Datasets:

Modalities:
Text
Languages:
English
Libraries:
Datasets
License:
Zhangir Azerbayev
squashed?
4365a98
raw
history blame
10.2 kB
/-
Copyright (c) 2021 Alena Gusakov, Bhavik Mehta, Kyle Miller. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Alena Gusakov, Bhavik Mehta, Kyle Miller
-/
import combinatorics.hall.finite
import topology.category.Top.limits
/-!
# Hall's Marriage Theorem
Given a list of finite subsets $X_1, X_2, \dots, X_n$ of some given set
$S$, P. Hall in [Hall1935] gave a necessary and sufficient condition for
there to be a list of distinct elements $x_1, x_2, \dots, x_n$ with
$x_i\in X_i$ for each $i$: it is when for each $k$, the union of every
$k$ of these subsets has at least $k$ elements.
Rather than a list of finite subsets, one may consider indexed families
`t : ι → finset α` of finite subsets with `ι` a `fintype`, and then the list
of distinct representatives is given by an injective function `f : ι → α`
such that `∀ i, f i ∈ t i`, called a *matching*.
This version is formalized as `finset.all_card_le_bUnion_card_iff_exists_injective'`
in a separate module.
The theorem can be generalized to remove the constraint that `ι` be a `fintype`.
As observed in [Halpern1966], one may use the constrained version of the theorem
in a compactness argument to remove this constraint.
The formulation of compactness we use is that inverse limits of nonempty finite sets
are nonempty (`nonempty_sections_of_fintype_inverse_system`), which uses the
Tychonoff theorem.
The core of this module is constructing the inverse system: for every finite subset `ι'` of
`ι`, we can consider the matchings on the restriction of the indexed family `t` to `ι'`.
## Main statements
* `finset.all_card_le_bUnion_card_iff_exists_injective` is in terms of `t : ι → finset α`.
* `fintype.all_card_le_rel_image_card_iff_exists_injective` is in terms of a relation
`r : α → β → Prop` such that `rel.image r {a}` is a finite set for all `a : α`.
* `fintype.all_card_le_filter_rel_iff_exists_injective` is in terms of a relation
`r : α → β → Prop` on finite types, with the Hall condition given in terms of
`finset.univ.filter`.
## Todo
* The statement of the theorem in terms of bipartite graphs is in preparation.
## Tags
Hall's Marriage Theorem, indexed families
-/
open finset
universes u v
/-- The set of matchings for `t` when restricted to a `finset` of `ι`. -/
def hall_matchings_on {ι : Type u} {α : Type v} (t : ι → finset α) (ι' : finset ι) :=
{f : ι' → α | function.injective f ∧ ∀ x, f x ∈ t x}
/-- Given a matching on a finset, construct the restriction of that matching to a subset. -/
def hall_matchings_on.restrict {ι : Type u} {α : Type v}
(t : ι → finset α) {ι' ι'' : finset ι} (h : ι' ⊆ ι'')
(f : hall_matchings_on t ι'') : hall_matchings_on t ι' :=
begin
refine ⟨λ i, f.val ⟨i, h i.property⟩, _⟩,
cases f.property with hinj hc,
refine ⟨_, λ i, hc ⟨i, h i.property⟩⟩,
rintro ⟨i, hi⟩ ⟨j, hj⟩ hh,
simpa only [subtype.mk_eq_mk] using hinj hh,
end
/-- When the Hall condition is satisfied, the set of matchings on a finite set is nonempty.
This is where `finset.all_card_le_bUnion_card_iff_exists_injective'` comes into the argument. -/
lemma hall_matchings_on.nonempty {ι : Type u} {α : Type v} [decidable_eq α]
(t : ι → finset α) (h : (∀ (s : finset ι), s.card ≤ (s.bUnion t).card))
' : finset ι) : nonempty (hall_matchings_on t ι') :=
begin
classical,
refine ⟨classical.indefinite_description _ _⟩,
apply (all_card_le_bUnion_card_iff_exists_injective' (λ (i : ι'), t i)).mp,
intro s',
convert h (s'.image coe) using 1,
simp only [card_image_of_injective s' subtype.coe_injective],
rw image_bUnion,
end
/--
This is the `hall_matchings_on` sets assembled into a directed system.
-/
-- TODO: This takes a long time to elaborate for an unknown reason.
def hall_matchings_functor {ι : Type u} {α : Type v} (t : ι → finset α) :
(finset ι)ᵒᵖ ⥤ Type (max u v) :=
{ obj := λ ι', hall_matchings_on t ι'.unop,
map := λ ι' ι'' g f, hall_matchings_on.restrict t (category_theory.le_of_hom g.unop) f }
noncomputable instance hall_matchings_on.fintype {ι : Type u} {α : Type v}
(t : ι → finset α) (ι' : finset ι) :
fintype (hall_matchings_on t ι') :=
begin
classical,
rw hall_matchings_on,
let g : hall_matchings_on t ι' → (ι' → ι'.bUnion t),
{ rintro f i,
refine ⟨f.val i, _⟩,
rw mem_bUnion,
exact ⟨i, i.property, f.property.2 i⟩ },
apply fintype.of_injective g,
intros f f' h,
simp only [g, function.funext_iff, subtype.val_eq_coe] at h,
ext a,
exact h a,
end
/--
This is the version of **Hall's Marriage Theorem** in terms of indexed
families of finite sets `t : ι → finset α`. It states that there is a
set of distinct representatives if and only if every union of `k` of the
sets has at least `k` elements.
Recall that `s.bUnion t` is the union of all the sets `t i` for `i ∈ s`.
This theorem is bootstrapped from `finset.all_card_le_bUnion_card_iff_exists_injective'`,
which has the additional constraint that `ι` is a `fintype`.
-/
theorem finset.all_card_le_bUnion_card_iff_exists_injective
{ι : Type u} {α : Type v} [decidable_eq α] (t : ι → finset α) :
(∀ (s : finset ι), s.card ≤ (s.bUnion t).card) ↔
(∃ (f : ι → α), function.injective f ∧ ∀ x, f x ∈ t x) :=
begin
split,
{ intro h,
/- Set up the functor -/
haveI : ∀ (ι' : (finset ι)ᵒᵖ), nonempty ((hall_matchings_functor t).obj ι') :=
λ ι', hall_matchings_on.nonempty t h ι'.unop,
classical,
haveI : Π (ι' : (finset ι)ᵒᵖ), fintype ((hall_matchings_functor t).obj ι') := begin
intro ι',
rw [hall_matchings_functor],
apply_instance,
end,
/- Apply the compactness argument -/
obtain ⟨u, hu⟩ := nonempty_sections_of_fintype_inverse_system (hall_matchings_functor t),
/- Interpret the resulting section of the inverse limit -/
refine ⟨_, _, _⟩,
{ /- Build the matching function from the section -/
exact λ i, (u (opposite.op ({i} : finset ι))).val
⟨i, by simp only [opposite.unop_op, mem_singleton]⟩, },
{ /- Show that it is injective -/
intros i i',
have subi : ({i} : finset ι) ⊆ {i,i'} := by simp,
have subi' : ({i'} : finset ι) ⊆ {i,i'} := by simp,
have le : ∀ {s t : finset ι}, s ⊆ t → s ≤ t := λ _ _ h, h,
rw [←hu (category_theory.hom_of_le (le subi)).op,
←hu (category_theory.hom_of_le (le subi')).op],
let uii' := u (opposite.op ({i,i'} : finset ι)),
exact λ h, subtype.mk_eq_mk.mp (uii'.property.1 h), },
{ /- Show that it maps each index to the corresponding finite set -/
intro i,
apply (u (opposite.op ({i} : finset ι))).property.2, }, },
{ /- The reverse direction is a straightforward cardinality argument -/
rintro ⟨f, hf₁, hf₂⟩ s,
rw ←finset.card_image_of_injective s hf₁,
apply finset.card_le_of_subset,
intro _,
rw [finset.mem_image, finset.mem_bUnion],
rintros ⟨x, hx, rfl⟩,
exact ⟨x, hx, hf₂ x⟩, },
end
/-- Given a relation such that the image of every singleton set is finite, then the image of every
finite set is finite. -/
instance {α : Type u} {β : Type v} [decidable_eq β]
(r : α → β → Prop) [∀ (a : α), fintype (rel.image r {a})]
(A : finset α) : fintype (rel.image r A) :=
begin
have h : rel.image r A = (A.bUnion (λ a, (rel.image r {a}).to_finset) : set β),
{ ext, simp [rel.image], },
rw [h],
apply finset_coe.fintype,
end
/--
This is a version of **Hall's Marriage Theorem** in terms of a relation
between types `α` and `β` such that `α` is finite and the image of
each `x : α` is finite (it suffices for `β` to be finite; see
`fintype.all_card_le_filter_rel_iff_exists_injective`). There is
a transversal of the relation (an injective function `α → β` whose graph is
a subrelation of the relation) iff every subset of
`k` terms of `α` is related to at least `k` terms of `β`.
Note: if `[fintype β]`, then there exist instances for `[∀ (a : α), fintype (rel.image r {a})]`.
-/
theorem fintype.all_card_le_rel_image_card_iff_exists_injective
{α : Type u} {β : Type v} [decidable_eq β]
(r : α → β → Prop) [∀ (a : α), fintype (rel.image r {a})] :
(∀ (A : finset α), A.card ≤ fintype.card (rel.image r A)) ↔
(∃ (f : α → β), function.injective f ∧ ∀ x, r x (f x)) :=
begin
let r' := λ a, (rel.image r {a}).to_finset,
have h : ∀ (A : finset α), fintype.card (rel.image r A) = (A.bUnion r').card,
{ intro A,
rw ←set.to_finset_card,
apply congr_arg,
ext b,
simp [rel.image], },
have h' : ∀ (f : α → β) x, r x (f x) ↔ f x ∈ r' x,
{ simp [rel.image], },
simp only [h, h'],
apply finset.all_card_le_bUnion_card_iff_exists_injective,
end
/--
This is a version of **Hall's Marriage Theorem** in terms of a relation to a finite type.
There is a transversal of the relation (an injective function `α → β` whose graph is a subrelation
of the relation) iff every subset of `k` terms of `α` is related to at least `k` terms of `β`.
It is like `fintype.all_card_le_rel_image_card_iff_exists_injective` but uses `finset.filter`
rather than `rel.image`.
-/
/- TODO: decidable_pred makes Yael sad. When an appropriate decidable_rel-like exists, fix it. -/
theorem fintype.all_card_le_filter_rel_iff_exists_injective
{α : Type u} {β : Type v} [fintype β]
(r : α → β → Prop) [∀ a, decidable_pred (r a)] :
(∀ (A : finset α), A.card ≤ (univ.filter (λ (b : β), ∃ a ∈ A, r a b)).card) ↔
(∃ (f : α → β), function.injective f ∧ ∀ x, r x (f x)) :=
begin
haveI := classical.dec_eq β,
let r' := λ a, univ.filter (λ b, r a b),
have h : ∀ (A : finset α), (univ.filter (λ (b : β), ∃ a ∈ A, r a b)) = (A.bUnion r'),
{ intro A,
ext b,
simp, },
have h' : ∀ (f : α → β) x, r x (f x) ↔ f x ∈ r' x,
{ simp, },
simp_rw [h, h'],
apply finset.all_card_le_bUnion_card_iff_exists_injective,
end