{ intros, | |
simp only [A, pi.sub_apply, sub_smul, finset.sum_sub_distrib, hA', matrix.one_apply, ite_smul, | |
one_smul, zero_smul, finset.sum_ite_eq, finset.mem_univ, if_true, sub_self] }, | |
-- since `span S {det A} / M = 0`. | |
have d_smul : ∀ i, A.det • a i = 0, | |
{ intro i, | |
calc A.det • a i = ∑ j, (B ⬝ A) i j • a j : _ | |
... = ∑ k, B i k • ∑ j, (A k j • a j) : _ | |
... = 0 : finset.sum_eq_zero (λ k _, _), | |
{ simp only [matrix.adjugate_mul, pi.smul_apply, matrix.one_apply, mul_ite, ite_smul, | |
smul_eq_mul, mul_one, mul_zero, one_smul, zero_smul, finset.sum_ite_eq, finset.mem_univ, | |
if_true] }, | |
{ simp only [matrix.mul_apply, finset.smul_sum, finset.sum_smul, smul_smul], | |
rw finset.sum_comm }, | |
{ rw [A_smul, smul_zero] } }, | |
-- In the rings of integers we have the desired inclusion. | |
have span_d : (submodule.span S ({algebra_map R S A.det} : set S)).restrict_scalars R ≤ M, | |
{ intros x hx, | |
rw submodule.restrict_scalars_mem at hx, | |
obtain ⟨x', rfl⟩ := submodule.mem_span_singleton.mp hx, | |
rw [smul_eq_mul, mul_comm, ← algebra.smul_def] at ⊢ hx, | |
rw [← submodule.quotient.mk_eq_zero, submodule.quotient.mk_smul], | |
obtain ⟨a', _, quot_x_eq⟩ := exists_sum (submodule.quotient.mk x'), | |
simp_rw [← quot_x_eq, finset.smul_sum, smul_comm A.det, d_smul, smul_zero, | |
finset.sum_const_zero] }, | |
-- So now we lift everything to the fraction field. | |
refine top_le_iff.mp (calc ⊤ = (ideal.span {algebra_map R L A.det}).restrict_scalars K : _ | |
... ≤ submodule.span K (algebra_map S L '' b) : _), | |
-- Because `det A ≠ 0`, we have `span L {det A} = ⊤`. | |
{ rw [eq_comm, submodule.restrict_scalars_eq_top_iff, ideal.span_singleton_eq_top], | |
refine is_unit.mk0 _ ((map_ne_zero_iff ((algebra_map R L)) hRL).mpr ( | |
@ne_zero_of_map _ _ _ _ _ _ (ideal.quotient.mk p) _ _)), | |
haveI := ideal.quotient.nontrivial hp, | |
calc ideal.quotient.mk p (A.det) | |
= matrix.det ((ideal.quotient.mk p).map_matrix A) : | |
by rw [ring_hom.map_det, ring_hom.map_matrix_apply] | |
... = matrix.det ((ideal.quotient.mk p).map_matrix (A' - 1)) : rfl | |
... = matrix.det (λ i j, (ideal.quotient.mk p) (A' i j) - | |
(1 : matrix (fin n) (fin n) (R ⧸ p)) i j) : _ | |
... = matrix.det (-1 : matrix (fin n) (fin n) (R ⧸ p)) : _ | |
... = (-1 : R ⧸ p) ^ n : by rw [matrix.det_neg, fintype.card_fin, matrix.det_one, mul_one] | |
... ≠ 0 : is_unit.ne_zero (is_unit_one.neg.pow _), | |
{ refine congr_arg matrix.det (matrix.ext (λ i j, _)), | |
rw [map_sub, ring_hom.map_matrix_apply, map_one], | |
refl }, | |
{ refine congr_arg matrix.det (matrix.ext (λ i j, _)), | |
rw [ideal.quotient.eq_zero_iff_mem.mpr (hA'p i j), zero_sub], | |
refl } }, | |
-- And we conclude `L = span L {det A} ≤ span K b`, so `span K b` spans everything. | |
{ intros x hx, | |
rw [submodule.restrict_scalars_mem, is_scalar_tower.algebra_map_apply R S L] at hx, | |
refine is_fraction_ring.ideal_span_singleton_map_subset R _ hRL span_d hx, | |
haveI : no_zero_smul_divisors R L := no_zero_smul_divisors.of_algebra_map_injective hRL, | |
rw ← is_fraction_ring.is_algebraic_iff' R S, | |
intros x, | |
exact is_integral.is_algebraic _ (is_integral_of_noetherian infer_instance _) }, | |
end | |
include hRK | |
variables (K L) | |
/-- If `p` is a maximal ideal of `R`, and `S` is the integral closure of `R` in `L`, | |
then the dimension `[S/pS : R/p]` is equal to `[Frac(S) : Frac(R)]`. -/ | |
lemma finrank_quotient_map [is_domain R] [is_domain S] [is_dedekind_domain R] | |
[algebra K L] [algebra R L] [is_scalar_tower R K L] [is_scalar_tower R S L] | |
[is_integral_closure S R L] | |
[hp : p.is_maximal] [is_noetherian R S] : | |
finrank (R ⧸ p) (S ⧸ map (algebra_map R S) p) = finrank K L := | |
begin | |
-- Choose an arbitrary basis `b` for `[S/pS : R/p]`. | |
-- We'll use the previous results to turn it into a basis on `[Frac(S) : Frac(R)]`. | |
letI : field (R ⧸ p) := ideal.quotient.field _, | |
let ι := module.free.choose_basis_index (R ⧸ p) (S ⧸ map (algebra_map R S) p), | |
let b : basis ι (R ⧸ p) (S ⧸ map (algebra_map R S) p) := module.free.choose_basis _ _, | |
-- Namely, choose a representative `b' i : S` for each `b i : S / pS`. | |
let b' : ι → S := λ i, (ideal.quotient.mk_surjective (b i)).some, | |
have b_eq_b' : ⇑ b = (submodule.mkq _).restrict_scalars R ∘ b' := | |
funext (λ i, (ideal.quotient.mk_surjective (b i)).some_spec.symm), | |
-- We claim `b'` is a basis for `Frac(S)` over `Frac(R)` because it is linear independent | |
-- and spans the whole of `Frac(S)`. | |
let b'' : ι → L := algebra_map S L ∘ b', | |
have b''_li : linear_independent _ b'' := _, | |
have b''_sp : submodule.span _ (set.range b'') = ⊤ := _, | |
-- Since the two bases have the same index set, the spaces have the same dimension. | |
let c : basis ι K L := basis.mk b''_li b''_sp.ge, | |
rw [finrank_eq_card_basis b, finrank_eq_card_basis c], | |
-- It remains to show that the basis is indeed linear independent and spans the whole space. | |
{ rw set.range_comp, | |
refine finrank_quotient_map.span_eq_top p hp.ne_top _ (top_le_iff.mp _), | |
-- The nicest way to show `S ≤ span b' ⊔ pS` is by reducing both sides modulo pS. | |
-- However, this would imply distinguishing between `pS` as `S`-ideal, | |
-- and `pS` as `R`-submodule, since they have different (non-defeq) quotients. | |
-- Instead we'll lift `x mod pS ∈ span b` to `y ∈ span b'` for some `y - x ∈ pS`. | |
intros x hx, | |
have mem_span_b : | |
((submodule.mkq (map (algebra_map R S) p)) x : | |
S ⧸ map (algebra_map R S) p) ∈ submodule.span (R ⧸ p) (set.range b) := b.mem_span _, | |
rw [← @submodule.restrict_scalars_mem R, algebra.span_restrict_scalars_eq_span_of_surjective | |
(show function.surjective (algebra_map R (R ⧸ p)), from ideal.quotient.mk_surjective) _, | |
b_eq_b', set.range_comp, ← submodule.map_span] | |
at mem_span_b, | |
obtain ⟨y, y_mem, y_eq⟩ := submodule.mem_map.mp mem_span_b, | |
suffices : y + -(y - x) ∈ _, { simpa }, | |
rw [linear_map.restrict_scalars_apply, submodule.mkq_apply, submodule.mkq_apply, | |
submodule.quotient.eq] at y_eq, | |
exact add_mem (submodule.mem_sup_left y_mem) (neg_mem $ submodule.mem_sup_right y_eq) }, | |
{ have := b.linear_independent, rw b_eq_b' at this, | |
convert finrank_quotient_map.linear_independent_of_nontrivial K _ | |
((algebra.linear_map S L).restrict_scalars R) _ | |
((submodule.mkq _).restrict_scalars R) | |
this, | |
{ rw [quotient.algebra_map_eq, ideal.mk_ker], | |
exact hp.ne_top }, | |
{ exact is_fraction_ring.injective S L } }, | |
end | |
end ideal | |