Datasets:

Modalities:
Text
Languages:
English
Libraries:
Datasets
License:
Zhangir Azerbayev
squashed?
4365a98
raw
history blame
10.5 kB
/-
Copyright (c) 2021 Anne Baanen. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Anne Baanen, Ashvni Narayanan
-/
import field_theory.ratfunc
import ring_theory.algebraic
import ring_theory.dedekind_domain.integral_closure
import ring_theory.integrally_closed
import topology.algebra.valued_field
/-!
# Function fields
This file defines a function field and the ring of integers corresponding to it.
## Main definitions
- `function_field Fq F` states that `F` is a function field over the (finite) field `Fq`,
i.e. it is a finite extension of the field of rational functions in one variable over `Fq`.
- `function_field.ring_of_integers` defines the ring of integers corresponding to a function field
as the integral closure of `polynomial Fq` in the function field.
- `function_field.infty_valuation` : The place at infinity on `Fq(t)` is the nonarchimedean
valuation on `Fq(t)` with uniformizer `1/t`.
- `function_field.Fqt_infty` : The completion `Fq((t⁻¹))` of `Fq(t)` with respect to the
valuation at infinity.
## Implementation notes
The definitions that involve a field of fractions choose a canonical field of fractions,
but are independent of that choice. We also omit assumptions like `finite Fq` or
`is_scalar_tower Fq[X] (fraction_ring Fq[X]) F` in definitions,
adding them back in lemmas when they are needed.
## References
* [D. Marcus, *Number Fields*][marcus1977number]
* [J.W.S. Cassels, A. FrΓΆlich, *Algebraic Number Theory*][cassels1967algebraic]
* [P. Samuel, *Algebraic Theory of Numbers*][samuel1970algebraic]
## Tags
function field, ring of integers
-/
noncomputable theory
open_locale non_zero_divisors polynomial discrete_valuation
variables (Fq F : Type) [field Fq] [field F]
/-- `F` is a function field over the finite field `Fq` if it is a finite
extension of the field of rational functions in one variable over `Fq`.
Note that `F` can be a function field over multiple, non-isomorphic, `Fq`.
-/
abbreviation function_field [algebra (ratfunc Fq) F] : Prop :=
finite_dimensional (ratfunc Fq) F
/-- `F` is a function field over `Fq` iff it is a finite extension of `Fq(t)`. -/
protected lemma function_field_iff (Fqt : Type*) [field Fqt]
[algebra Fq[X] Fqt] [is_fraction_ring Fq[X] Fqt]
[algebra (ratfunc Fq) F] [algebra Fqt F]
[algebra Fq[X] F] [is_scalar_tower Fq[X] Fqt F]
[is_scalar_tower Fq[X] (ratfunc Fq) F] :
function_field Fq F ↔ finite_dimensional Fqt F :=
begin
let e := is_localization.alg_equiv Fq[X]⁰ (ratfunc Fq) Fqt,
have : βˆ€ c (x : F), e c β€’ x = c β€’ x,
{ intros c x,
rw [algebra.smul_def, algebra.smul_def],
congr,
refine congr_fun _ c,
refine is_localization.ext (non_zero_divisors (Fq[X])) _ _ _ _ _ _ _;
intros; simp only [alg_equiv.map_one, ring_hom.map_one, alg_equiv.map_mul, ring_hom.map_mul,
alg_equiv.commutes, ← is_scalar_tower.algebra_map_apply], },
split; intro h; resetI,
{ let b := finite_dimensional.fin_basis (ratfunc Fq) F,
exact finite_dimensional.of_fintype_basis (b.map_coeffs e this) },
{ let b := finite_dimensional.fin_basis Fqt F,
refine finite_dimensional.of_fintype_basis (b.map_coeffs e.symm _),
intros c x, convert (this (e.symm c) x).symm, simp only [e.apply_symm_apply] },
end
lemma algebra_map_injective [algebra Fq[X] F] [algebra (ratfunc Fq) F]
[is_scalar_tower Fq[X] (ratfunc Fq) F] : function.injective ⇑(algebra_map Fq[X] F) :=
begin
rw is_scalar_tower.algebra_map_eq Fq[X] (ratfunc Fq) F,
exact function.injective.comp ((algebra_map (ratfunc Fq) F).injective)
(is_fraction_ring.injective Fq[X] (ratfunc Fq)),
end
namespace function_field
/-- The function field analogue of `number_field.ring_of_integers`:
`function_field.ring_of_integers Fq Fqt F` is the integral closure of `Fq[t]` in `F`.
We don't actually assume `F` is a function field over `Fq` in the definition,
only when proving its properties.
-/
def ring_of_integers [algebra Fq[X] F] := integral_closure Fq[X] F
namespace ring_of_integers
variables [algebra Fq[X] F]
instance : is_domain (ring_of_integers Fq F) :=
(ring_of_integers Fq F).is_domain
instance : is_integral_closure (ring_of_integers Fq F) Fq[X] F :=
integral_closure.is_integral_closure _ _
variables [algebra (ratfunc Fq) F] [is_scalar_tower Fq[X] (ratfunc Fq) F]
lemma algebra_map_injective :
function.injective ⇑(algebra_map Fq[X] (ring_of_integers Fq F)) :=
begin
have hinj : function.injective ⇑(algebra_map Fq[X] F),
{ rw is_scalar_tower.algebra_map_eq Fq[X] (ratfunc Fq) F,
exact function.injective.comp ((algebra_map (ratfunc Fq) F).injective)
(is_fraction_ring.injective Fq[X] (ratfunc Fq)), },
rw injective_iff_map_eq_zero (algebra_map Fq[X] β†₯(ring_of_integers Fq F)),
intros p hp,
rw [← subtype.coe_inj, subalgebra.coe_zero] at hp,
rw injective_iff_map_eq_zero (algebra_map Fq[X] F) at hinj,
exact hinj p hp,
end
lemma not_is_field : Β¬ is_field (ring_of_integers Fq F) :=
by simpa [← ((is_integral_closure.is_integral_algebra Fq[X] F).is_field_iff_is_field
(algebra_map_injective Fq F))] using (polynomial.not_is_field Fq)
variables [function_field Fq F]
instance : is_fraction_ring (ring_of_integers Fq F) F :=
integral_closure.is_fraction_ring_of_finite_extension (ratfunc Fq) F
instance : is_integrally_closed (ring_of_integers Fq F) :=
integral_closure.is_integrally_closed_of_finite_extension (ratfunc Fq)
instance [is_separable (ratfunc Fq) F] :
is_dedekind_domain (ring_of_integers Fq F) :=
is_integral_closure.is_dedekind_domain Fq[X] (ratfunc Fq) F _
end ring_of_integers
/-! ### The place at infinity on Fq(t) -/
section infty_valuation
variable [decidable_eq (ratfunc Fq)]
/-- The valuation at infinity is the nonarchimedean valuation on `Fq(t)` with uniformizer `1/t`.
Explicitly, if `f/g ∈ Fq(t)` is a nonzero quotient of polynomials, its valuation at infinity is
`multiplicative.of_add(degree(f) - degree(g))`. -/
def infty_valuation_def (r : ratfunc Fq) : β„€β‚˜β‚€ :=
if r = 0 then 0 else (multiplicative.of_add r.int_degree)
lemma infty_valuation.map_zero' : infty_valuation_def Fq 0 = 0 := if_pos rfl
lemma infty_valuation.map_one' : infty_valuation_def Fq 1 = 1 :=
(if_neg one_ne_zero).trans $
by rw [ratfunc.int_degree_one, of_add_zero, with_zero.coe_one]
lemma infty_valuation.map_mul' (x y : ratfunc Fq) :
infty_valuation_def Fq (x * y) = infty_valuation_def Fq x * infty_valuation_def Fq y :=
begin
rw [infty_valuation_def, infty_valuation_def, infty_valuation_def],
by_cases hx : x = 0,
{ rw [hx, zero_mul, if_pos (eq.refl _), zero_mul] },
{ by_cases hy : y = 0,
{ rw [hy, mul_zero, if_pos (eq.refl _), mul_zero] },
{ rw [if_neg hx, if_neg hy, if_neg (mul_ne_zero hx hy), ← with_zero.coe_mul,
with_zero.coe_inj, ← of_add_add, ratfunc.int_degree_mul hx hy], }}
end
lemma infty_valuation.map_add_le_max' (x y : ratfunc Fq) :
infty_valuation_def Fq (x + y) ≀ max (infty_valuation_def Fq x) (infty_valuation_def Fq y) :=
begin
by_cases hx : x = 0,
{ rw [hx, zero_add],
conv_rhs { rw [infty_valuation_def, if_pos (eq.refl _)] },
rw max_eq_right (with_zero.zero_le (infty_valuation_def Fq y)),
exact le_refl _ },
{ by_cases hy : y = 0,
{ rw [hy, add_zero],
conv_rhs { rw [max_comm, infty_valuation_def, if_pos (eq.refl _)] },
rw max_eq_right (with_zero.zero_le (infty_valuation_def Fq x)),
exact le_refl _ },
{ by_cases hxy : x + y = 0,
{ rw [infty_valuation_def, if_pos hxy], exact zero_le',},
{ rw [infty_valuation_def, infty_valuation_def, infty_valuation_def, if_neg hx, if_neg hy,
if_neg hxy],
rw [le_max_iff,
with_zero.coe_le_coe, multiplicative.of_add_le, with_zero.coe_le_coe,
multiplicative.of_add_le, ← le_max_iff],
exact ratfunc.int_degree_add_le hy hxy }}}
end
@[simp] lemma infty_valuation_of_nonzero {x : ratfunc Fq} (hx : x β‰  0) :
infty_valuation_def Fq x = (multiplicative.of_add x.int_degree) :=
by rw [infty_valuation_def, if_neg hx]
/-- The valuation at infinity on `Fq(t)`. -/
def infty_valuation : valuation (ratfunc Fq) β„€β‚˜β‚€ :=
{ to_fun := infty_valuation_def Fq,
map_zero' := infty_valuation.map_zero' Fq,
map_one' := infty_valuation.map_one' Fq,
map_mul' := infty_valuation.map_mul' Fq,
map_add_le_max' := infty_valuation.map_add_le_max' Fq }
@[simp] lemma infty_valuation_apply {x : ratfunc Fq} :
infty_valuation Fq x = infty_valuation_def Fq x := rfl
@[simp] lemma infty_valuation.C {k : Fq} (hk : k β‰  0) :
infty_valuation_def Fq (ratfunc.C k) = (multiplicative.of_add (0 : β„€)) :=
begin
have hCk : ratfunc.C k β‰  0 := (ring_hom.map_ne_zero _).mpr hk,
rw [infty_valuation_def, if_neg hCk, ratfunc.int_degree_C],
end
@[simp] lemma infty_valuation.X :
infty_valuation_def Fq (ratfunc.X) = (multiplicative.of_add (1 : β„€)) :=
by rw [infty_valuation_def, if_neg ratfunc.X_ne_zero, ratfunc.int_degree_X]
@[simp] lemma infty_valuation.polynomial {p : polynomial Fq} (hp : p β‰  0) :
infty_valuation_def Fq (algebra_map (polynomial Fq) (ratfunc Fq) p) =
(multiplicative.of_add (p.nat_degree : β„€)) :=
begin
have hp' : algebra_map (polynomial Fq) (ratfunc Fq) p β‰  0,
{ rw [ne.def, ratfunc.algebra_map_eq_zero_iff], exact hp },
rw [infty_valuation_def, if_neg hp', ratfunc.int_degree_polynomial]
end
/-- The valued field `Fq(t)` with the valuation at infinity. -/
def infty_valued_Fqt : valued (ratfunc Fq) β„€β‚˜β‚€ :=
valued.mk' $ infty_valuation Fq
lemma infty_valued_Fqt.def {x : ratfunc Fq} :
@valued.v (ratfunc Fq) _ _ _ (infty_valued_Fqt Fq) x = infty_valuation_def Fq x := rfl
/-- The completion `Fq((t⁻¹))` of `Fq(t)` with respect to the valuation at infinity. -/
def Fqt_infty := @uniform_space.completion (ratfunc Fq) $ (infty_valued_Fqt Fq).to_uniform_space
instance : field (Fqt_infty Fq) :=
by { letI := infty_valued_Fqt Fq, exact uniform_space.completion.field }
instance : inhabited (Fqt_infty Fq) := ⟨(0 : Fqt_infty Fq)⟩
/-- The valuation at infinity on `k(t)` extends to a valuation on `Fqt_infty`. -/
instance valued_Fqt_infty : valued (Fqt_infty Fq) β„€β‚˜β‚€ :=
@valued.valued_completion _ _ _ _ (infty_valued_Fqt Fq)
lemma valued_Fqt_infty.def {x : Fqt_infty Fq} :
valued.v x = @valued.extension (ratfunc Fq) _ _ _ (infty_valued_Fqt Fq) x := rfl
end infty_valuation
end function_field