Datasets:
Tasks:
Text Generation
Modalities:
Text
Sub-tasks:
language-modeling
Languages:
English
Size:
100K - 1M
License:
/- | |
Copyright (c) 2017 Mario Carneiro. All rights reserved. | |
Released under Apache 2.0 license as described in the file LICENSE. | |
Authors: Mario Carneiro | |
-/ | |
import data.nat.modeq | |
import number_theory.zsqrtd.basic | |
/-! | |
# Pell's equation and Matiyasevic's theorem | |
This file solves Pell's equation, i.e. integer solutions to `x ^ 2 - d * y ^ 2 = 1` in the special | |
case that `d = a ^ 2 - 1`. This is then applied to prove Matiyasevic's theorem that the power | |
function is Diophantine, which is the last key ingredient in the solution to Hilbert's tenth | |
problem. For the definition of Diophantine function, see `dioph.lean`. | |
## Main definition | |
* `pell` is a function assigning to a natural number `n` the `n`-th solution to Pell's equation | |
constructed recursively from the initial solution `(0, 1)`. | |
## Main statements | |
* `eq_pell` shows that every solution to Pell's equation is recursively obtained using `pell` | |
* `matiyasevic` shows that a certain system of Diophantine equations has a solution if and only if | |
the first variable is the `x`-component in a solution to Pell's equation - the key step towards | |
Hilbert's tenth problem in Davis' version of Matiyasevic's theorem. | |
* `eq_pow_of_pell` shows that the power function is Diophantine. | |
## Implementation notes | |
The proof of Matiyasevic's theorem doesn't follow Matiyasevic's original account of using Fibonacci | |
numbers but instead Davis' variant of using solutions to Pell's equation. | |
## References | |
* [M. Carneiro, _A Lean formalization of Matiyasevič's theorem_][carneiro2018matiyasevic] | |
* [M. Davis, _Hilbert's tenth problem is unsolvable_][MR317916] | |
## Tags | |
Pell's equation, Matiyasevic's theorem, Hilbert's tenth problem | |
## TODO | |
* Provide solutions to Pell's equation for the case of arbitrary `d` (not just `d = a ^ 2 - 1` like | |
in the current version) and furthermore also for `x ^ 2 - d * y ^ 2 = -1`. | |
* Connect solutions to the continued fraction expansion of `√d`. | |
-/ | |
namespace pell | |
open nat | |
section | |
parameters {a : ℕ} (a1 : 1 < a) | |
include a1 | |
private def d := a*a - 1 | |
@[simp] theorem d_pos : 0 < d := | |
tsub_pos_of_lt (mul_lt_mul a1 (le_of_lt a1) dec_trivial dec_trivial : 1*1<a*a) | |
/-- The Pell sequences, i.e. the sequence of integer solutions to `x ^ 2 - d * y ^ 2 = 1`, where | |
`d = a ^ 2 - 1`, defined together in mutual recursion. -/ | |
-- TODO(lint): Fix double namespace issue | |
@[nolint dup_namespace] def pell : ℕ → ℕ × ℕ := | |
λn, nat.rec_on n (1, 0) (λn xy, (xy.1*a + d*xy.2, xy.1 + xy.2*a)) | |
/-- The Pell `x` sequence. -/ | |
def xn (n : ℕ) : ℕ := (pell n).1 | |
/-- The Pell `y` sequence. -/ | |
def yn (n : ℕ) : ℕ := (pell n).2 | |
@[simp] theorem pell_val (n : ℕ) : pell n = (xn n, yn n) := | |
show pell n = ((pell n).1, (pell n).2), from match pell n with (a, b) := rfl end | |
@[simp] theorem xn_zero : xn 0 = 1 := rfl | |
@[simp] theorem yn_zero : yn 0 = 0 := rfl | |
@[simp] theorem xn_succ (n : ℕ) : xn (n+1) = xn n * a + d * yn n := rfl | |
@[simp] theorem yn_succ (n : ℕ) : yn (n+1) = xn n + yn n * a := rfl | |
@[simp] theorem xn_one : xn 1 = a := by simp | |
@[simp] theorem yn_one : yn 1 = 1 := by simp | |
/-- The Pell `x` sequence, considered as an integer sequence.-/ | |
def xz (n : ℕ) : ℤ := xn n | |
/-- The Pell `y` sequence, considered as an integer sequence.-/ | |
def yz (n : ℕ) : ℤ := yn n | |
section | |
omit a1 | |
/-- The element `a` such that `d = a ^ 2 - 1`, considered as an integer.-/ | |
def az : ℤ := a | |
end | |
theorem asq_pos : 0 < a*a := | |
le_trans (le_of_lt a1) (by have := @nat.mul_le_mul_left 1 a a (le_of_lt a1); rwa mul_one at this) | |
theorem dz_val : ↑d = az*az - 1 := | |
have 1 ≤ a*a, from asq_pos, | |
show ↑(a*a - 1) = _, by rw int.coe_nat_sub this; refl | |
@[simp] theorem xz_succ (n : ℕ) : xz (n+1) = xz n * az + ↑d * yz n := rfl | |
@[simp] theorem yz_succ (n : ℕ) : yz (n+1) = xz n + yz n * az := rfl | |
/-- The Pell sequence can also be viewed as an element of `ℤ√d` -/ | |
def pell_zd (n : ℕ) : ℤ√d := ⟨xn n, yn n⟩ | |
@[simp] theorem pell_zd_re (n : ℕ) : (pell_zd n).re = xn n := rfl | |
@[simp] theorem pell_zd_im (n : ℕ) : (pell_zd n).im = yn n := rfl | |
/-- The property of being a solution to the Pell equation, expressed | |
as a property of elements of `ℤ√d`. -/ | |
def is_pell : ℤ√d → Prop | ⟨x, y⟩ := x*x - d*y*y = 1 | |
theorem is_pell_nat {x y : ℕ} : is_pell ⟨x, y⟩ ↔ x*x - d*y*y = 1 := | |
⟨λh, int.coe_nat_inj | |
(by rw int.coe_nat_sub (int.le_of_coe_nat_le_coe_nat $ int.le.intro_sub h); exact h), | |
λh, show ((x*x : ℕ) - (d*y*y:ℕ) : ℤ) = 1, | |
by rw [← int.coe_nat_sub $ le_of_lt $ nat.lt_of_sub_eq_succ h, h]; refl⟩ | |
theorem is_pell_norm : Π {b : ℤ√d}, is_pell b ↔ b * b.conj = 1 | |
| ⟨x, y⟩ := by simp [zsqrtd.ext, is_pell, mul_comm]; ring_nf | |
theorem is_pell_mul {b c : ℤ√d} (hb : is_pell b) (hc : is_pell c) : is_pell (b * c) := | |
is_pell_norm.2 (by simp [mul_comm, mul_left_comm, | |
zsqrtd.conj_mul, pell.is_pell_norm.1 hb, pell.is_pell_norm.1 hc]) | |
theorem is_pell_conj : ∀ {b : ℤ√d}, is_pell b ↔ is_pell b.conj | ⟨x, y⟩ := | |
by simp [is_pell, zsqrtd.conj] | |
@[simp] theorem pell_zd_succ (n : ℕ) : pell_zd (n+1) = pell_zd n * ⟨a, 1⟩ := | |
by simp [zsqrtd.ext] | |
theorem is_pell_one : is_pell ⟨a, 1⟩ := | |
show az*az-d*1*1=1, by simp [dz_val]; ring | |
theorem is_pell_pell_zd : ∀ (n : ℕ), is_pell (pell_zd n) | |
| 0 := rfl | |
| (n+1) := let o := is_pell_one in by simp; exact pell.is_pell_mul (is_pell_pell_zd n) o | |
@[simp] theorem pell_eqz (n : ℕ) : xz n * xz n - d * yz n * yz n = 1 := is_pell_pell_zd n | |
@[simp] theorem pell_eq (n : ℕ) : xn n * xn n - d * yn n * yn n = 1 := | |
let pn := pell_eqz n in | |
have h : (↑(xn n * xn n) : ℤ) - ↑(d * yn n * yn n) = 1, | |
by repeat {rw int.coe_nat_mul}; exact pn, | |
have hl : d * yn n * yn n ≤ xn n * xn n, from | |
int.le_of_coe_nat_le_coe_nat $ int.le.intro $ add_eq_of_eq_sub' $ eq.symm h, | |
int.coe_nat_inj (by rw int.coe_nat_sub hl; exact h) | |
instance dnsq : zsqrtd.nonsquare d := ⟨λn h, | |
have n*n + 1 = a*a, by rw ← h; exact nat.succ_pred_eq_of_pos (asq_pos a1), | |
have na : n < a, from nat.mul_self_lt_mul_self_iff.2 (by rw ← this; exact nat.lt_succ_self _), | |
have (n+1)*(n+1) ≤ n*n + 1, by rw this; exact nat.mul_self_le_mul_self na, | |
have n+n ≤ 0, from @nat.le_of_add_le_add_right (n*n + 1) _ _ (by ring_nf at this ⊢; assumption), | |
ne_of_gt d_pos $ by rwa nat.eq_zero_of_le_zero ((nat.le_add_left _ _).trans this) at h⟩ | |
theorem xn_ge_a_pow : ∀ (n : ℕ), a^n ≤ xn n | |
| 0 := le_refl 1 | |
| (n+1) := by simp [pow_succ']; exact le_trans | |
(nat.mul_le_mul_right _ (xn_ge_a_pow n)) (nat.le_add_right _ _) | |
theorem n_lt_a_pow : ∀ (n : ℕ), n < a^n | |
| 0 := nat.le_refl 1 | |
| (n+1) := begin have IH := n_lt_a_pow n, | |
have : a^n + a^n ≤ a^n * a, | |
{ rw ← mul_two, exact nat.mul_le_mul_left _ a1 }, | |
simp [pow_succ'], refine lt_of_lt_of_le _ this, | |
exact add_lt_add_of_lt_of_le IH (lt_of_le_of_lt (nat.zero_le _) IH) | |
end | |
theorem n_lt_xn (n) : n < xn n := | |
lt_of_lt_of_le (n_lt_a_pow n) (xn_ge_a_pow n) | |
theorem x_pos (n) : 0 < xn n := | |
lt_of_le_of_lt (nat.zero_le n) (n_lt_xn n) | |
lemma eq_pell_lem : ∀n (b:ℤ√d), 1 ≤ b → is_pell b → b ≤ pell_zd n → ∃n, b = pell_zd n | |
| 0 b := λh1 hp hl, ⟨0, @zsqrtd.le_antisymm _ dnsq _ _ hl h1⟩ | |
| (n+1) b := λh1 hp h, | |
have a1p : (0:ℤ√d) ≤ ⟨a, 1⟩, from trivial, | |
have am1p : (0:ℤ√d) ≤ ⟨a, -1⟩, from show (_:nat) ≤ _, by simp; exact nat.pred_le _, | |
have a1m : (⟨a, 1⟩ * ⟨a, -1⟩ : ℤ√d) = 1, from is_pell_norm.1 is_pell_one, | |
if ha : (⟨↑a, 1⟩ : ℤ√d) ≤ b then | |
let ⟨m, e⟩ := eq_pell_lem n (b * ⟨a, -1⟩) | |
(by rw ← a1m; exact mul_le_mul_of_nonneg_right ha am1p) | |
(is_pell_mul hp (is_pell_conj.1 is_pell_one)) | |
(by have t := mul_le_mul_of_nonneg_right h am1p; | |
rwa [pell_zd_succ, mul_assoc, a1m, mul_one] at t) in | |
⟨m+1, by rw [show b = b * ⟨a, -1⟩ * ⟨a, 1⟩, by rw [mul_assoc, eq.trans (mul_comm _ _) a1m]; | |
simp, pell_zd_succ, e]⟩ | |
else | |
suffices ¬1 < b, from ⟨0, show b = 1, from (or.resolve_left (lt_or_eq_of_le h1) this).symm⟩, | |
λ h1l, by cases b with x y; exact | |
have bm : (_*⟨_,_⟩ :ℤ√(d a1)) = 1, from pell.is_pell_norm.1 hp, | |
have y0l : (0:ℤ√(d a1)) < ⟨x - x, y - -y⟩, | |
from sub_lt_sub h1l $ λ(hn : (1:ℤ√(d a1)) ≤ ⟨x, -y⟩), | |
by have t := mul_le_mul_of_nonneg_left hn (le_trans zero_le_one h1); | |
rw [bm, mul_one] at t; exact h1l t, | |
have yl2 : (⟨_, _⟩ : ℤ√_) < ⟨_, _⟩, from | |
show (⟨x, y⟩ - ⟨x, -y⟩ : ℤ√(d a1)) < ⟨a, 1⟩ - ⟨a, -1⟩, from | |
sub_lt_sub (by exact ha) $ λ(hn : (⟨x, -y⟩ : ℤ√(d a1)) ≤ ⟨a, -1⟩), | |
by have t := mul_le_mul_of_nonneg_right | |
(mul_le_mul_of_nonneg_left hn (le_trans zero_le_one h1)) a1p; | |
rw [bm, one_mul, mul_assoc, eq.trans (mul_comm _ _) a1m, mul_one] at t; exact ha t, | |
by simp at y0l; simp at yl2; exact | |
match y, y0l, (yl2 : (⟨_, _⟩ : ℤ√_) < ⟨_, _⟩) with | |
| 0, y0l, yl2 := y0l (le_refl 0) | |
| (y+1 : ℕ), y0l, yl2 := yl2 (zsqrtd.le_of_le_le (le_refl 0) | |
(let t := int.coe_nat_le_coe_nat_of_le (nat.succ_pos y) in add_le_add t t)) | |
| -[1+y], y0l, yl2 := y0l trivial | |
end | |
theorem eq_pell_zd (b : ℤ√d) (b1 : 1 ≤ b) (hp : is_pell b) : ∃n, b = pell_zd n := | |
let ⟨n, h⟩ := @zsqrtd.le_arch d b in | |
eq_pell_lem n b b1 hp $ h.trans $ by rw zsqrtd.coe_nat_val; exact | |
zsqrtd.le_of_le_le | |
(int.coe_nat_le_coe_nat_of_le $ le_of_lt $ n_lt_xn _ _) (int.coe_zero_le _) | |
/-- Every solution to **Pell's equation** is recursively obtained from the initial solution | |
`(1,0)` using the recursion `pell`. -/ | |
theorem eq_pell {x y : ℕ} (hp : x*x - d*y*y = 1) : ∃n, x = xn n ∧ y = yn n := | |
have (1:ℤ√d) ≤ ⟨x, y⟩, from match x, hp with | |
| 0, (hp : 0 - _ = 1) := by rw zero_tsub at hp; contradiction | |
| (x+1), hp := zsqrtd.le_of_le_le (int.coe_nat_le_coe_nat_of_le $ nat.succ_pos x) | |
(int.coe_zero_le _) | |
end, | |
let ⟨m, e⟩ := eq_pell_zd ⟨x, y⟩ this (is_pell_nat.2 hp) in | |
⟨m, match x, y, e with ._, ._, rfl := ⟨rfl, rfl⟩ end⟩ | |
theorem pell_zd_add (m) : ∀ n, pell_zd (m + n) = pell_zd m * pell_zd n | |
| 0 := (mul_one _).symm | |
| (n+1) := by rw[← add_assoc, pell_zd_succ, pell_zd_succ, pell_zd_add n, ← mul_assoc] | |
theorem xn_add (m n) : xn (m + n) = xn m * xn n + d * yn m * yn n := | |
by injection (pell_zd_add _ m n) with h _; | |
repeat {rw ← int.coe_nat_add at h <|> rw ← int.coe_nat_mul at h}; | |
exact int.coe_nat_inj h | |
theorem yn_add (m n) : yn (m + n) = xn m * yn n + yn m * xn n := | |
by injection (pell_zd_add _ m n) with _ h; | |
repeat {rw ← int.coe_nat_add at h <|> rw ← int.coe_nat_mul at h}; | |
exact int.coe_nat_inj h | |
theorem pell_zd_sub {m n} (h : n ≤ m) : pell_zd (m - n) = pell_zd m * (pell_zd n).conj := | |
let t := pell_zd_add n (m - n) in | |
by rw [add_tsub_cancel_of_le h] at t; | |
rw [t, mul_comm (pell_zd _ n) _, mul_assoc, (is_pell_norm _).1 (is_pell_pell_zd _ _), mul_one] | |
theorem xz_sub {m n} (h : n ≤ m) : xz (m - n) = xz m * xz n - d * yz m * yz n := | |
by { rw [sub_eq_add_neg, ←mul_neg], exact congr_arg zsqrtd.re (pell_zd_sub a1 h) } | |
theorem yz_sub {m n} (h : n ≤ m) : yz (m - n) = xz n * yz m - xz m * yz n := | |
by { rw [sub_eq_add_neg, ←mul_neg, mul_comm, add_comm], | |
exact congr_arg zsqrtd.im (pell_zd_sub a1 h) } | |
theorem xy_coprime (n) : (xn n).coprime (yn n) := | |
nat.coprime_of_dvd' $ λk kp kx ky, | |
let p := pell_eq n in by rw ← p; exact | |
nat.dvd_sub (le_of_lt $ nat.lt_of_sub_eq_succ p) | |
(kx.mul_left _) (ky.mul_left _) | |
theorem strict_mono_y : strict_mono yn | |
| m 0 h := absurd h $ nat.not_lt_zero _ | |
| m (n+1) h := | |
have yn m ≤ yn n, from or.elim (lt_or_eq_of_le $ nat.le_of_succ_le_succ h) | |
(λhl, le_of_lt $ strict_mono_y hl) (λe, by rw e), | |
by simp; refine lt_of_le_of_lt _ (nat.lt_add_of_pos_left $ x_pos a1 n); | |
rw ← mul_one (yn a1 m); | |
exact mul_le_mul this (le_of_lt a1) (nat.zero_le _) (nat.zero_le _) | |
theorem strict_mono_x : strict_mono xn | |
| m 0 h := absurd h $ nat.not_lt_zero _ | |
| m (n+1) h := | |
have xn m ≤ xn n, from or.elim (lt_or_eq_of_le $ nat.le_of_succ_le_succ h) | |
(λhl, le_of_lt $ strict_mono_x hl) (λe, by rw e), | |
by simp; refine lt_of_lt_of_le (lt_of_le_of_lt this _) (nat.le_add_right _ _); | |
have t := nat.mul_lt_mul_of_pos_left a1 (x_pos a1 n); rwa mul_one at t | |
theorem yn_ge_n : Π n, n ≤ yn n | |
| 0 := nat.zero_le _ | |
| (n+1) := show n < yn (n+1), from lt_of_le_of_lt (yn_ge_n n) (strict_mono_y $ nat.lt_succ_self n) | |
theorem y_mul_dvd (n) : ∀k, yn n ∣ yn (n * k) | |
| 0 := dvd_zero _ | |
| (k+1) := by rw [nat.mul_succ, yn_add]; exact | |
dvd_add (dvd_mul_left _ _) ((y_mul_dvd k).mul_right _) | |
theorem y_dvd_iff (m n) : yn m ∣ yn n ↔ m ∣ n := | |
⟨λh, nat.dvd_of_mod_eq_zero $ (nat.eq_zero_or_pos _).resolve_right $ λhp, | |
have co : nat.coprime (yn m) (xn (m * (n / m))), from nat.coprime.symm $ | |
(xy_coprime _).coprime_dvd_right (y_mul_dvd m (n / m)), | |
have m0 : 0 < m, from m.eq_zero_or_pos.resolve_left $ | |
λe, by rw [e, nat.mod_zero] at hp; rw [e] at h; exact | |
ne_of_lt (strict_mono_y a1 hp) (eq_zero_of_zero_dvd h).symm, | |
by rw [← nat.mod_add_div n m, yn_add] at h; exact | |
not_le_of_gt (strict_mono_y _ $ nat.mod_lt n m0) | |
(nat.le_of_dvd (strict_mono_y _ hp) $ co.dvd_of_dvd_mul_right $ | |
(nat.dvd_add_iff_right $ (y_mul_dvd _ _ _).mul_left _).2 h), | |
λ⟨k, e⟩, by rw e; apply y_mul_dvd⟩ | |
theorem xy_modeq_yn (n) : | |
∀ k, xn (n * k) ≡ (xn n)^k [MOD (yn n)^2] | |
∧ yn (n * k) ≡ k * (xn n)^(k-1) * yn n [MOD (yn n)^3] | |
| 0 := by constructor; simp | |
| (k+1) := | |
let ⟨hx, hy⟩ := xy_modeq_yn k in | |
have L : xn (n * k) * xn n + d * yn (n * k) * yn n ≡ xn n^k * xn n + 0 [MOD yn n^2], from | |
(hx.mul_right _ ).add $ modeq_zero_iff_dvd.2 $ | |
by rw pow_succ'; exact | |
mul_dvd_mul_right (dvd_mul_of_dvd_right (modeq_zero_iff_dvd.1 $ | |
(hy.modeq_of_dvd $ by simp [pow_succ']).trans $ modeq_zero_iff_dvd.2 $ | |
by simp [-mul_comm, -mul_assoc]) _) _, | |
have R : xn (n * k) * yn n + yn (n * k) * xn n ≡ | |
xn n^k * yn n + k * xn n^k * yn n [MOD yn n^3], from | |
modeq.add (by { rw pow_succ', exact hx.mul_right' _ }) $ | |
have k * xn n^(k - 1) * yn n * xn n = k * xn n^k * yn n, | |
by clear _let_match; cases k with k; simp [pow_succ', mul_comm, mul_left_comm], | |
by { rw ← this, exact hy.mul_right _ }, | |
by { rw [add_tsub_cancel_right, nat.mul_succ, xn_add, yn_add, pow_succ' (xn _ n), | |
nat.succ_mul, add_comm (k * xn _ n^k) (xn _ n^k), right_distrib], | |
exact ⟨L, R⟩ } | |
theorem ysq_dvd_yy (n) : yn n * yn n ∣ yn (n * yn n) := | |
modeq_zero_iff_dvd.1 $ | |
((xy_modeq_yn n (yn n)).right.modeq_of_dvd $ by simp [pow_succ]).trans | |
(modeq_zero_iff_dvd.2 $ by simp [mul_dvd_mul_left, mul_assoc]) | |
theorem dvd_of_ysq_dvd {n t} (h : yn n * yn n ∣ yn t) : yn n ∣ t := | |
have nt : n ∣ t, from (y_dvd_iff n t).1 $ dvd_of_mul_left_dvd h, | |
n.eq_zero_or_pos.elim (λ n0, by rwa n0 at ⊢ nt) $ λ (n0l : 0 < n), | |
let ⟨k, ke⟩ := nt in | |
have yn n ∣ k * (xn n)^(k-1), from | |
nat.dvd_of_mul_dvd_mul_right (strict_mono_y n0l) $ modeq_zero_iff_dvd.1 $ | |
by have xm := (xy_modeq_yn a1 n k).right; rw ← ke at xm; exact | |
(xm.modeq_of_dvd $ by simp [pow_succ]).symm.trans h.modeq_zero_nat, | |
by rw ke; exact dvd_mul_of_dvd_right | |
(((xy_coprime _ _).pow_left _).symm.dvd_of_dvd_mul_right this) _ | |
theorem pell_zd_succ_succ (n) : pell_zd (n + 2) + pell_zd n = (2 * a : ℕ) * pell_zd (n + 1) := | |
have (1:ℤ√d) + ⟨a, 1⟩ * ⟨a, 1⟩ = ⟨a, 1⟩ * (2 * a), | |
by { rw zsqrtd.coe_nat_val, change (⟨_,_⟩:ℤ√(d a1))=⟨_,_⟩, | |
rw dz_val, dsimp [az], rw zsqrtd.ext, dsimp, split; ring }, | |
by simpa [mul_add, mul_comm, mul_left_comm, add_comm] using congr_arg (* pell_zd a1 n) this | |
theorem xy_succ_succ (n) : xn (n + 2) + xn n = (2 * a) * xn (n + 1) ∧ | |
yn (n + 2) + yn n = (2 * a) * yn (n + 1) := begin | |
have := pell_zd_succ_succ a1 n, unfold pell_zd at this, | |
erw [zsqrtd.smul_val (2 * a : ℕ)] at this, | |
injection this with h₁ h₂, | |
split; apply int.coe_nat_inj; [simpa using h₁, simpa using h₂] | |
end | |
theorem xn_succ_succ (n) : xn (n + 2) + xn n = (2 * a) * xn (n + 1) := (xy_succ_succ n).1 | |
theorem yn_succ_succ (n) : yn (n + 2) + yn n = (2 * a) * yn (n + 1) := (xy_succ_succ n).2 | |
theorem xz_succ_succ (n) : xz (n + 2) = (2 * a : ℕ) * xz (n + 1) - xz n := | |
eq_sub_of_add_eq $ by delta xz; rw [← int.coe_nat_add, ← int.coe_nat_mul, xn_succ_succ] | |
theorem yz_succ_succ (n) : yz (n + 2) = (2 * a : ℕ) * yz (n + 1) - yz n := | |
eq_sub_of_add_eq $ by delta yz; rw [← int.coe_nat_add, ← int.coe_nat_mul, yn_succ_succ] | |
theorem yn_modeq_a_sub_one : ∀ n, yn n ≡ n [MOD a-1] | |
| 0 := by simp | |
| 1 := by simp | |
| (n+2) := (yn_modeq_a_sub_one n).add_right_cancel $ | |
begin | |
rw [yn_succ_succ, (by ring : n + 2 + n = 2 * (n + 1))], | |
exact ((modeq_sub a1.le).mul_left 2).mul (yn_modeq_a_sub_one (n+1)), | |
end | |
theorem yn_modeq_two : ∀ n, yn n ≡ n [MOD 2] | |
| 0 := by simp | |
| 1 := by simp | |
| (n+2) := (yn_modeq_two n).add_right_cancel $ | |
begin | |
rw [yn_succ_succ, mul_assoc, (by ring : n + 2 + n = 2 * (n + 1))], | |
exact (dvd_mul_right 2 _).modeq_zero_nat.trans (dvd_mul_right 2 _).zero_modeq_nat, | |
end | |
section | |
omit a1 | |
lemma x_sub_y_dvd_pow_lem (y2 y1 y0 yn1 yn0 xn1 xn0 ay a2 : ℤ) : | |
(a2 * yn1 - yn0) * ay + y2 - (a2 * xn1 - xn0) = | |
y2 - a2 * y1 + y0 + a2 * (yn1 * ay + y1 - xn1) - (yn0 * ay + y0 - xn0) := by ring | |
end | |
theorem x_sub_y_dvd_pow (y : ℕ) : | |
∀ n, (2*a*y - y*y - 1 : ℤ) ∣ yz n * (a - y) + ↑(y^n) - xz n | |
| 0 := by simp [xz, yz, int.coe_nat_zero, int.coe_nat_one] | |
| 1 := by simp [xz, yz, int.coe_nat_zero, int.coe_nat_one] | |
| (n+2) := | |
have (2*a*y - y*y - 1 : ℤ) ∣ ↑(y^(n + 2)) - ↑(2 * a) * ↑(y^(n + 1)) + ↑(y^n), from | |
⟨-↑(y^n), by { simp [pow_succ, mul_add, int.coe_nat_mul, | |
show ((2:ℕ):ℤ) = 2, from rfl, mul_comm, mul_left_comm], ring }⟩, | |
by { rw [xz_succ_succ, yz_succ_succ, x_sub_y_dvd_pow_lem ↑(y^(n+2)) ↑(y^(n+1)) ↑(y^n)], | |
exact | |
dvd_sub (dvd_add this $ (x_sub_y_dvd_pow (n+1)).mul_left _) (x_sub_y_dvd_pow n) } | |
theorem xn_modeq_x2n_add_lem (n j) : xn n ∣ d * yn n * (yn n * xn j) + xn j := | |
have h1 : d * yn n * (yn n * xn j) + xn j = (d * yn n * yn n + 1) * xn j, | |
by simp [add_mul, mul_assoc], | |
have h2 : d * yn n * yn n + 1 = xn n * xn n, by apply int.coe_nat_inj; | |
repeat {rw int.coe_nat_add <|> rw int.coe_nat_mul}; exact | |
add_eq_of_eq_sub' (eq.symm $ pell_eqz _ _), | |
by rw h2 at h1; rw [h1, mul_assoc]; exact dvd_mul_right _ _ | |
theorem xn_modeq_x2n_add (n j) : xn (2 * n + j) + xn j ≡ 0 [MOD xn n] := | |
begin | |
rw [two_mul, add_assoc, xn_add, add_assoc, ←zero_add 0], | |
refine (dvd_mul_right (xn a1 n) (xn a1 (n + j))).modeq_zero_nat.add _, | |
rw [yn_add, left_distrib, add_assoc, ←zero_add 0], | |
exact ((dvd_mul_right _ _).mul_left _).modeq_zero_nat.add | |
(xn_modeq_x2n_add_lem _ _ _).modeq_zero_nat, | |
end | |
lemma xn_modeq_x2n_sub_lem {n j} (h : j ≤ n) : xn (2 * n - j) + xn j ≡ 0 [MOD xn n] := | |
have h1 : xz n ∣ ↑d * yz n * yz (n - j) + xz j, | |
by rw [yz_sub _ h, mul_sub_left_distrib, sub_add_eq_add_sub]; exact | |
dvd_sub | |
(by delta xz; delta yz; | |
repeat {rw ← int.coe_nat_add <|> rw ← int.coe_nat_mul}; rw mul_comm (xn a1 j) (yn a1 n); | |
exact int.coe_nat_dvd.2 (xn_modeq_x2n_add_lem _ _ _)) | |
((dvd_mul_right _ _).mul_left _), | |
begin | |
rw [two_mul, add_tsub_assoc_of_le h, xn_add, add_assoc, ←zero_add 0], | |
exact (dvd_mul_right _ _).modeq_zero_nat.add | |
(int.coe_nat_dvd.1 $ by simpa [xz, yz] using h1).modeq_zero_nat, | |
end | |
theorem xn_modeq_x2n_sub {n j} (h : j ≤ 2 * n) : xn (2 * n - j) + xn j ≡ 0 [MOD xn n] := | |
(le_total j n).elim xn_modeq_x2n_sub_lem | |
(λjn, have 2 * n - j + j ≤ n + j, by rw [tsub_add_cancel_of_le h, two_mul]; | |
exact nat.add_le_add_left jn _, | |
let t := xn_modeq_x2n_sub_lem (nat.le_of_add_le_add_right this) in | |
by rwa [tsub_tsub_cancel_of_le h, add_comm] at t) | |
theorem xn_modeq_x4n_add (n j) : xn (4 * n + j) ≡ xn j [MOD xn n] := | |
modeq.add_right_cancel' (xn (2 * n + j)) $ | |
by refine @modeq.trans _ _ 0 _ _ (by rw add_comm; exact (xn_modeq_x2n_add _ _ _).symm); | |
rw [show 4*n = 2*n + 2*n, from right_distrib 2 2 n, add_assoc]; apply xn_modeq_x2n_add | |
theorem xn_modeq_x4n_sub {n j} (h : j ≤ 2 * n) : xn (4 * n - j) ≡ xn j [MOD xn n] := | |
have h' : j ≤ 2*n, from le_trans h (by rw nat.succ_mul; apply nat.le_add_left), | |
modeq.add_right_cancel' (xn (2 * n - j)) $ | |
by refine @modeq.trans _ _ 0 _ _ (by rw add_comm; exact (xn_modeq_x2n_sub _ h).symm); | |
rw [show 4*n = 2*n + 2*n, from right_distrib 2 2 n, add_tsub_assoc_of_le h']; | |
apply xn_modeq_x2n_add | |
theorem eq_of_xn_modeq_lem1 {i n} : Π {j}, i < j → j < n → xn i % xn n < xn j % xn n | |
| 0 ij _ := absurd ij (nat.not_lt_zero _) | |
| (j+1) ij jn := | |
suffices xn j % xn n < xn (j + 1) % xn n, from | |
(lt_or_eq_of_le (nat.le_of_succ_le_succ ij)).elim | |
(λh, lt_trans (eq_of_xn_modeq_lem1 h (le_of_lt jn)) this) | |
(λh, by rw h; exact this), | |
by rw [nat.mod_eq_of_lt (strict_mono_x _ (nat.lt_of_succ_lt jn)), | |
nat.mod_eq_of_lt (strict_mono_x _ jn)]; | |
exact strict_mono_x _ (nat.lt_succ_self _) | |
theorem eq_of_xn_modeq_lem2 {n} (h : 2 * xn n = xn (n + 1)) : a = 2 ∧ n = 0 := | |
by rw [xn_succ, mul_comm] at h; exact | |
have n = 0, from n.eq_zero_or_pos.resolve_right $ λnp, | |
ne_of_lt (lt_of_le_of_lt (nat.mul_le_mul_left _ a1) | |
(nat.lt_add_of_pos_right $ mul_pos (d_pos a1) (strict_mono_y a1 np))) h, | |
by cases this; simp at h; exact ⟨h.symm, rfl⟩ | |
theorem eq_of_xn_modeq_lem3 {i n} (npos : 0 < n) : | |
Π {j}, i < j → j ≤ 2 * n → j ≠ n → ¬(a = 2 ∧ n = 1 ∧ i = 0 ∧ j = 2) → xn i % xn n < xn j % xn n | |
| 0 ij _ _ _ := absurd ij (nat.not_lt_zero _) | |
| (j+1) ij j2n jnn ntriv := | |
have lem2 : ∀k > n, k ≤ 2*n → (↑(xn k % xn n) : ℤ) = xn n - xn (2 * n - k), from λk kn k2n, | |
let k2nl := lt_of_add_lt_add_right $ show 2*n-k+k < n+k, by | |
{rw tsub_add_cancel_of_le, rw two_mul; exact (add_lt_add_left kn n), exact k2n } in | |
have xle : xn (2 * n - k) ≤ xn n, from le_of_lt $ strict_mono_x k2nl, | |
suffices xn k % xn n = xn n - xn (2 * n - k), by rw [this, int.coe_nat_sub xle], | |
by | |
{ rw ← nat.mod_eq_of_lt (nat.sub_lt (x_pos a1 n) (x_pos a1 (2 * n - k))), | |
apply modeq.add_right_cancel' (xn a1 (2 * n - k)), | |
rw [tsub_add_cancel_of_le xle], | |
have t := xn_modeq_x2n_sub_lem a1 k2nl.le, | |
rw tsub_tsub_cancel_of_le k2n at t, | |
exact t.trans dvd_rfl.zero_modeq_nat }, | |
(lt_trichotomy j n).elim | |
(λ (jn : j < n), eq_of_xn_modeq_lem1 ij (lt_of_le_of_ne jn jnn)) $ λ o, o.elim | |
(λ (jn : j = n), by | |
{ cases jn, | |
apply int.lt_of_coe_nat_lt_coe_nat, | |
rw [lem2 (n+1) (nat.lt_succ_self _) j2n, | |
show 2 * n - (n + 1) = n - 1, by rw[two_mul, tsub_add_eq_tsub_tsub, add_tsub_cancel_right]], | |
refine lt_sub_left_of_add_lt (int.coe_nat_lt_coe_nat_of_lt _), | |
cases (lt_or_eq_of_le $ nat.le_of_succ_le_succ ij) with lin ein, | |
{ rw nat.mod_eq_of_lt (strict_mono_x _ lin), | |
have ll : xn a1 (n-1) + xn a1 (n-1) ≤ xn a1 n, | |
{ rw [← two_mul, mul_comm, show xn a1 n = xn a1 (n-1+1), | |
by rw [tsub_add_cancel_of_le (succ_le_of_lt npos)], xn_succ], | |
exact le_trans (nat.mul_le_mul_left _ a1) (nat.le_add_right _ _) }, | |
have npm : (n-1).succ = n := nat.succ_pred_eq_of_pos npos, | |
have il : i ≤ n - 1, { apply nat.le_of_succ_le_succ, rw npm, exact lin }, | |
cases lt_or_eq_of_le il with ill ile, | |
{ exact lt_of_lt_of_le (nat.add_lt_add_left (strict_mono_x a1 ill) _) ll }, | |
{ rw ile, | |
apply lt_of_le_of_ne ll, | |
rw ← two_mul, | |
exact λe, ntriv $ | |
let ⟨a2, s1⟩ := @eq_of_xn_modeq_lem2 _ a1 (n-1) | |
(by rwa [tsub_add_cancel_of_le (succ_le_of_lt npos)]) in | |
have n1 : n = 1, from le_antisymm (tsub_eq_zero_iff_le.mp s1) npos, | |
by rw [ile, a2, n1]; exact ⟨rfl, rfl, rfl, rfl⟩ } }, | |
{ rw [ein, nat.mod_self, add_zero], | |
exact strict_mono_x _ (nat.pred_lt npos.ne') } }) | |
(λ (jn : j > n), | |
have lem1 : j ≠ n → xn j % xn n < xn (j + 1) % xn n → xn i % xn n < xn (j + 1) % xn n, | |
from λjn s, | |
(lt_or_eq_of_le (nat.le_of_succ_le_succ ij)).elim | |
(λh, lt_trans (eq_of_xn_modeq_lem3 h (le_of_lt j2n) jn $ λ⟨a1, n1, i0, j2⟩, | |
by rw [n1, j2] at j2n; exact absurd j2n dec_trivial) s) | |
(λh, by rw h; exact s), | |
lem1 (ne_of_gt jn) $ int.lt_of_coe_nat_lt_coe_nat $ by | |
{ rw [lem2 j jn (le_of_lt j2n), lem2 (j+1) (nat.le_succ_of_le jn) j2n], | |
refine sub_lt_sub_left (int.coe_nat_lt_coe_nat_of_lt $ strict_mono_x _ _) _, | |
rw [nat.sub_succ], | |
exact nat.pred_lt (ne_of_gt $ tsub_pos_of_lt j2n) }) | |
theorem eq_of_xn_modeq_le {i j n} (ij : i ≤ j) (j2n : j ≤ 2 * n) | |
(h : xn i ≡ xn j [MOD xn n]) (ntriv : ¬(a = 2 ∧ n = 1 ∧ i = 0 ∧ j = 2)) : i = j := | |
if npos : n = 0 then by simp [*] at * else | |
(lt_or_eq_of_le ij).resolve_left $ λij', | |
if jn : j = n then by | |
{ refine ne_of_gt _ h, | |
rw [jn, nat.mod_self], | |
have x0 : 0 < xn a1 0 % xn a1 n := | |
by rw [nat.mod_eq_of_lt (strict_mono_x a1 (nat.pos_of_ne_zero npos))]; exact dec_trivial, | |
cases i with i, exact x0, | |
rw jn at ij', | |
exact x0.trans (eq_of_xn_modeq_lem3 _ (nat.pos_of_ne_zero npos) (nat.succ_pos _) | |
(le_trans ij j2n) (ne_of_lt ij') $ | |
λ⟨a1, n1, _, i2⟩, by rw [n1, i2] at ij'; exact absurd ij' dec_trivial) } | |
else ne_of_lt (eq_of_xn_modeq_lem3 (nat.pos_of_ne_zero npos) ij' j2n jn ntriv) h | |
theorem eq_of_xn_modeq {i j n} (i2n : i ≤ 2 * n) (j2n : j ≤ 2 * n) | |
(h : xn i ≡ xn j [MOD xn n]) (ntriv : a = 2 → n = 1 → (i = 0 → j ≠ 2) ∧ (i = 2 → j ≠ 0)) : | |
i = j := | |
(le_total i j).elim | |
(λij, eq_of_xn_modeq_le ij j2n h $ λ⟨a2, n1, i0, j2⟩, (ntriv a2 n1).left i0 j2) | |
(λij, (eq_of_xn_modeq_le ij i2n h.symm $ λ⟨a2, n1, j0, i2⟩, | |
(ntriv a2 n1).right i2 j0).symm) | |
theorem eq_of_xn_modeq' {i j n} (ipos : 0 < i) (hin : i ≤ n) (j4n : j ≤ 4 * n) | |
(h : xn j ≡ xn i [MOD xn n]) : j = i ∨ j + i = 4 * n := | |
have i2n : i ≤ 2*n, by apply le_trans hin; rw two_mul; apply nat.le_add_left, | |
(le_or_gt j (2 * n)).imp | |
(λj2n : j ≤ 2 * n, eq_of_xn_modeq j2n i2n h $ | |
λa2 n1, ⟨λj0 i2, by rw [n1, i2] at hin; exact absurd hin dec_trivial, | |
λj2 i0, ne_of_gt ipos i0⟩) | |
(λj2n : 2 * n < j, suffices i = 4*n - j, by rw [this, add_tsub_cancel_of_le j4n], | |
have j42n : 4*n - j ≤ 2*n, from @nat.le_of_add_le_add_right j _ _ $ | |
by rw [tsub_add_cancel_of_le j4n, show 4*n = 2*n + 2*n, from right_distrib 2 2 n]; | |
exact nat.add_le_add_left (le_of_lt j2n) _, | |
eq_of_xn_modeq i2n j42n | |
(h.symm.trans $ let t := xn_modeq_x4n_sub j42n in by rwa [tsub_tsub_cancel_of_le j4n] at t) | |
(λa2 n1, ⟨λi0, absurd i0 (ne_of_gt ipos), λi2, by { rw [n1, i2] at hin, | |
exact absurd hin dec_trivial }⟩)) | |
theorem modeq_of_xn_modeq {i j n} (ipos : 0 < i) (hin : i ≤ n) (h : xn j ≡ xn i [MOD xn n]) : | |
j ≡ i [MOD 4 * n] ∨ j + i ≡ 0 [MOD 4 * n] := | |
let j' := j % (4 * n) in | |
have n4 : 0 < 4 * n, from mul_pos dec_trivial (ipos.trans_le hin), | |
have jl : j' < 4 * n, from nat.mod_lt _ n4, | |
have jj : j ≡ j' [MOD 4 * n], by delta modeq; rw nat.mod_eq_of_lt jl, | |
have ∀j q, xn (j + 4 * n * q) ≡ xn j [MOD xn n], begin | |
intros j q, induction q with q IH, { simp }, | |
rw [nat.mul_succ, ← add_assoc, add_comm], | |
exact (xn_modeq_x4n_add _ _ _).trans IH | |
end, | |
or.imp | |
(λ(ji : j' = i), by rwa ← ji) | |
(λ(ji : j' + i = 4 * n), (jj.add_right _).trans $ | |
by { rw ji, exact dvd_rfl.modeq_zero_nat }) | |
(eq_of_xn_modeq' ipos hin jl.le $ | |
(h.symm.trans $ by { rw ← nat.mod_add_div j (4*n), exact this j' _ }).symm) | |
end | |
theorem xy_modeq_of_modeq {a b c} (a1 : 1 < a) (b1 : 1 < b) (h : a ≡ b [MOD c]) : | |
∀ n, xn a1 n ≡ xn b1 n [MOD c] ∧ yn a1 n ≡ yn b1 n [MOD c] | |
| 0 := by constructor; refl | |
| 1 := by simp; exact ⟨h, modeq.refl 1⟩ | |
| (n+2) := ⟨ | |
(xy_modeq_of_modeq n).left.add_right_cancel $ | |
by { rw [xn_succ_succ a1, xn_succ_succ b1], exact | |
(h.mul_left _ ).mul (xy_modeq_of_modeq (n+1)).left }, | |
(xy_modeq_of_modeq n).right.add_right_cancel $ | |
by { rw [yn_succ_succ a1, yn_succ_succ b1], exact | |
(h.mul_left _ ).mul (xy_modeq_of_modeq (n+1)).right }⟩ | |
theorem matiyasevic {a k x y} : (∃ a1 : 1 < a, xn a1 k = x ∧ yn a1 k = y) ↔ | |
1 < a ∧ k ≤ y ∧ | |
(x = 1 ∧ y = 0 ∨ | |
∃ (u v s t b : ℕ), | |
x * x - (a * a - 1) * y * y = 1 ∧ | |
u * u - (a * a - 1) * v * v = 1 ∧ | |
s * s - (b * b - 1) * t * t = 1 ∧ | |
1 < b ∧ b ≡ 1 [MOD 4 * y] ∧ b ≡ a [MOD u] ∧ | |
0 < v ∧ y * y ∣ v ∧ | |
s ≡ x [MOD u] ∧ | |
t ≡ k [MOD 4 * y]) := | |
⟨λ⟨a1, hx, hy⟩, by rw [← hx, ← hy]; | |
refine ⟨a1, (nat.eq_zero_or_pos k).elim | |
(λk0, by rw k0; exact ⟨le_rfl, or.inl ⟨rfl, rfl⟩⟩) (λkpos, _)⟩; exact | |
let x := xn a1 k, y := yn a1 k, | |
m := 2 * (k * y), | |
u := xn a1 m, v := yn a1 m in | |
have ky : k ≤ y, from yn_ge_n a1 k, | |
have yv : y * y ∣ v, from (ysq_dvd_yy a1 k).trans $ (y_dvd_iff _ _ _).2 $ dvd_mul_left _ _, | |
have uco : nat.coprime u (4 * y), from | |
have 2 ∣ v, from modeq_zero_iff_dvd.1 $ (yn_modeq_two _ _).trans | |
(dvd_mul_right _ _).modeq_zero_nat, | |
have nat.coprime u 2, from | |
(xy_coprime a1 m).coprime_dvd_right this, | |
(this.mul_right this).mul_right $ | |
(xy_coprime _ _).coprime_dvd_right (dvd_of_mul_left_dvd yv), | |
let ⟨b, ba, bm1⟩ := chinese_remainder uco a 1 in | |
have m1 : 1 < m, from | |
have 0 < k * y, from mul_pos kpos (strict_mono_y a1 kpos), | |
nat.mul_le_mul_left 2 this, | |
have vp : 0 < v, from strict_mono_y a1 (lt_trans zero_lt_one m1), | |
have b1 : 1 < b, from | |
have xn a1 1 < u, from strict_mono_x a1 m1, | |
have a < u, by simp at this; exact this, | |
lt_of_lt_of_le a1 $ by delta modeq at ba; | |
rw nat.mod_eq_of_lt this at ba; rw ← ba; apply nat.mod_le, | |
let s := xn b1 k, t := yn b1 k in | |
have sx : s ≡ x [MOD u], from (xy_modeq_of_modeq b1 a1 ba k).left, | |
have tk : t ≡ k [MOD 4 * y], from | |
have 4 * y ∣ b - 1, from int.coe_nat_dvd.1 $ | |
by rw int.coe_nat_sub (le_of_lt b1); | |
exact bm1.symm.dvd, | |
(yn_modeq_a_sub_one _ _).modeq_of_dvd this, | |
⟨ky, or.inr ⟨u, v, s, t, b, | |
pell_eq _ _, pell_eq _ _, pell_eq _ _, b1, bm1, ba, vp, yv, sx, tk⟩⟩, | |
λ⟨a1, ky, o⟩, ⟨a1, match o with | |
| or.inl ⟨x1, y0⟩ := by rw y0 at ky; rw [nat.eq_zero_of_le_zero ky, x1, y0]; exact ⟨rfl, rfl⟩ | |
| or.inr ⟨u, v, s, t, b, xy, uv, st, b1, rem⟩ := | |
match x, y, eq_pell a1 xy, u, v, eq_pell a1 uv, s, t, eq_pell b1 st, rem, ky with | |
| ._, ._, ⟨i, rfl, rfl⟩, ._, ._, ⟨n, rfl, rfl⟩, ._, ._, ⟨j, rfl, rfl⟩, | |
⟨(bm1 : b ≡ 1 [MOD 4 * yn a1 i]), | |
(ba : b ≡ a [MOD xn a1 n]), | |
(vp : 0 < yn a1 n), | |
(yv : yn a1 i * yn a1 i ∣ yn a1 n), | |
(sx : xn b1 j ≡ xn a1 i [MOD xn a1 n]), | |
(tk : yn b1 j ≡ k [MOD 4 * yn a1 i])⟩, | |
(ky : k ≤ yn a1 i) := | |
(nat.eq_zero_or_pos i).elim | |
(λi0, by simp [i0] at ky; rw [i0, ky]; exact ⟨rfl, rfl⟩) $ λipos, | |
suffices i = k, by rw this; exact ⟨rfl, rfl⟩, | |
by clear _x o rem xy uv st _match _match _fun_match; exact | |
have iln : i ≤ n, from le_of_not_gt $ λhin, | |
not_lt_of_ge (nat.le_of_dvd vp (dvd_of_mul_left_dvd yv)) (strict_mono_y a1 hin), | |
have yd : 4 * yn a1 i ∣ 4 * n, from mul_dvd_mul_left _ $ dvd_of_ysq_dvd a1 yv, | |
have jk : j ≡ k [MOD 4 * yn a1 i], from | |
have 4 * yn a1 i ∣ b - 1, from int.coe_nat_dvd.1 $ | |
by rw int.coe_nat_sub (le_of_lt b1); exact bm1.symm.dvd, | |
((yn_modeq_a_sub_one b1 _).modeq_of_dvd this).symm.trans tk, | |
have ki : k + i < 4 * yn a1 i, from | |
lt_of_le_of_lt (add_le_add ky (yn_ge_n a1 i)) $ | |
by rw ← two_mul; exact nat.mul_lt_mul_of_pos_right dec_trivial (strict_mono_y a1 ipos), | |
have ji : j ≡ i [MOD 4 * n], from | |
have xn a1 j ≡ xn a1 i [MOD xn a1 n], from (xy_modeq_of_modeq b1 a1 ba j).left.symm.trans sx, | |
(modeq_of_xn_modeq a1 ipos iln this).resolve_right $ λ (ji : j + i ≡ 0 [MOD 4 * n]), | |
not_le_of_gt ki $ nat.le_of_dvd (lt_of_lt_of_le ipos $ nat.le_add_left _ _) $ | |
modeq_zero_iff_dvd.1 $ (jk.symm.add_right i).trans $ | |
ji.modeq_of_dvd yd, | |
by have : i % (4 * yn a1 i) = k % (4 * yn a1 i) := | |
(ji.modeq_of_dvd yd).symm.trans jk; | |
rwa [nat.mod_eq_of_lt (lt_of_le_of_lt (nat.le_add_left _ _) ki), | |
nat.mod_eq_of_lt (lt_of_le_of_lt (nat.le_add_right _ _) ki)] at this | |
end | |
end⟩⟩ | |
lemma eq_pow_of_pell_lem {a y k} (a1 : 1 < a) (ypos : 0 < y) : 0 < k → y^k < a → | |
(↑(y^k) : ℤ) < 2*a*y - y*y - 1 := | |
have y < a → a + (y*y + 1) ≤ 2*a*y, begin | |
intro ya, induction y with y IH, exact absurd ypos (lt_irrefl _), | |
cases nat.eq_zero_or_pos y with y0 ypos, | |
{ rw y0, simpa [two_mul], }, | |
{ rw [nat.mul_succ, nat.mul_succ, nat.succ_mul y], | |
have : y + nat.succ y ≤ 2 * a, | |
{ change y + y < 2 * a, rw ← two_mul, | |
exact mul_lt_mul_of_pos_left (nat.lt_of_succ_lt ya) dec_trivial }, | |
have := add_le_add (IH ypos (nat.lt_of_succ_lt ya)) this, | |
convert this using 1, | |
ring } | |
end, λk0 yak, | |
lt_of_lt_of_le (int.coe_nat_lt_coe_nat_of_lt yak) $ | |
by rw sub_sub; apply le_sub_right_of_add_le; | |
apply int.coe_nat_le_coe_nat_of_le; | |
have y1 := nat.pow_le_pow_of_le_right ypos k0; simp at y1; | |
exact this (lt_of_le_of_lt y1 yak) | |
theorem eq_pow_of_pell {m n k} : (n^k = m ↔ | |
k = 0 ∧ m = 1 ∨ 0 < k ∧ | |
(n = 0 ∧ m = 0 ∨ 0 < n ∧ | |
∃ (w a t z : ℕ) (a1 : 1 < a), | |
xn a1 k ≡ yn a1 k * (a - n) + m [MOD t] ∧ | |
2 * a * n = t + (n * n + 1) ∧ | |
m < t ∧ n ≤ w ∧ k ≤ w ∧ | |
a * a - ((w + 1) * (w + 1) - 1) * (w * z) * (w * z) = 1)) := | |
⟨λe, by rw ← e; | |
refine (nat.eq_zero_or_pos k).elim | |
(λk0, by rw k0; exact or.inl ⟨rfl, rfl⟩) | |
(λkpos, or.inr ⟨kpos, _⟩); | |
refine (nat.eq_zero_or_pos n).elim | |
(λn0, by rw [n0, zero_pow kpos]; exact or.inl ⟨rfl, rfl⟩) | |
(λnpos, or.inr ⟨npos, _⟩); exact | |
let w := max n k in | |
have nw : n ≤ w, from le_max_left _ _, | |
have kw : k ≤ w, from le_max_right _ _, | |
have wpos : 0 < w, from lt_of_lt_of_le npos nw, | |
have w1 : 1 < w + 1, from nat.succ_lt_succ wpos, | |
let a := xn w1 w in | |
have a1 : 1 < a, from strict_mono_x w1 wpos, | |
let x := xn a1 k, y := yn a1 k in | |
let ⟨z, ze⟩ := show w ∣ yn w1 w, from modeq_zero_iff_dvd.1 $ | |
(yn_modeq_a_sub_one w1 w).trans dvd_rfl.modeq_zero_nat in | |
have nt : (↑(n^k) : ℤ) < 2 * a * n - n * n - 1, from | |
eq_pow_of_pell_lem a1 npos kpos $ calc | |
n^k ≤ n^w : nat.pow_le_pow_of_le_right npos kw | |
... < (w + 1)^w : nat.pow_lt_pow_of_lt_left (nat.lt_succ_of_le nw) wpos | |
... ≤ a : xn_ge_a_pow w1 w, | |
let ⟨t, te⟩ := int.eq_coe_of_zero_le $ | |
le_trans (int.coe_zero_le _) nt.le in | |
have na : n ≤ a, from nw.trans $ le_of_lt $ n_lt_xn w1 w, | |
have tm : x ≡ y * (a - n) + n^k [MOD t], begin | |
apply modeq_of_dvd, | |
rw [int.coe_nat_add, int.coe_nat_mul, int.coe_nat_sub na, ← te], | |
exact x_sub_y_dvd_pow a1 n k | |
end, | |
have ta : 2 * a * n = t + (n * n + 1), from int.coe_nat_inj $ | |
by rw [int.coe_nat_add, ← te, sub_sub]; | |
repeat {rw int.coe_nat_add <|> rw int.coe_nat_mul}; | |
rw [int.coe_nat_one, sub_add_cancel]; refl, | |
have mt : n^k < t, from int.lt_of_coe_nat_lt_coe_nat $ | |
by rw ← te; exact nt, | |
have zp : a * a - ((w + 1) * (w + 1) - 1) * (w * z) * (w * z) = 1, | |
by rw ← ze; exact pell_eq w1 w, | |
⟨w, a, t, z, a1, tm, ta, mt, nw, kw, zp⟩, | |
λo, match o with | |
| or.inl ⟨k0, m1⟩ := by rw [k0, m1]; refl | |
| or.inr ⟨kpos, or.inl ⟨n0, m0⟩⟩ := by rw [n0, m0, zero_pow kpos] | |
| or.inr ⟨kpos, or.inr ⟨npos, w, a, t, z, | |
(a1 : 1 < a), | |
(tm : xn a1 k ≡ yn a1 k * (a - n) + m [MOD t]), | |
(ta : 2 * a * n = t + (n * n + 1)), | |
(mt : m < t), | |
(nw : n ≤ w), | |
(kw : k ≤ w), | |
(zp : a * a - ((w + 1) * (w + 1) - 1) * (w * z) * (w * z) = 1)⟩⟩ := | |
have wpos : 0 < w, from lt_of_lt_of_le npos nw, | |
have w1 : 1 < w + 1, from nat.succ_lt_succ wpos, | |
let ⟨j, xj, yj⟩ := eq_pell w1 zp in | |
by clear _match o _let_match; exact | |
have jpos : 0 < j, from (nat.eq_zero_or_pos j).resolve_left $ λj0, | |
have a1 : a = 1, by rw j0 at xj; exact xj, | |
have 2 * n = t + (n * n + 1), by rw a1 at ta; exact ta, | |
have n1 : n = 1, from | |
have n * n < n * 2, by rw [mul_comm n 2, this]; apply nat.le_add_left, | |
have n ≤ 1, from nat.le_of_lt_succ $ lt_of_mul_lt_mul_left this (nat.zero_le _), | |
le_antisymm this npos, | |
by rw n1 at this; | |
rw ← @nat.add_right_cancel 0 2 t this at mt; | |
exact nat.not_lt_zero _ mt, | |
have wj : w ≤ j, from nat.le_of_dvd jpos $ modeq_zero_iff_dvd.1 $ | |
(yn_modeq_a_sub_one w1 j).symm.trans $ | |
modeq_zero_iff_dvd.2 ⟨z, yj.symm⟩, | |
have nt : (↑(n^k) : ℤ) < 2 * a * n - n * n - 1, from | |
eq_pow_of_pell_lem a1 npos kpos $ calc | |
n^k ≤ n^j : nat.pow_le_pow_of_le_right npos (le_trans kw wj) | |
... < (w + 1)^j : nat.pow_lt_pow_of_lt_left (nat.lt_succ_of_le nw) jpos | |
... ≤ xn w1 j : xn_ge_a_pow w1 j | |
... = a : xj.symm, | |
have na : n ≤ a, by rw xj; exact | |
le_trans (le_trans nw wj) (le_of_lt $ n_lt_xn _ _), | |
have te : (t : ℤ) = 2 * ↑a * ↑n - ↑n * ↑n - 1, by | |
rw sub_sub; apply eq_sub_of_add_eq; apply (int.coe_nat_eq_coe_nat_iff _ _).2; | |
exact ta.symm, | |
have xn a1 k ≡ yn a1 k * (a - n) + n^k [MOD t], | |
by have := x_sub_y_dvd_pow a1 n k; | |
rw [← te, ← int.coe_nat_sub na] at this; exact modeq_of_dvd this, | |
have n^k % t = m % t, from | |
(this.symm.trans tm).add_left_cancel' _, | |
by rw ← te at nt; | |
rwa [nat.mod_eq_of_lt (int.lt_of_coe_nat_lt_coe_nat nt), nat.mod_eq_of_lt mt] at this | |
end⟩ | |
end pell | |