Datasets:
Tasks:
Text Generation
Modalities:
Text
Sub-tasks:
language-modeling
Languages:
English
Size:
100K - 1M
License:
/- | |
Copyright (c) 2020 Aaron Anderson. All rights reserved. | |
Released under Apache 2.0 license as described in the file LICENSE. | |
Authors: Aaron Anderson | |
-/ | |
import algebra.big_operators.order | |
import data.nat.interval | |
import data.nat.prime | |
/-! | |
# Divisor finsets | |
This file defines sets of divisors of a natural number. This is particularly useful as background | |
for defining Dirichlet convolution. | |
## Main Definitions | |
Let `n : ℕ`. All of the following definitions are in the `nat` namespace: | |
* `divisors n` is the `finset` of natural numbers that divide `n`. | |
* `proper_divisors n` is the `finset` of natural numbers that divide `n`, other than `n`. | |
* `divisors_antidiagonal n` is the `finset` of pairs `(x,y)` such that `x * y = n`. | |
* `perfect n` is true when `n` is positive and the sum of `proper_divisors n` is `n`. | |
## Implementation details | |
* `divisors 0`, `proper_divisors 0`, and `divisors_antidiagonal 0` are defined to be `∅`. | |
## Tags | |
divisors, perfect numbers | |
-/ | |
open_locale classical | |
open_locale big_operators | |
open finset | |
namespace nat | |
variable (n : ℕ) | |
/-- `divisors n` is the `finset` of divisors of `n`. As a special case, `divisors 0 = ∅`. -/ | |
def divisors : finset ℕ := finset.filter (λ x : ℕ, x ∣ n) (finset.Ico 1 (n + 1)) | |
/-- `proper_divisors n` is the `finset` of divisors of `n`, other than `n`. | |
As a special case, `proper_divisors 0 = ∅`. -/ | |
def proper_divisors : finset ℕ := finset.filter (λ x : ℕ, x ∣ n) (finset.Ico 1 n) | |
/-- `divisors_antidiagonal n` is the `finset` of pairs `(x,y)` such that `x * y = n`. | |
As a special case, `divisors_antidiagonal 0 = ∅`. -/ | |
def divisors_antidiagonal : finset (ℕ × ℕ) := | |
((finset.Ico 1 (n + 1)).product (finset.Ico 1 (n + 1))).filter (λ x, x.fst * x.snd = n) | |
variable {n} | |
@[simp] | |
lemma filter_dvd_eq_divisors (h : n ≠ 0) : | |
(finset.range n.succ).filter (∣ n) = n.divisors := | |
begin | |
ext, | |
simp only [divisors, mem_filter, mem_range, mem_Ico, and.congr_left_iff, iff_and_self], | |
exact λ ha _, succ_le_iff.mpr (pos_of_dvd_of_pos ha h.bot_lt), | |
end | |
@[simp] | |
lemma filter_dvd_eq_proper_divisors (h : n ≠ 0) : | |
(finset.range n).filter (∣ n) = n.proper_divisors := | |
begin | |
ext, | |
simp only [proper_divisors, mem_filter, mem_range, mem_Ico, and.congr_left_iff, iff_and_self], | |
exact λ ha _, succ_le_iff.mpr (pos_of_dvd_of_pos ha h.bot_lt), | |
end | |
lemma proper_divisors.not_self_mem : ¬ n ∈ proper_divisors n := | |
by simp [proper_divisors] | |
@[simp] | |
lemma mem_proper_divisors {m : ℕ} : n ∈ proper_divisors m ↔ n ∣ m ∧ n < m := | |
begin | |
rcases eq_or_ne m 0 with rfl | hm, { simp [proper_divisors] }, | |
simp only [and_comm, ←filter_dvd_eq_proper_divisors hm, mem_filter, mem_range], | |
end | |
lemma divisors_eq_proper_divisors_insert_self_of_pos (h : 0 < n): | |
divisors n = has_insert.insert n (proper_divisors n) := | |
by rw [divisors, proper_divisors, Ico_succ_right_eq_insert_Ico h, finset.filter_insert, | |
if_pos (dvd_refl n)] | |
@[simp] | |
lemma mem_divisors {m : ℕ} : n ∈ divisors m ↔ (n ∣ m ∧ m ≠ 0) := | |
begin | |
rcases eq_or_ne m 0 with rfl | hm, { simp [divisors] }, | |
simp only [hm, ne.def, not_false_iff, and_true, ←filter_dvd_eq_divisors hm, mem_filter, | |
mem_range, and_iff_right_iff_imp, lt_succ_iff], | |
exact le_of_dvd hm.bot_lt, | |
end | |
lemma mem_divisors_self (n : ℕ) (h : n ≠ 0) : n ∈ n.divisors := mem_divisors.2 ⟨dvd_rfl, h⟩ | |
lemma dvd_of_mem_divisors {m : ℕ} (h : n ∈ divisors m) : n ∣ m := | |
begin | |
cases m, | |
{ apply dvd_zero }, | |
{ simp [mem_divisors.1 h], } | |
end | |
@[simp] | |
lemma mem_divisors_antidiagonal {x : ℕ × ℕ} : | |
x ∈ divisors_antidiagonal n ↔ x.fst * x.snd = n ∧ n ≠ 0 := | |
begin | |
simp only [divisors_antidiagonal, finset.mem_Ico, ne.def, finset.mem_filter, finset.mem_product], | |
rw and_comm, | |
apply and_congr_right, | |
rintro rfl, | |
split; intro h, | |
{ contrapose! h, simp [h], }, | |
{ rw [nat.lt_add_one_iff, nat.lt_add_one_iff], | |
rw [mul_eq_zero, decidable.not_or_iff_and_not] at h, | |
simp only [succ_le_of_lt (nat.pos_of_ne_zero h.1), succ_le_of_lt (nat.pos_of_ne_zero h.2), | |
true_and], | |
exact ⟨le_mul_of_pos_right (nat.pos_of_ne_zero h.2), | |
le_mul_of_pos_left (nat.pos_of_ne_zero h.1)⟩ } | |
end | |
variable {n} | |
lemma divisor_le {m : ℕ}: | |
n ∈ divisors m → n ≤ m := | |
begin | |
cases m, | |
{ simp }, | |
simp only [mem_divisors, m.succ_ne_zero, and_true, ne.def, not_false_iff], | |
exact nat.le_of_dvd (nat.succ_pos m), | |
end | |
lemma divisors_subset_of_dvd {m : ℕ} (hzero : n ≠ 0) (h : m ∣ n) : divisors m ⊆ divisors n := | |
finset.subset_iff.2 $ λ x hx, nat.mem_divisors.mpr (⟨(nat.mem_divisors.mp hx).1.trans h, hzero⟩) | |
lemma divisors_subset_proper_divisors {m : ℕ} (hzero : n ≠ 0) (h : m ∣ n) (hdiff : m ≠ n) : | |
divisors m ⊆ proper_divisors n := | |
begin | |
apply finset.subset_iff.2, | |
intros x hx, | |
exact nat.mem_proper_divisors.2 (⟨(nat.mem_divisors.1 hx).1.trans h, | |
lt_of_le_of_lt (divisor_le hx) (lt_of_le_of_ne (divisor_le (nat.mem_divisors.2 | |
⟨h, hzero⟩)) hdiff)⟩) | |
end | |
@[simp] | |
lemma divisors_zero : divisors 0 = ∅ := by { ext, simp } | |
@[simp] | |
lemma proper_divisors_zero : proper_divisors 0 = ∅ := by { ext, simp } | |
lemma proper_divisors_subset_divisors : proper_divisors n ⊆ divisors n := | |
begin | |
cases n, | |
{ simp }, | |
rw [divisors_eq_proper_divisors_insert_self_of_pos (nat.succ_pos _)], | |
apply subset_insert, | |
end | |
@[simp] | |
lemma divisors_one : divisors 1 = {1} := by { ext, simp } | |
@[simp] | |
lemma proper_divisors_one : proper_divisors 1 = ∅ := | |
begin | |
ext, | |
simp only [finset.not_mem_empty, nat.dvd_one, not_and, not_lt, mem_proper_divisors, iff_false], | |
apply ge_of_eq, | |
end | |
lemma pos_of_mem_divisors {m : ℕ} (h : m ∈ n.divisors) : 0 < m := | |
begin | |
cases m, | |
{ rw [mem_divisors, zero_dvd_iff] at h, cases h.2 h.1 }, | |
apply nat.succ_pos, | |
end | |
lemma pos_of_mem_proper_divisors {m : ℕ} (h : m ∈ n.proper_divisors) : 0 < m := | |
pos_of_mem_divisors (proper_divisors_subset_divisors h) | |
lemma one_mem_proper_divisors_iff_one_lt : | |
1 ∈ n.proper_divisors ↔ 1 < n := | |
by rw [mem_proper_divisors, and_iff_right (one_dvd _)] | |
@[simp] | |
lemma divisors_antidiagonal_zero : divisors_antidiagonal 0 = ∅ := by { ext, simp } | |
@[simp] | |
lemma divisors_antidiagonal_one : divisors_antidiagonal 1 = {(1,1)} := | |
by { ext, simp [nat.mul_eq_one_iff, prod.ext_iff], } | |
lemma swap_mem_divisors_antidiagonal {x : ℕ × ℕ} (h : x ∈ divisors_antidiagonal n) : | |
x.swap ∈ divisors_antidiagonal n := | |
begin | |
rw [mem_divisors_antidiagonal, mul_comm] at h, | |
simp [h.1, h.2], | |
end | |
lemma fst_mem_divisors_of_mem_antidiagonal {x : ℕ × ℕ} (h : x ∈ divisors_antidiagonal n) : | |
x.fst ∈ divisors n := | |
begin | |
rw mem_divisors_antidiagonal at h, | |
simp [dvd.intro _ h.1, h.2], | |
end | |
lemma snd_mem_divisors_of_mem_antidiagonal {x : ℕ × ℕ} (h : x ∈ divisors_antidiagonal n) : | |
x.snd ∈ divisors n := | |
begin | |
rw mem_divisors_antidiagonal at h, | |
simp [dvd.intro_left _ h.1, h.2], | |
end | |
@[simp] | |
lemma map_swap_divisors_antidiagonal : | |
(divisors_antidiagonal n).map ⟨prod.swap, prod.swap_right_inverse.injective⟩ | |
= divisors_antidiagonal n := | |
begin | |
ext, | |
simp only [exists_prop, mem_divisors_antidiagonal, finset.mem_map, function.embedding.coe_fn_mk, | |
ne.def, prod.swap_prod_mk, prod.exists], | |
split, | |
{ rintros ⟨x, y, ⟨⟨rfl, h⟩, rfl⟩⟩, | |
simp [mul_comm, h], }, | |
{ rintros ⟨rfl, h⟩, | |
use [a.snd, a.fst], | |
rw mul_comm, | |
simp [h] } | |
end | |
lemma sum_divisors_eq_sum_proper_divisors_add_self : | |
∑ i in divisors n, i = ∑ i in proper_divisors n, i + n := | |
begin | |
cases n, | |
{ simp }, | |
{ rw [divisors_eq_proper_divisors_insert_self_of_pos (nat.succ_pos _), | |
finset.sum_insert (proper_divisors.not_self_mem), add_comm] } | |
end | |
/-- `n : ℕ` is perfect if and only the sum of the proper divisors of `n` is `n` and `n` | |
is positive. -/ | |
def perfect (n : ℕ) : Prop := (∑ i in proper_divisors n, i = n) ∧ 0 < n | |
theorem perfect_iff_sum_proper_divisors (h : 0 < n) : | |
perfect n ↔ ∑ i in proper_divisors n, i = n := and_iff_left h | |
theorem perfect_iff_sum_divisors_eq_two_mul (h : 0 < n) : | |
perfect n ↔ ∑ i in divisors n, i = 2 * n := | |
begin | |
rw [perfect_iff_sum_proper_divisors h, sum_divisors_eq_sum_proper_divisors_add_self, two_mul], | |
split; intro h, | |
{ rw h }, | |
{ apply add_right_cancel h } | |
end | |
lemma mem_divisors_prime_pow {p : ℕ} (pp : p.prime) (k : ℕ) {x : ℕ} : | |
x ∈ divisors (p ^ k) ↔ ∃ (j : ℕ) (H : j ≤ k), x = p ^ j := | |
by rw [mem_divisors, nat.dvd_prime_pow pp, and_iff_left (ne_of_gt (pow_pos pp.pos k))] | |
lemma prime.divisors {p : ℕ} (pp : p.prime) : | |
divisors p = {1, p} := | |
begin | |
ext, | |
rw [mem_divisors, dvd_prime pp, and_iff_left pp.ne_zero, finset.mem_insert, finset.mem_singleton] | |
end | |
lemma prime.proper_divisors {p : ℕ} (pp : p.prime) : | |
proper_divisors p = {1} := | |
by rw [← erase_insert (proper_divisors.not_self_mem), | |
← divisors_eq_proper_divisors_insert_self_of_pos pp.pos, | |
pp.divisors, pair_comm, erase_insert (λ con, pp.ne_one (mem_singleton.1 con))] | |
lemma divisors_prime_pow {p : ℕ} (pp : p.prime) (k : ℕ) : | |
divisors (p ^ k) = (finset.range (k + 1)).map ⟨pow p, pow_right_injective pp.two_le⟩ := | |
by { ext, simp [mem_divisors_prime_pow, pp, nat.lt_succ_iff, @eq_comm _ a] } | |
lemma eq_proper_divisors_of_subset_of_sum_eq_sum {s : finset ℕ} (hsub : s ⊆ n.proper_divisors) : | |
∑ x in s, x = ∑ x in n.proper_divisors, x → s = n.proper_divisors := | |
begin | |
cases n, | |
{ rw [proper_divisors_zero, subset_empty] at hsub, | |
simp [hsub] }, | |
classical, | |
rw [← sum_sdiff hsub], | |
intros h, | |
apply subset.antisymm hsub, | |
rw [← sdiff_eq_empty_iff_subset], | |
contrapose h, | |
rw [← ne.def, ← nonempty_iff_ne_empty] at h, | |
apply ne_of_lt, | |
rw [← zero_add (∑ x in s, x), ← add_assoc, add_zero], | |
apply add_lt_add_right, | |
have hlt := sum_lt_sum_of_nonempty h (λ x hx, pos_of_mem_proper_divisors (sdiff_subset _ _ hx)), | |
simp only [sum_const_zero] at hlt, | |
apply hlt | |
end | |
lemma sum_proper_divisors_dvd (h : ∑ x in n.proper_divisors, x ∣ n) : | |
(∑ x in n.proper_divisors, x = 1) ∨ (∑ x in n.proper_divisors, x = n) := | |
begin | |
cases n, | |
{ simp }, | |
cases n, | |
{ contrapose! h, | |
simp, }, | |
rw or_iff_not_imp_right, | |
intro ne_n, | |
have hlt : ∑ x in n.succ.succ.proper_divisors, x < n.succ.succ := | |
lt_of_le_of_ne (nat.le_of_dvd (nat.succ_pos _) h) ne_n, | |
symmetry, | |
rw [← mem_singleton, eq_proper_divisors_of_subset_of_sum_eq_sum (singleton_subset_iff.2 | |
(mem_proper_divisors.2 ⟨h, hlt⟩)) sum_singleton, mem_proper_divisors], | |
refine ⟨one_dvd _, nat.succ_lt_succ (nat.succ_pos _)⟩, | |
end | |
@[simp, to_additive] | |
lemma prime.prod_proper_divisors {α : Type*} [comm_monoid α] {p : ℕ} {f : ℕ → α} (h : p.prime) : | |
∏ x in p.proper_divisors, f x = f 1 := | |
by simp [h.proper_divisors] | |
@[simp, to_additive] | |
lemma prime.prod_divisors {α : Type*} [comm_monoid α] {p : ℕ} {f : ℕ → α} (h : p.prime) : | |
∏ x in p.divisors, f x = f p * f 1 := | |
by rw [divisors_eq_proper_divisors_insert_self_of_pos h.pos, | |
prod_insert proper_divisors.not_self_mem, h.prod_proper_divisors] | |
lemma proper_divisors_eq_singleton_one_iff_prime : | |
n.proper_divisors = {1} ↔ n.prime := | |
⟨λ h, begin | |
have h1 := mem_singleton.2 rfl, | |
rw [← h, mem_proper_divisors] at h1, | |
refine nat.prime_def_lt''.mpr ⟨h1.2, λ m hdvd, _⟩, | |
rw [← mem_singleton, ← h, mem_proper_divisors], | |
have hle := nat.le_of_dvd (lt_trans (nat.succ_pos _) h1.2) hdvd, | |
exact or.imp_left (λ hlt, ⟨hdvd, hlt⟩) hle.lt_or_eq | |
end, prime.proper_divisors⟩ | |
lemma sum_proper_divisors_eq_one_iff_prime : | |
∑ x in n.proper_divisors, x = 1 ↔ n.prime := | |
begin | |
cases n, | |
{ simp [nat.not_prime_zero] }, | |
cases n, | |
{ simp [nat.not_prime_one] }, | |
rw [← proper_divisors_eq_singleton_one_iff_prime], | |
refine ⟨λ h, _, λ h, h.symm ▸ sum_singleton⟩, | |
rw [@eq_comm (finset ℕ) _ _], | |
apply eq_proper_divisors_of_subset_of_sum_eq_sum | |
(singleton_subset_iff.2 (one_mem_proper_divisors_iff_one_lt.2 (succ_lt_succ (nat.succ_pos _)))) | |
(eq.trans sum_singleton h.symm) | |
end | |
lemma mem_proper_divisors_prime_pow {p : ℕ} (pp : p.prime) (k : ℕ) {x : ℕ} : | |
x ∈ proper_divisors (p ^ k) ↔ ∃ (j : ℕ) (H : j < k), x = p ^ j := | |
begin | |
rw [mem_proper_divisors, nat.dvd_prime_pow pp, ← exists_and_distrib_right], | |
simp only [exists_prop, and_assoc], | |
apply exists_congr, | |
intro a, | |
split; intro h, | |
{ rcases h with ⟨h_left, rfl, h_right⟩, | |
rwa pow_lt_pow_iff pp.one_lt at h_right, | |
simpa, }, | |
{ rcases h with ⟨h_left, rfl⟩, | |
rwa pow_lt_pow_iff pp.one_lt, | |
simp [h_left, le_of_lt], }, | |
end | |
lemma proper_divisors_prime_pow {p : ℕ} (pp : p.prime) (k : ℕ) : | |
proper_divisors (p ^ k) = (finset.range k).map ⟨pow p, pow_right_injective pp.two_le⟩ := | |
by { ext, simp [mem_proper_divisors_prime_pow, pp, nat.lt_succ_iff, @eq_comm _ a], } | |
@[simp, to_additive] | |
lemma prod_proper_divisors_prime_pow {α : Type*} [comm_monoid α] {k p : ℕ} {f : ℕ → α} | |
(h : p.prime) : ∏ x in (p ^ k).proper_divisors, f x = ∏ x in range k, f (p ^ x) := | |
by simp [h, proper_divisors_prime_pow] | |
@[simp, to_additive sum_divisors_prime_pow] | |
lemma prod_divisors_prime_pow {α : Type*} [comm_monoid α] {k p : ℕ} {f : ℕ → α} (h : p.prime) : | |
∏ x in (p ^ k).divisors, f x = ∏ x in range (k + 1), f (p ^ x) := | |
by simp [h, divisors_prime_pow] | |
@[to_additive] | |
lemma prod_divisors_antidiagonal {M : Type*} [comm_monoid M] (f : ℕ → ℕ → M) {n : ℕ} : | |
∏ i in n.divisors_antidiagonal, f i.1 i.2 = ∏ i in n.divisors, f i (n / i) := | |
begin | |
refine prod_bij (λ i _, i.1) _ _ _ _, | |
{ intro i, | |
apply fst_mem_divisors_of_mem_antidiagonal }, | |
{ rintro ⟨i, j⟩ hij, | |
simp only [mem_divisors_antidiagonal, ne.def] at hij, | |
rw [←hij.1, nat.mul_div_cancel_left], | |
apply nat.pos_of_ne_zero, | |
rintro rfl, | |
simp only [zero_mul] at hij, | |
apply hij.2 hij.1.symm }, | |
{ simp only [and_imp, prod.forall, mem_divisors_antidiagonal, ne.def], | |
rintro i₁ j₁ ⟨i₂, j₂⟩ h - (rfl : i₂ * j₂ = _) h₁ (rfl : _ = i₂), | |
simp only [nat.mul_eq_zero, not_or_distrib, ←ne.def] at h₁, | |
rw mul_right_inj' h₁.1 at h, | |
simp [h] }, | |
simp only [and_imp, exists_prop, mem_divisors_antidiagonal, exists_and_distrib_right, ne.def, | |
exists_eq_right', mem_divisors, prod.exists], | |
rintro _ ⟨k, rfl⟩ hn, | |
exact ⟨⟨k, rfl⟩, hn⟩, | |
end | |
@[to_additive] | |
lemma prod_divisors_antidiagonal' {M : Type*} [comm_monoid M] (f : ℕ → ℕ → M) {n : ℕ} : | |
∏ i in n.divisors_antidiagonal, f i.1 i.2 = ∏ i in n.divisors, f (n / i) i := | |
begin | |
rw [←map_swap_divisors_antidiagonal, finset.prod_map], | |
exact prod_divisors_antidiagonal (λ i j, f j i), | |
end | |
/-- The factors of `n` are the prime divisors -/ | |
lemma prime_divisors_eq_to_filter_divisors_prime (n : ℕ) : | |
n.factors.to_finset = (divisors n).filter prime := | |
begin | |
rcases n.eq_zero_or_pos with rfl | hn, | |
{ simp }, | |
{ ext q, | |
simpa [hn, hn.ne', mem_factors] using and_comm (prime q) (q ∣ n) } | |
end | |
@[simp] | |
lemma image_div_divisors_eq_divisors (n : ℕ) : image (λ (x : ℕ), n / x) n.divisors = n.divisors := | |
begin | |
by_cases hn : n = 0, { simp [hn] }, | |
ext, | |
split, | |
{ rw mem_image, | |
rintros ⟨x, hx1, hx2⟩, | |
rw mem_divisors at *, | |
refine ⟨_,hn⟩, | |
rw ←hx2, | |
exact div_dvd_of_dvd hx1.1 }, | |
{ rw [mem_divisors, mem_image], | |
rintros ⟨h1, -⟩, | |
exact ⟨n/a, mem_divisors.mpr ⟨div_dvd_of_dvd h1, hn⟩, | |
nat.div_div_self h1 (pos_iff_ne_zero.mpr hn)⟩ }, | |
end | |
@[simp, to_additive sum_div_divisors] | |
lemma prod_div_divisors {α : Type*} [comm_monoid α] (n : ℕ) (f : ℕ → α) : | |
∏ d in n.divisors, f (n/d) = n.divisors.prod f := | |
begin | |
by_cases hn : n = 0, { simp [hn] }, | |
rw ←prod_image, | |
{ exact prod_congr (image_div_divisors_eq_divisors n) (by simp) }, | |
{ intros x hx y hy h, | |
rw mem_divisors at hx hy, | |
exact (div_eq_iff_eq_of_dvd_dvd hn hx.1 hy.1).mp h } | |
end | |
end nat | |