Datasets:
Tasks:
Text Generation
Modalities:
Text
Sub-tasks:
language-modeling
Languages:
English
Size:
100K - 1M
License:
(* ========================================================================= *) | |
(* Birkhoff's theorem and canonical version for congruence closure. *) | |
(* ========================================================================= *) | |
let ALL2_SYM = prove | |
(`!l1 l2. ALL2 P l1 l2 <=> ALL2 (\x y. P y x) l2 l1`, | |
LIST_INDUCT_TAC THEN LIST_INDUCT_TAC THEN ASM_REWRITE_TAC[ALL2]);; | |
let MAP_EQ_ALL2 = prove | |
(`!f l1 l2. ALL2 (\x y. f x = f y) l1 l2 ==> (MAP f l1 = MAP f l2)`, | |
GEN_TAC THEN LIST_INDUCT_TAC THEN LIST_INDUCT_TAC THEN | |
ASM_SIMP_TAC[ALL2; MAP; CONS_11] THEN STRIP_TAC THEN | |
FIRST_ASSUM MATCH_MP_TAC THEN ASM_REWRITE_TAC[]);; | |
let FORMSUBST_EQ = prove | |
(`!i s t. formsubst i (s === t) = (termsubst i s === termsubst i t)`, | |
REWRITE_TAC[Equal_DEF; formsubst; MAP]);; | |
(* ------------------------------------------------------------------------- *) | |
(* Avoid tedious language details, for sake of simplicity. *) | |
(* ------------------------------------------------------------------------- *) | |
let TERMS_UNIV = prove | |
(`terms UNIV = UNIV`, | |
REWRITE_TAC[IN_UNIV; EXTENSION] THEN REWRITE_TAC[IN] THEN | |
MATCH_MP_TAC term_INDUCT THEN REWRITE_TAC[terms_RULES] THEN | |
CONV_TAC(ONCE_DEPTH_CONV ETA_CONV) THEN | |
REPEAT STRIP_TAC THEN MATCH_MP_TAC(CONJUNCT2(SPEC_ALL terms_RULES)) THEN | |
ASM_REWRITE_TAC[IN_UNIV]);; | |
let FUNCTIONS_UNIV = prove | |
(`functions UNIV = UNIV`, | |
REWRITE_TAC[IN_UNIV; EXTENSION] THEN | |
REWRITE_TAC[functions; IN_UNIONS; IN_ELIM_THM; IN_UNIV] THEN | |
ONCE_REWRITE_TAC[FORALL_PAIR_THM] THEN | |
MAP_EVERY X_GEN_TAC [`f:num`; `n:num`] THEN | |
EXISTS_TAC `functions_form(Atom p [Fn f (REPLICATE n (V x))])` THEN | |
REWRITE_TAC[functions_form; MAP; LIST_UNION; UNION_EMPTY] THEN | |
REWRITE_TAC[functions_term; IN_INSERT; LENGTH_REPLICATE] THEN | |
EXISTS_TAC `Atom p [Fn f (REPLICATE n (V x))]` THEN | |
REWRITE_TAC[functions_form; MAP; LIST_UNION; UNION_EMPTY] THEN | |
REWRITE_TAC[functions_term; IN_INSERT; LENGTH_REPLICATE]);; | |
let PREDICATES_UNIV = prove | |
(`predicates UNIV = UNIV`, | |
REWRITE_TAC[IN_UNIV; EXTENSION] THEN | |
REWRITE_TAC[predicates; IN_UNIONS; IN_ELIM_THM; IN_UNIV] THEN | |
ONCE_REWRITE_TAC[FORALL_PAIR_THM] THEN | |
MAP_EVERY X_GEN_TAC [`p:num`; `n:num`] THEN | |
EXISTS_TAC `predicates_form(Atom p (REPLICATE n (V x)))` THEN | |
REWRITE_TAC[predicates_form; LENGTH_REPLICATE; IN_INSERT] THEN | |
EXISTS_TAC `Atom p (REPLICATE n (V x))` THEN | |
REWRITE_TAC[predicates_form; LENGTH_REPLICATE; IN_INSERT]);; | |
let LANGUAGE_UNIV = prove | |
(`language UNIV = UNIV,UNIV`, | |
REWRITE_TAC[language; FUNCTIONS_UNIV; PREDICATES_UNIV]);; | |
(* ------------------------------------------------------------------------- *) | |
(* Trivial properties of object equality. *) | |
(* ------------------------------------------------------------------------- *) | |
let EQUAL_INJ = prove | |
(`!s t u v. ((s === t) = (u === v)) <=> (s = u) /\ (t = v)`, | |
REWRITE_TAC[Equal_DEF; form_INJ; CONS_11]);; | |
let EQUAL_INJ_ALT = prove | |
(`!s t u v. ((s === t) = (u === v)) <=> (u = s) /\ (v = t)`, | |
REWRITE_TAC[EQUAL_INJ; EQ_SYM_EQ]);; | |
(* ------------------------------------------------------------------------- *) | |
(* Provability. *) | |
(* ------------------------------------------------------------------------- *) | |
parse_as_infix("|-",(11,"right"));; | |
let provable_RULES,provable_INDUCT,provable_CASES = new_inductive_definition | |
`(!s t. s === t IN E ==> E |- s === t) /\ | |
(!t. E |- t === t) /\ | |
(!s t. E |- s === t ==> E |- t === s) /\ | |
(!s t u. E |- s === t /\ E |- t === u ==> E |- s === u) /\ | |
(!f a b. ALL2 (\l r. E |- l === r) a b ==> E |- Fn f a === Fn f b) /\ | |
(!s t i. E |- s === t ==> E |- formsubst i (s === t))`;; | |
(* ------------------------------------------------------------------------- *) | |
(* Weakly canonical provability: instantiation and symmetry at leaves. *) | |
(* ------------------------------------------------------------------------- *) | |
parse_as_infix("|--",(11,"right"));; | |
let wcprovable_RULES,wcprovable_INDUCT,wcprovable_CASES = | |
new_inductive_definition | |
`(!s t i. s === t IN E ==> E |-- formsubst i (s === t)) /\ | |
(!s t i. s === t IN E ==> E |-- formsubst i (t === s)) /\ | |
(!t. E |-- t === t) /\ | |
(!s t u. E |-- s === t /\ E |-- t === u ==> E |-- s === u) /\ | |
(!f a b. ALL2 (\l r. E |-- l === r) a b ==> E |-- Fn f a === Fn f b)`;; | |
(* ------------------------------------------------------------------------- *) | |
(* Equivalence (fairly easy). *) | |
(* ------------------------------------------------------------------------- *) | |
let WCPROVABLE_SYM = prove | |
(`!E a. E |-- a ==> !s t. (a = (s === t)) ==> E |-- t === s`, | |
GEN_TAC THEN MATCH_MP_TAC wcprovable_INDUCT THEN | |
SIMP_TAC[EQUAL_INJ_ALT; LEFT_FORALL_IMP_THM; | |
RIGHT_EXISTS_AND_THM; LEFT_EXISTS_AND_THM; EXISTS_REFL] THEN | |
REWRITE_TAC[wcprovable_RULES] THEN REPEAT CONJ_TAC THENL | |
[ALL_TAC; | |
ALL_TAC; | |
MESON_TAC[wcprovable_RULES]; | |
ONCE_REWRITE_TAC[GSYM ALL2_SYM] THEN REWRITE_TAC[wcprovable_RULES]] THEN | |
REWRITE_TAC[FORMSUBST_EQ] THEN | |
SIMP_TAC[EQUAL_INJ_ALT; LEFT_FORALL_IMP_THM; | |
RIGHT_EXISTS_AND_THM; LEFT_EXISTS_AND_THM; EXISTS_REFL] THEN | |
REWRITE_TAC[GSYM FORMSUBST_EQ] THEN REWRITE_TAC[wcprovable_RULES]);; | |
let WCPROVABLE_INST = prove | |
(`!E a. E |-- a | |
==> !i s t. (a = (s === t)) ==> (E |-- formsubst i (s === t))`, | |
GEN_TAC THEN MATCH_MP_TAC wcprovable_INDUCT THEN | |
SIMP_TAC[EQUAL_INJ_ALT; LEFT_FORALL_IMP_THM; FORMSUBST_EQ; | |
RIGHT_EXISTS_AND_THM; LEFT_EXISTS_AND_THM; EXISTS_REFL] THEN | |
REWRITE_TAC[TERMSUBST_TERMSUBST] THEN REPEAT CONJ_TAC THENL | |
[SIMP_TAC[GSYM FORMSUBST_EQ; wcprovable_RULES]; | |
SIMP_TAC[GSYM FORMSUBST_EQ; wcprovable_RULES]; | |
REWRITE_TAC[wcprovable_RULES]; | |
MESON_TAC[wcprovable_RULES]; | |
ALL_TAC] THEN | |
REPEAT STRIP_TAC THEN REWRITE_TAC[termsubst] THEN | |
MATCH_MP_TAC(last(CONJUNCTS(SPEC_ALL wcprovable_RULES))) THEN | |
REWRITE_TAC[ALL2_MAP2] THEN | |
POP_ASSUM MP_TAC THEN MATCH_MP_TAC MONO_ALL2 THEN SIMP_TAC[]);; | |
let WCPROVABLE_PROVABLE = prove | |
(`!E s t. (E |-- s === t) <=> (E |- s === t)`, | |
GEN_TAC THEN | |
SUBGOAL_THEN | |
`(!a. E |- a ==> !s t. (a = (s === t)) ==> E |-- s === t) /\ | |
(!a. E |-- a ==> !s t. (a = (s === t)) ==> E |- s === t)` | |
(fun th -> MESON_TAC[th]) THEN | |
CONJ_TAC THENL | |
[MATCH_MP_TAC provable_INDUCT; | |
MATCH_MP_TAC wcprovable_INDUCT] THEN | |
SIMP_TAC[EQUAL_INJ_ALT; LEFT_FORALL_IMP_THM; | |
RIGHT_EXISTS_AND_THM; LEFT_EXISTS_AND_THM; EXISTS_REFL] THEN | |
REWRITE_TAC[provable_RULES; wcprovable_RULES] THENL | |
[MESON_TAC[FORMSUBST_TRIV; wcprovable_RULES; Equal_DEF; WCPROVABLE_SYM; | |
WCPROVABLE_INST]; | |
MESON_TAC[FORMSUBST_TRIV; provable_RULES; Equal_DEF]]);; | |
(* ------------------------------------------------------------------------- *) | |
(* R-assoc transitivity chains and congruences maximally pushed down. *) | |
(* ------------------------------------------------------------------------- *) | |
parse_as_infix("|---",(11,"right"));; | |
parse_as_infix("|--_axiom",(11,"right"));; | |
parse_as_infix("|--_cong",(11,"right"));; | |
parse_as_infix("|--_achain",(11,"right"));; | |
parse_as_infix("|--_cchain",(11,"right"));; | |
let aprovable_RULES,aprovable_INDUCT,aprovable_CASES = | |
new_inductive_definition | |
`(!s t i. s === t IN E ==> E |--_axiom formsubst i (s === t)) /\ | |
(!s t i. s === t IN E ==> E |--_axiom formsubst i (t === s))`;; | |
let cprovable_RULES,cprovable_INDUCT,cprovable_CASES = | |
new_inductive_definition | |
`(!s t. E |--_axiom s === t ==> E |--_achain s === t) /\ | |
(!s t. E |--_cong s === t ==> E |--_cchain s === t) /\ | |
(!s t u. E |--_axiom s === t /\ E |--- t === u ==> E |--_achain s === u) /\ | |
(!s t u. E |--_cong s === t /\ E |--_achain t === u | |
==> E |--_cchain s === u) /\ | |
(!f a b. ALL2 (\l r. E |--- l === r) a b | |
==> E |--_cong Fn f a === Fn f b) /\ | |
(!s t. (s = t) \/ E |--_achain s === t \/ E |--_cchain s === t | |
==> E |--- s === t)`;; | |
let CPROVABLE_PROVABLE_LEMMA = prove | |
(`!E a. E |-- a | |
==> E |-- a /\ | |
E |--- a /\ | |
!u s t. (a = (s === t)) | |
==> E |--- t === u ==> E |--- s === u`, | |
GEN_TAC THEN MATCH_MP_TAC wcprovable_INDUCT THEN | |
SIMP_TAC[EQUAL_INJ_ALT; LEFT_FORALL_IMP_THM; | |
RIGHT_EXISTS_AND_THM; LEFT_EXISTS_AND_THM; EXISTS_REFL] THEN | |
REWRITE_TAC[wcprovable_RULES] THEN | |
REPEAT(CONJ_TAC THENL | |
[MESON_TAC[FORMSUBST_EQ; wcprovable_RULES; | |
cprovable_RULES; aprovable_RULES]; ALL_TAC]) THEN | |
REWRITE_TAC[GSYM AND_ALL2] THEN SIMP_TAC[wcprovable_RULES] THEN | |
REPEAT GEN_TAC THEN STRIP_TAC THEN | |
ASM_SIMP_TAC[cprovable_RULES] THEN X_GEN_TAC `u:term` THEN | |
GEN_REWRITE_TAC LAND_CONV [cprovable_CASES] THEN | |
REWRITE_TAC[EQUAL_INJ_ALT] THEN | |
ONCE_REWRITE_TAC[TAUT `a /\ b <=> ~(a ==> ~b)`] THEN | |
SIMP_TAC[] THEN REWRITE_TAC[NOT_IMP; LEFT_EXISTS_AND_THM] THEN | |
REWRITE_TAC[LEFT_EXISTS_AND_THM; RIGHT_EXISTS_AND_THM; EXISTS_REFL] THEN | |
DISCH_THEN (DISJ_CASES_THEN MP_TAC) THENL | |
[DISCH_THEN(SUBST1_TAC o SYM) THEN | |
MATCH_MP_TAC(el 5 (CONJUNCTS(SPEC_ALL cprovable_RULES))) THEN | |
DISJ2_TAC THEN DISJ2_TAC THEN | |
MATCH_MP_TAC(el 1 (CONJUNCTS(SPEC_ALL cprovable_RULES))) THEN | |
MATCH_MP_TAC(el 4 (CONJUNCTS(SPEC_ALL cprovable_RULES))) THEN | |
ASM_REWRITE_TAC[]; ALL_TAC] THEN | |
DISCH_THEN DISJ_CASES_TAC THENL | |
[MATCH_MP_TAC(el 5 (CONJUNCTS(SPEC_ALL cprovable_RULES))) THEN | |
DISJ2_TAC THEN DISJ2_TAC THEN | |
MATCH_MP_TAC(el 3 (CONJUNCTS(SPEC_ALL cprovable_RULES))) THEN | |
EXISTS_TAC `Fn f b` THEN ASM_SIMP_TAC[cprovable_RULES]; ALL_TAC] THEN | |
FIRST_X_ASSUM(MP_TAC o GEN_REWRITE_RULE I [cprovable_CASES]) THEN | |
REWRITE_TAC[EQUAL_INJ_ALT] THEN | |
ONCE_REWRITE_TAC[TAUT `a /\ b <=> ~(a ==> ~b)`] THEN | |
SIMP_TAC[] THEN REWRITE_TAC[NOT_IMP; LEFT_EXISTS_AND_THM] THEN | |
REWRITE_TAC[LEFT_EXISTS_AND_THM; RIGHT_EXISTS_AND_THM; EXISTS_REFL] THEN | |
DISCH_THEN(DISJ_CASES_THEN MP_TAC) THENL | |
[GEN_REWRITE_TAC LAND_CONV [cprovable_CASES] THEN | |
REWRITE_TAC[EQUAL_INJ_ALT; term_INJ; LEFT_IMP_EXISTS_THM] THEN | |
GEN_TAC THEN GEN_TAC THEN X_GEN_TAC `c:term list` THEN | |
REWRITE_TAC[GSYM CONJ_ASSOC] THEN | |
SIMP_TAC[TAUT `a /\ b /\ c ==> d <=> a ==> b ==> c ==> d`] THEN | |
DISCH_THEN(K ALL_TAC) THEN DISCH_THEN(K ALL_TAC) THEN | |
DISCH_THEN(CONJUNCTS_THEN2 (SUBST1_TAC o SYM) ASSUME_TAC) THEN | |
MATCH_MP_TAC(el 5 (CONJUNCTS(SPEC_ALL cprovable_RULES))) THEN | |
DISJ2_TAC THEN DISJ2_TAC THEN | |
MATCH_MP_TAC(el 1 (CONJUNCTS(SPEC_ALL cprovable_RULES))) THEN | |
MATCH_MP_TAC(el 4 (CONJUNCTS(SPEC_ALL cprovable_RULES))) THEN | |
MAP_EVERY UNDISCH_TAC | |
[`ALL2 (\l r. !u. E |--- r === u ==> E |--- l === u) a b`; | |
`ALL2 (\l r. E |--- l === r) b c`] THEN | |
REWRITE_TAC[IMP_IMP] THEN | |
MAP_EVERY (fun t -> SPEC_TAC(t,t)) | |
[`c:term list`; `b:term list`; `a:term list`] THEN | |
LIST_INDUCT_TAC THEN LIST_INDUCT_TAC THEN LIST_INDUCT_TAC THEN | |
REWRITE_TAC[ALL2] THEN REPEAT STRIP_TAC THEN ASM_SIMP_TAC[] THEN | |
FIRST_ASSUM MATCH_MP_TAC THEN | |
FIRST_ASSUM(fun th -> | |
EXISTS_TAC (rand(concl th)) THEN ASM_REWRITE_TAC[] THEN NO_TAC); | |
ALL_TAC] THEN | |
DISCH_THEN(X_CHOOSE_THEN `s:term` (CONJUNCTS_THEN2 MP_TAC ASSUME_TAC)) THEN | |
GEN_REWRITE_TAC LAND_CONV [cprovable_CASES] THEN | |
REWRITE_TAC[EQUAL_INJ_ALT; term_INJ; LEFT_IMP_EXISTS_THM] THEN | |
GEN_TAC THEN GEN_TAC THEN X_GEN_TAC `c:term list` THEN | |
REWRITE_TAC[GSYM CONJ_ASSOC] THEN | |
SIMP_TAC[TAUT `a /\ b /\ c ==> d <=> a ==> b ==> c ==> d`] THEN | |
DISCH_THEN(K ALL_TAC) THEN DISCH_THEN(K ALL_TAC) THEN | |
DISCH_THEN(CONJUNCTS_THEN2 (SUBST_ALL_TAC o SYM) ASSUME_TAC) THEN | |
MATCH_MP_TAC(el 5 (CONJUNCTS(SPEC_ALL cprovable_RULES))) THEN DISJ2_TAC THEN | |
DISJ2_TAC THEN MATCH_MP_TAC(el 3 (CONJUNCTS(SPEC_ALL cprovable_RULES))) THEN | |
EXISTS_TAC `Fn f c` THEN ASM_REWRITE_TAC[] THEN | |
MATCH_MP_TAC(el 4 (CONJUNCTS(SPEC_ALL cprovable_RULES))) THEN | |
MAP_EVERY UNDISCH_TAC | |
[`ALL2 (\l r. !u. E |--- r === u ==> E |--- l === u) a b`; | |
`ALL2 (\l r. E |--- l === r) b c`] THEN | |
REWRITE_TAC[IMP_IMP] THEN | |
MAP_EVERY (fun t -> SPEC_TAC(t,t)) | |
[`c:term list`; `b:term list`; `a:term list`] THEN | |
LIST_INDUCT_TAC THEN LIST_INDUCT_TAC THEN LIST_INDUCT_TAC THEN | |
REWRITE_TAC[ALL2] THEN REPEAT STRIP_TAC THEN ASM_SIMP_TAC[] THEN | |
FIRST_ASSUM MATCH_MP_TAC THEN | |
FIRST_ASSUM(fun th -> | |
EXISTS_TAC (rand(concl th)) THEN ASM_REWRITE_TAC[] THEN NO_TAC));; | |
let CPROVABLE_PROVABLE = prove | |
(`!E s t. (E |--- s === t) <=> (E |- s === t)`, | |
REPEAT GEN_TAC THEN EQ_TAC THENL | |
[ALL_TAC; MESON_TAC[CPROVABLE_PROVABLE_LEMMA; WCPROVABLE_PROVABLE]] THEN | |
SUBGOAL_THEN | |
`(!a. E |--_achain a ==> !s t. (a = (s === t)) ==> E |- s === t) /\ | |
(!a. E |--_cchain a ==> !s t. (a = (s === t)) ==> E |- s === t) /\ | |
(!a. E |--_cong a ==> !s t. (a = (s === t)) ==> E |- s === t) /\ | |
(!a. E |--- a ==> !s t. (a = (s === t)) ==> E |- s === t)` | |
(fun th -> MESON_TAC[th]) THEN | |
MATCH_MP_TAC cprovable_INDUCT THEN | |
SIMP_TAC[EQUAL_INJ_ALT; LEFT_FORALL_IMP_THM; | |
RIGHT_EXISTS_AND_THM; LEFT_EXISTS_AND_THM; EXISTS_REFL] THEN | |
REWRITE_TAC[provable_RULES] THEN | |
SUBGOAL_THEN `!a. E |--_axiom a ==> !s t. (a = (s === t)) ==> E |- s === t` | |
(fun th -> MESON_TAC[th; provable_RULES]) THEN | |
MATCH_MP_TAC aprovable_INDUCT THEN | |
REWRITE_TAC[FORMSUBST_EQ; EQUAL_INJ_ALT] THEN | |
SIMP_TAC[] THEN MESON_TAC[provable_RULES; FORMSUBST_EQ]);; | |
(* ------------------------------------------------------------------------- *) | |
(* Auxiliary notion of set of subterms in equations. *) | |
(* ------------------------------------------------------------------------- *) | |
let subterms = new_recursive_definition term_RECURSION | |
`(subterms (V x) = {(V x)}) /\ | |
(subterms (Fn f args) = | |
(Fn f args) INSERT (LIST_UNION (MAP subterms args)))`;; | |
let subtermsa = new_recursive_definition form_RECURSION | |
`subtermsa (Atom P args) = LIST_UNION (MAP subterms args)`;; | |
let subtermss = new_definition | |
`subtermss E = UNIONS {subtermsa p | p IN E}`;; | |
let SUBTERMS_REFL = prove | |
(`!t. t IN subterms t`, | |
MATCH_MP_TAC term_INDUCT THEN REWRITE_TAC[subterms; IN_INSERT]);; | |
(* ------------------------------------------------------------------------- *) | |
(* Show that this maintains the subterm property for congruence closure. *) | |
(* ------------------------------------------------------------------------- *) | |
let esubterms = new_definition | |
`esubterms E s t = | |
subtermss ((s === t) INSERT {formsubst i p |i,p| p IN E})`;; | |
parse_as_infix("|----",(11,"right"));; | |
parse_as_infix("|--_scong",(11,"right"));; | |
parse_as_infix("|--_sachain",(11,"right"));; | |
parse_as_infix("|--_scchain",(11,"right"));; | |
let scprovable_RULES,scprovable_INDUCT,scprovable_CASES = | |
new_inductive_definition | |
`(!s t. E |--_axiom s === t ==> E |--_sachain s === t) /\ | |
(!s t. E |--_scong s === t ==> E |--_scchain s === t) /\ | |
(!s t u. E |--_axiom s === t /\ E |---- t === u /\ t IN esubterms E s u | |
==> E |--_sachain s === u) /\ | |
(!s t u. E |--_scong s === t /\ E |--_sachain t === u /\ t IN esubterms E s u | |
==> E |--_scchain s === u) /\ | |
(!f a b. ALL2 (\l r. E |---- l === r) a b | |
==> E |--_scong Fn f a === Fn f b) /\ | |
(!s t. (s = t) \/ E |--_sachain s === t \/ E |--_scchain s === t | |
==> E |---- s === t)`;; | |
let ESUBTERMS_TRIVIAL_L = prove | |
(`!u. u IN subterms s ==> u IN esubterms E s t`, | |
REWRITE_TAC[esubterms; subtermss; IN_UNIONS; IN_INSERT; IN_ELIM_THM] THEN | |
REPEAT STRIP_TAC THEN EXISTS_TAC `subterms s UNION subterms t` THEN | |
ASM_REWRITE_TAC[IN_UNION] THEN | |
EXISTS_TAC `s === t` THEN REWRITE_TAC[subtermsa; Equal_DEF; MAP; LIST_UNION] THEN | |
REWRITE_TAC[UNION_EMPTY]);; | |
let ESUBTERMS_TRIVIAL_R = prove | |
(`!u. u IN subterms t ==> u IN esubterms E s t`, | |
REWRITE_TAC[esubterms; subtermss; IN_UNIONS; IN_INSERT; IN_ELIM_THM] THEN | |
REPEAT STRIP_TAC THEN EXISTS_TAC `subterms s UNION subterms t` THEN | |
ASM_REWRITE_TAC[IN_UNION] THEN | |
EXISTS_TAC `s === t` THEN REWRITE_TAC[subtermsa; Equal_DEF; MAP; LIST_UNION] THEN | |
REWRITE_TAC[UNION_EMPTY]);; | |
let SCPROVABLE_SUBTERMS = prove | |
(`!a. E |--_sachain a | |
==> !s t. (a = (s === t)) | |
==> !u v. s IN esubterms E u v`, | |
GEN_TAC THEN GEN_REWRITE_TAC LAND_CONV [scprovable_CASES] THEN | |
SUBGOAL_THEN | |
`!a. E |--_axiom a | |
==> !s t. (a = (s === t)) | |
==> !u v. s IN esubterms E u v` | |
(fun th -> STRIP_TAC THEN ASM_REWRITE_TAC[EQUAL_INJ_ALT] THEN | |
ASM_MESON_TAC[th]) THEN | |
GEN_TAC THEN ONCE_REWRITE_TAC[aprovable_CASES] THEN | |
STRIP_TAC THEN ASM_REWRITE_TAC[FORMSUBST_EQ; EQUAL_INJ_ALT] THEN | |
REPEAT STRIP_TAC THEN ASM_REWRITE_TAC[] THEN | |
(REWRITE_TAC[esubterms; subtermss; IN_UNIONS; IN_ELIM_THM; IN_INSERT] THEN | |
EXISTS_TAC `subtermsa (formsubst i (s === t))` THEN CONJ_TAC THENL | |
[ASM_MESON_TAC[]; ALL_TAC] THEN | |
REWRITE_TAC[subtermsa; FORMSUBST_EQ] THEN | |
REWRITE_TAC[subtermsa; Equal_DEF; MAP; LIST_UNION; UNION_EMPTY] THEN | |
MESON_TAC[IN_UNION; SUBTERMS_REFL]));; | |
let SCPROVABLE_CPROVABLE_LEMMA = prove | |
(`(!a. E |--_achain a ==> !s t. (a = (s === t)) ==> E |--_sachain s === t) /\ | |
(!a. E |--_cchain a ==> !s t. (a = (s === t)) ==> E |--_scchain s === t) /\ | |
(!a. E |--_cong a ==> !s t. (a = (s === t)) ==> E |--_scong s === t) /\ | |
(!a. E |--- a ==> !s t. (a = (s === t)) ==> E |---- s === t)`, | |
MATCH_MP_TAC cprovable_INDUCT THEN | |
SIMP_TAC[EQUAL_INJ_ALT; LEFT_FORALL_IMP_THM; | |
RIGHT_EXISTS_AND_THM; LEFT_EXISTS_AND_THM; EXISTS_REFL] THEN | |
REWRITE_TAC[scprovable_RULES] THEN REPEAT STRIP_TAC THENL | |
[MATCH_MP_TAC(el 2 (CONJUNCTS(SPEC_ALL scprovable_RULES))) THEN | |
EXISTS_TAC `t:term` THEN ASM_REWRITE_TAC[] THEN | |
FIRST_X_ASSUM(MP_TAC o GEN_REWRITE_RULE I [aprovable_CASES]) THEN | |
REWRITE_TAC[FORMSUBST_EQ; EQUAL_INJ_ALT] THEN | |
DISCH_THEN(REPEAT_TCL DISJ_CASES_THEN MP_TAC) THEN | |
(REWRITE_TAC[LEFT_IMP_EXISTS_THM] THEN | |
MAP_EVERY X_GEN_TAC [`v:term`; `w:term`; `i:num->term`] THEN | |
DISCH_THEN(STRIP_ASSUME_TAC o GSYM) THEN ASM_REWRITE_TAC[] THEN | |
REWRITE_TAC[esubterms; subtermss; IN_UNIONS; IN_ELIM_THM; IN_INSERT] THEN | |
EXISTS_TAC `subtermsa (formsubst i (v === w))` THEN CONJ_TAC THENL | |
[ASM_MESON_TAC[]; ALL_TAC] THEN | |
REWRITE_TAC[subtermsa; FORMSUBST_EQ] THEN | |
REWRITE_TAC[subtermsa; Equal_DEF; MAP; LIST_UNION; UNION_EMPTY] THEN | |
MESON_TAC[IN_UNION; SUBTERMS_REFL]); | |
ALL_TAC] THEN | |
MATCH_MP_TAC(el 3 (CONJUNCTS(SPEC_ALL scprovable_RULES))) THEN | |
EXISTS_TAC `t:term` THEN ASM_REWRITE_TAC[] THEN | |
ASM_MESON_TAC[SCPROVABLE_SUBTERMS]);; | |
let SCPROVABLE_CPROVABLE = prove | |
(`!E s t. (E |--- s === t) <=> (E |---- s === t)`, | |
REPEAT GEN_TAC THEN EQ_TAC THENL | |
[ASM_MESON_TAC[SCPROVABLE_CPROVABLE_LEMMA]; ALL_TAC] THEN | |
SUBGOAL_THEN | |
`(!a. E |--_sachain a ==> !s t. (a = (s === t)) ==> E |--_achain s === t) /\ | |
(!a. E |--_scchain a ==> !s t. (a = (s === t)) ==> E |--_cchain s === t) /\ | |
(!a. E |--_scong a ==> !s t. (a = (s === t)) ==> E |--_cong s === t) /\ | |
(!a. E |---- a ==> !s t. (a = (s === t)) ==> E |--- s === t)` | |
(fun th -> MESON_TAC[th]) THEN | |
MATCH_MP_TAC scprovable_INDUCT THEN | |
SIMP_TAC[EQUAL_INJ_ALT; LEFT_FORALL_IMP_THM; | |
RIGHT_EXISTS_AND_THM; LEFT_EXISTS_AND_THM; EXISTS_REFL] THEN | |
REWRITE_TAC[cprovable_RULES] THEN MESON_TAC[cprovable_RULES]);; | |
let SCPROVABLE_PROVABLE = prove | |
(`!E s t. (E |--- s === t) <=> (E |- s === t)`, | |
MESON_TAC[SCPROVABLE_CPROVABLE; CPROVABLE_PROVABLE]);; | |
(* ------------------------------------------------------------------------- *) | |
(* Clausal version of equality properties. *) | |
(* ------------------------------------------------------------------------- *) | |
let Eqclause_Func = new_definition | |
`Eqclause_Func (f,n) = | |
set_of_list | |
(CONS (Fn f (MAP FST (Varpairs n)) === Fn f (MAP SND (Varpairs n))) | |
(MAP (\(s,t). Not(s === t)) (Varpairs n)))`;; | |
let Eqclause_Pred = new_definition | |
`Eqclause_Pred (p,n) = | |
set_of_list | |
(CONS (Atom p (MAP SND (Varpairs n))) | |
(CONS (Not(Atom p (MAP FST (Varpairs n)))) | |
(MAP (\(s,t). Not(s === t)) (Varpairs n))))`;; | |
let Eqclauses_DEF = new_definition | |
`Eqclauses L = | |
{(V 0 === V 0)} INSERT | |
{(Not(V 0 === V 1)), (Not(V 2 === V 1)), (V 0 === V 2)} INSERT | |
({Eqclause_Func fa | fa IN FST L} UNION | |
{Eqclause_Pred pa | pa IN SND L})`;; | |
let EQCLAUSE_EQAXIOM_FUNC = prove | |
(`!M f n. ~(Dom M :A->bool = {}) | |
==> (M satisfies {(interp(Eqclause_Func (f,n)))} <=> | |
M satisfies {(Eqaxiom_Func (f,n))})`, | |
REPEAT GEN_TAC THEN REWRITE_TAC[Eqclause_Func; Eqaxiom_Func] THEN | |
SIMP_TAC[satisfies; IN_INSERT; NOT_IN_EMPTY] THEN | |
REWRITE_TAC[LEFT_FORALL_IMP_THM; RIGHT_EXISTS_AND_THM] THEN | |
REWRITE_TAC[EXISTS_REFL] THEN | |
SIMP_TAC[HOLDS_UCLOSE_ALL_EQ] THEN | |
SIMP_TAC[HOLDS_INTERP; FINITE_SET_OF_LIST] THEN | |
REWRITE_TAC[set_of_list; IN_INSERT; HOLDS] THEN | |
REWRITE_TAC[TAUT `(a \/ b) /\ c <=> a /\ c \/ b /\ c`; EXISTS_OR_THM] THEN | |
REWRITE_TAC[UNWIND_THM2] THEN DISCH_TAC THEN | |
AP_TERM_TAC THEN GEN_REWRITE_TAC I [FUN_EQ_THM] THEN | |
X_GEN_TAC `v:num->A` THEN REWRITE_TAC[] THEN | |
MATCH_MP_TAC(TAUT `(a ==> (b <=> c)) ==> (a ==> b <=> a ==> c)`) THEN | |
DISCH_TAC THEN | |
MATCH_MP_TAC(TAUT `(~a <=> b) ==> (c \/ a <=> b ==> c)`) THEN | |
SPEC_TAC(`Varpairs n`,`l:(term#term)list`) THEN | |
ONCE_REWRITE_TAC[CONJ_SYM] THEN | |
REWRITE_TAC[EX_MEM; IN_SET_OF_LIST] THEN | |
REWRITE_TAC[NOT_EX; ALL_MAP; o_THM] THEN | |
MATCH_MP_TAC list_INDUCT THEN | |
REWRITE_TAC[ALL; ITLIST; HOLDS; MAP] THEN SIMP_TAC[] THEN | |
GEN_REWRITE_TAC I [FORALL_PAIR_THM] THEN | |
REPEAT STRIP_TAC THEN REWRITE_TAC[o_THM] THEN | |
CONV_TAC(ONCE_DEPTH_CONV GEN_BETA_CONV) THEN | |
REWRITE_TAC[HOLDS]);; | |
let Eqaxiom_Pred_imp = new_definition | |
`Eqaxiom_Pred_imp (p,n) = | |
uclose | |
(ITLIST (&&) (MAP (\(s,t). s === t) (Varpairs n)) True | |
--> Atom p (MAP FST (Varpairs n)) | |
--> Atom p (MAP SND (Varpairs n)))`;; | |
let lemma = prove(`a INSERT s = {a} UNION s`,SET_TAC[]);; | |
let EQCLAUSES_EQAXIOMS = prove | |
(`!M L. ~(Dom M :A->bool = {}) | |
==> (M satisfies (IMAGE interp (Eqclauses L)) <=> | |
M satisfies (Eqaxioms L))`, | |
REPEAT STRIP_TAC THEN | |
REWRITE_TAC[Eqclauses_DEF; Eqaxioms_DEF; IMAGE_CLAUSES; IMAGE_UNION] THEN | |
GEN_REWRITE_TAC (LAND_CONV o RAND_CONV o RAND_CONV) [lemma] THEN | |
GEN_REWRITE_TAC (LAND_CONV o RAND_CONV) [lemma] THEN | |
REWRITE_TAC[SATISFIES_UNION] THEN | |
MATCH_MP_TAC(TAUT | |
`(a' <=> a) /\ (a ==> (b' <=> b)) ==> (a' /\ b' <=> a /\ b)`) THEN | |
CONJ_TAC THENL | |
[REWRITE_TAC[SATISFIES_1] THEN ASM_REWRITE_TAC[HOLDS_UCLOSE] THEN | |
SIMP_TAC[HOLDS_INTERP; FINITE_RULES] THEN | |
REWRITE_TAC[IN_SING] THEN MESON_TAC[]; | |
ALL_TAC] THEN | |
DISCH_TAC THEN | |
MATCH_MP_TAC(TAUT | |
`(a' <=> a) /\ (a ==> (b' <=> b)) ==> (a' /\ b' <=> a /\ b)`) THEN | |
CONJ_TAC THENL | |
[REWRITE_TAC[SATISFIES_1] THEN ASM_REWRITE_TAC[HOLDS_UCLOSE] THEN | |
SIMP_TAC[HOLDS_INTERP; FINITE_INSERT; FINITE_EMPTY] THEN | |
REWRITE_TAC[IN_INSERT; NOT_IN_EMPTY; HOLDS] THEN | |
REWRITE_TAC[TAUT `(a \/ b) /\ c <=> a /\ c \/ b /\ c`] THEN | |
REWRITE_TAC[EXISTS_OR_THM; UNWIND_THM2] THEN | |
REWRITE_TAC[HOLDS] THEN AP_TERM_TAC THEN ABS_TAC THEN | |
CONV_TAC TAUT; ALL_TAC] THEN | |
DISCH_TAC THEN | |
MATCH_MP_TAC(TAUT | |
`(a' <=> a) /\ (a ==> (b' <=> b)) ==> (a' /\ b' <=> a /\ b)`) THEN | |
CONJ_TAC THENL | |
[REWRITE_TAC[SATISFIES_IMAGE] THEN | |
REWRITE_TAC[satisfies; IN_ELIM_THM] THEN | |
SIMP_TAC[RIGHT_AND_EXISTS_THM; LEFT_IMP_EXISTS_THM] THEN | |
FIRST_ASSUM(MP_TAC o MATCH_MP EQCLAUSE_EQAXIOM_FUNC) THEN | |
REWRITE_TAC[SATISFIES_1] THEN | |
ONCE_REWRITE_TAC[FORALL_PAIR_THM] THEN MESON_TAC[]; ALL_TAC] THEN | |
DISCH_TAC THEN | |
REWRITE_TAC[SATISFIES_IMAGE] THEN | |
REWRITE_TAC[satisfies; IN_ELIM_THM] THEN | |
ONCE_REWRITE_TAC[EXISTS_PAIR_THM] THEN | |
SUBGOAL_THEN | |
`!p n. (!v:num->A. valuation M v | |
==> holds M v (interp(Eqclause_Pred(p,n)))) <=> | |
(!v:num->A. valuation M v | |
==> holds M v (Eqaxiom_Pred(p,n)))` | |
(fun th -> MESON_TAC[th]) THEN | |
GEN_TAC THEN GEN_TAC THEN | |
MATCH_MP_TAC EQ_TRANS THEN | |
EXISTS_TAC | |
`!v:num->A. valuation M v ==> holds M v (Eqaxiom_Pred_imp(p,n))` THEN | |
CONJ_TAC THENL | |
[REWRITE_TAC[Eqclause_Pred; Eqaxiom_Pred_imp] THEN | |
ASM_SIMP_TAC[HOLDS_UCLOSE_ALL_EQ] THEN | |
SIMP_TAC[HOLDS_INTERP; FINITE_SET_OF_LIST] THEN | |
REWRITE_TAC[set_of_list; IN_INSERT; HOLDS] THEN | |
REWRITE_TAC[TAUT `(a \/ b) /\ c <=> a /\ c \/ b /\ c`; EXISTS_OR_THM] THEN | |
REWRITE_TAC[UNWIND_THM2] THEN | |
AP_TERM_TAC THEN GEN_REWRITE_TAC I [FUN_EQ_THM] THEN | |
X_GEN_TAC `v:num->A` THEN REWRITE_TAC[] THEN | |
MATCH_MP_TAC(TAUT `(a ==> (b <=> c)) ==> (a ==> b <=> a ==> c)`) THEN | |
DISCH_TAC THEN REWRITE_TAC[HOLDS] THEN | |
MATCH_MP_TAC(TAUT | |
`(~c <=> d) ==> (a \/ ~b \/ c <=> d ==> b ==> a)`) THEN | |
SPEC_TAC(`Varpairs n`,`l:(term#term)list`) THEN | |
ONCE_REWRITE_TAC[CONJ_SYM] THEN | |
REWRITE_TAC[EX_MEM; IN_SET_OF_LIST] THEN | |
REWRITE_TAC[NOT_EX; ALL_MAP; o_THM] THEN | |
MATCH_MP_TAC list_INDUCT THEN | |
REWRITE_TAC[ALL; ITLIST; HOLDS; MAP] THEN SIMP_TAC[] THEN | |
GEN_REWRITE_TAC I [FORALL_PAIR_THM] THEN | |
REPEAT STRIP_TAC THEN REWRITE_TAC[o_THM] THEN | |
CONV_TAC(ONCE_DEPTH_CONV GEN_BETA_CONV) THEN | |
REWRITE_TAC[HOLDS]; | |
ALL_TAC] THEN | |
REWRITE_TAC[Eqaxiom_Pred_imp; Eqaxiom_Pred; HOLDS] THEN | |
ASM_SIMP_TAC[HOLDS_UCLOSE_ALL_EQ; HOLDS] THEN | |
EQ_TAC THEN SIMP_TAC[] THEN DISCH_TAC THEN X_GEN_TAC `v:num->A` THEN | |
DISCH_TAC THEN DISCH_TAC THEN EQ_TAC THEN ASM_SIMP_TAC[] THEN | |
DISCH_TAC THEN | |
FIRST_X_ASSUM(MP_TAC o SPEC | |
`\x. if EVEN(x) then v(x + 1):A else v(x - 1)`) THEN | |
REWRITE_TAC[GSYM MAP_o] THEN | |
MAP_EVERY UNDISCH_TAC | |
[`Pred M p (MAP (termval M (v:num->A)) (MAP SND (Varpairs n)))`; | |
`holds M (v:num->A) | |
(ITLIST (&&) (MAP (\(s,t). s === t) (Varpairs n)) True)`] THEN | |
MATCH_MP_TAC(TAUT | |
`a /\ (x <=> b) /\ (y <=> c) /\ (d <=> e) | |
==> x ==> y ==> (a ==> b ==> c ==> d) ==> e`) THEN | |
CONJ_TAC THENL | |
[REWRITE_TAC[valuation] THEN GEN_TAC THEN COND_CASES_TAC THEN | |
ASM_MESON_TAC[valuation]; ALL_TAC] THEN | |
SUBGOAL_THEN | |
`!v:num->A x y. valuation M v | |
==> (holds M v (V x === V y) <=> holds M v (V y === V x))` | |
ASSUME_TAC THENL | |
[X_GEN_TAC `w:num->A` THEN REPEAT STRIP_TAC THEN | |
REPEAT(FIRST_X_ASSUM(MP_TAC o GEN_REWRITE_RULE I [SATISFIES_1])) THEN | |
ASM_REWRITE_TAC[HOLDS_UCLOSE] THEN | |
REWRITE_TAC[IMP_IMP] THEN | |
REWRITE_TAC[AND_FORALL_THM] THEN | |
DISCH_THEN(fun th -> | |
MP_TAC(SPEC `\n. if n = 2 then (w:num->A)(y) else w(x)` th) THEN | |
MP_TAC(SPEC `\n. if n = 2 then (w:num->A)(x) else w(y)` th)) THEN | |
REWRITE_TAC[HOLDS; Equal_DEF; MAP; termval; ARITH_EQ; valuation] THEN | |
RULE_ASSUM_TAC(REWRITE_RULE[valuation]) THEN | |
ONCE_REWRITE_TAC[COND_RAND] THEN ONCE_REWRITE_TAC[COND_RATOR] THEN | |
ASM_REWRITE_TAC[COND_ID] THEN CONV_TAC TAUT; ALL_TAC] THEN | |
CONJ_TAC THENL | |
[SPEC_TAC(`n:num`,`n:num`) THEN | |
INDUCT_TAC THEN ASM_REWRITE_TAC[Varpairs_DEF; MAP; ITLIST; HOLDS] THEN | |
AP_THM_TAC THEN AP_TERM_TAC THEN | |
CONV_TAC(ONCE_DEPTH_CONV GEN_BETA_CONV) THEN | |
MATCH_MP_TAC EQ_TRANS THEN | |
EXISTS_TAC `holds M (v:num->A) (V(2 * n + 1) === V(2 * n))` THEN | |
CONJ_TAC THENL [ASM_SIMP_TAC[]; ALL_TAC] THEN | |
REWRITE_TAC[HOLDS; Equal_DEF; MAP; termval; ARITH_EQ] THEN | |
REWRITE_TAC[EVEN_ADD; EVEN_MULT; ARITH] THEN REWRITE_TAC[ADD_SUB]; | |
ALL_TAC] THEN | |
CONJ_TAC THEN | |
(AP_TERM_TAC THEN SPEC_TAC(`n:num`,`n:num`) THEN | |
INDUCT_TAC THEN ASM_REWRITE_TAC[Varpairs_DEF; MAP] THEN | |
REWRITE_TAC[CONS_11] THEN | |
REWRITE_TAC[ADD_SUB; o_THM; termval; EVEN_ADD; EVEN_MULT; ARITH]));; | |
let FUNCTIONS_VAREQLIST = prove | |
(`!n. functions(set_of_list (MAP (\(s,t). Not(s === t)) (Varpairs n))) = {}`, | |
INDUCT_TAC THEN REWRITE_TAC[Varpairs_DEF; MAP; set_of_list] THENL | |
[REWRITE_TAC[functions; NOT_IN_EMPTY; IN_ELIM_THM; EXTENSION; IN_UNIONS]; | |
ASM_REWRITE_TAC[FUNCTIONS_INSERT; UNION_EMPTY] THEN | |
CONV_TAC(ONCE_DEPTH_CONV GEN_BETA_CONV) THEN | |
REWRITE_TAC[Equal_DEF; functions_form; Not_DEF; MAP; functions_term] THEN | |
REWRITE_TAC[LIST_UNION; UNION_EMPTY]]);; | |
let FUNCTIONS_TERM_FN_VARPAIRS = prove | |
(`(!f n. functions_term(Fn f (MAP FST (Varpairs n))) = {(f,n)}) /\ | |
(!f n. functions_term(Fn f (MAP SND (Varpairs n))) = {(f,n)})`, | |
REWRITE_TAC[functions_term; LENGTH_VARPAIRS; LENGTH_MAP] THEN | |
REPEAT STRIP_TAC THEN | |
SUBGOAL_THEN | |
`(LIST_UNION (MAP functions_term (MAP FST (Varpairs n))) = {}) /\ | |
(LIST_UNION (MAP functions_term (MAP SND (Varpairs n))) = {})` | |
(fun th -> REWRITE_TAC[th]) THEN | |
SPEC_TAC(`n:num`,`n:num`) THEN | |
INDUCT_TAC THEN REWRITE_TAC[Varpairs_DEF; MAP; LIST_UNION; functions_term] THEN | |
ASM_REWRITE_TAC[UNION_EMPTY]);; | |
let FUNCTIONS_FORM_PRED_VARPAIRS = prove | |
(`(!p n. functions_form(Atom p (MAP FST (Varpairs n))) = {}) /\ | |
(!p n. functions_form(Atom p (MAP SND (Varpairs n))) = {})`, | |
REWRITE_TAC[functions_form; LENGTH_VARPAIRS; LENGTH_MAP] THEN | |
REPEAT STRIP_TAC THEN | |
SUBGOAL_THEN | |
`(LIST_UNION (MAP functions_term (MAP FST (Varpairs n))) = {}) /\ | |
(LIST_UNION (MAP functions_term (MAP SND (Varpairs n))) = {})` | |
(fun th -> REWRITE_TAC[th]) THEN | |
SPEC_TAC(`n:num`,`n:num`) THEN | |
INDUCT_TAC THEN REWRITE_TAC[Varpairs_DEF; MAP; LIST_UNION; functions_term] THEN | |
ASM_REWRITE_TAC[UNION_EMPTY]);; | |
let FUNCTIONS_FORM_EQCLAUSE_FUNC = prove | |
(`!fn. functions_form(interp(Eqclause_Func fn)) = {fn}`, | |
GEN_REWRITE_TAC I [FORALL_PAIR_THM] THEN | |
MAP_EVERY X_GEN_TAC [`f:num`; `n:num`] THEN | |
REWRITE_TAC[Eqclause_Func] THEN | |
SIMP_TAC[FUNCTIONS_FORM_INTERP; FINITE_SET_OF_LIST] THEN | |
REWRITE_TAC[set_of_list; FUNCTIONS_INSERT; FUNCTIONS_UNION] THEN | |
REWRITE_TAC[functions_form; Equal_DEF; MAP; FUNCTIONS_TERM_FN_VARPAIRS] THEN | |
REWRITE_TAC[GSYM Equal_DEF; FUNCTIONS_VAREQLIST] THEN | |
REWRITE_TAC[LIST_UNION; UNION_EMPTY; UNION_ACI]);; | |
let FUNCTIONS_FORM_EQCLAUSE_PRED = prove | |
(`!pn. functions_form(interp(Eqclause_Pred pn)) = {}`, | |
GEN_REWRITE_TAC I [FORALL_PAIR_THM] THEN | |
MAP_EVERY X_GEN_TAC [`p:num`; `n:num`] THEN | |
REWRITE_TAC[Eqclause_Pred] THEN | |
SIMP_TAC[FUNCTIONS_FORM_INTERP; FINITE_SET_OF_LIST] THEN | |
REWRITE_TAC[set_of_list; FUNCTIONS_INSERT; FUNCTIONS_UNION] THEN | |
REWRITE_TAC[FUNCTIONS_VAREQLIST; UNION_EMPTY] THEN | |
REWRITE_TAC[Not_DEF; FUNCTIONS_FORM_PRED_VARPAIRS] THEN | |
ONCE_REWRITE_TAC[functions_form] THEN | |
REWRITE_TAC[FUNCTIONS_FORM_PRED_VARPAIRS] THEN | |
REWRITE_TAC[functions_form; UNION_EMPTY]);; | |
let FUNCTIONS_EQCLAUSES = prove | |
(`functions(IMAGE interp (Eqclauses(language s))) = functions s`, | |
REWRITE_TAC[functions; Eqclauses_DEF] THEN | |
GEN_REWRITE_TAC I [EXTENSION] THEN | |
REWRITE_TAC[IN_ELIM_THM; IN_IMAGE; IN_UNIONS] THEN | |
GEN_REWRITE_TAC I [FORALL_PAIR_THM] THEN | |
MAP_EVERY X_GEN_TAC [`f:num`; `n:num`] THEN | |
REWRITE_TAC[LEFT_AND_EXISTS_THM] THEN | |
GEN_REWRITE_TAC (LAND_CONV o BINDER_CONV) [SWAP_EXISTS_THM] THEN | |
REWRITE_TAC[GSYM CONJ_ASSOC] THEN REWRITE_TAC[UNWIND_THM2] THEN | |
REWRITE_TAC[IN_INSERT; IN_UNION; NOT_IN_EMPTY; IN_ELIM_THM] THEN | |
REWRITE_TAC[TAUT `(a \/ b) /\ c <=> a /\ c \/ b /\ c`] THEN | |
REWRITE_TAC[EXISTS_OR_THM] THEN REWRITE_TAC[UNWIND_THM2] THEN | |
SIMP_TAC[FUNCTIONS_FORM_INTERP; FINITE_INSERT; FINITE_EMPTY] THEN | |
REWRITE_TAC[functions; IN_UNIONS; IN_ELIM_THM; IN_INSERT; NOT_IN_EMPTY] THEN | |
REWRITE_TAC[UNWIND_THM2] THEN | |
REWRITE_TAC[TAUT `(a \/ b) /\ c <=> a /\ c \/ b /\ c`] THEN | |
REWRITE_TAC[EXISTS_OR_THM; UNWIND_THM2] THEN | |
REWRITE_TAC[functions_form; Not_DEF; Equal_DEF; MAP; functions_term] THEN | |
REWRITE_TAC[LIST_UNION; UNION_EMPTY] THEN | |
REWRITE_TAC[UNWIND_THM2; NOT_IN_EMPTY] THEN | |
ONCE_REWRITE_TAC[TAUT `a /\ b <=> ~(a ==> ~b)`] THEN SIMP_TAC[] THEN | |
REWRITE_TAC[NOT_IMP] THEN REWRITE_TAC[LEFT_AND_EXISTS_THM] THEN | |
GEN_REWRITE_TAC (LAND_CONV o BINOP_CONV o BINDER_CONV) [SWAP_EXISTS_THM] THEN | |
ONCE_REWRITE_TAC[TAUT `(a /\ b) /\ c /\ d <=> b /\ a /\ c /\ d`] THEN | |
REWRITE_TAC[UNWIND_THM2] THEN | |
ONCE_REWRITE_TAC[EXISTS_PAIR_THM] THEN | |
REWRITE_TAC[Eqclause_Func; Eqclause_Pred; FINITE_SET_OF_LIST; | |
FUNCTIONS_FORM_INTERP] THEN | |
REWRITE_TAC[GSYM Eqclause_Func; GSYM Eqclause_Pred] THEN | |
REWRITE_TAC[FUNCTIONS_FORM_EQCLAUSE_PRED; FUNCTIONS_FORM_EQCLAUSE_FUNC] THEN | |
ONCE_REWRITE_TAC[TAUT `a /\ b /\ c <=> a /\ ~(b ==> ~c)`] THEN | |
SIMP_TAC[IN_INSERT; NOT_IN_EMPTY] THEN REWRITE_TAC[language] THEN | |
REWRITE_TAC[functions; IN_UNIONS; IN_ELIM_THM] THEN | |
REWRITE_TAC[PAIR_EQ; NOT_IMP] THEN MESON_TAC[]);; | |
(* ------------------------------------------------------------------------- *) | |
(* Completeness. *) | |
(* ------------------------------------------------------------------------- *) | |
let FUNCTIONS_FORM_NOT_UCLOSE = prove | |
(`functions_form(Not(uclose p)) = functions_form p`, | |
REWRITE_TAC[Not_DEF; functions_form; FUNCTIONS_FORM_UCLOSE; UNION_EMPTY]);; | |
let PREDICATES_FORM_NOT_UCLOSE = prove | |
(`predicates_form(Not(uclose p)) = predicates_form p`, | |
REWRITE_TAC[Not_DEF; predicates_form; PREDICATES_FORM_UCLOSE; UNION_EMPTY]);; | |
let FUNCTIONS_INSERT_NOT_UCLOSE = prove | |
(`functions(p INSERT s) = functions(Not(uclose p) INSERT s)`, | |
ONCE_REWRITE_TAC[EXTENSION] THEN | |
REWRITE_TAC[functions; IN_UNIONS; IN_ELIM_THM] THEN | |
REWRITE_TAC[IN_INSERT] THEN MESON_TAC[FUNCTIONS_FORM_NOT_UCLOSE]);; | |
let PREDICATES_INSERT_NOT_UCLOSE = prove | |
(`predicates(p INSERT s) = predicates(Not(uclose p) INSERT s)`, | |
ONCE_REWRITE_TAC[EXTENSION] THEN | |
REWRITE_TAC[predicates; IN_UNIONS; IN_ELIM_THM] THEN | |
REWRITE_TAC[IN_INSERT] THEN MESON_TAC[PREDICATES_FORM_NOT_UCLOSE]);; | |
let LANGUAGE_INSERT_NOT_UCLOSE = prove | |
(`language(p INSERT s) = language (Not(uclose p) INSERT s)`, | |
REWRITE_TAC[language; GSYM FUNCTIONS_INSERT_NOT_UCLOSE; | |
GSYM PREDICATES_INSERT_NOT_UCLOSE]);; | |
let lemma1 = prove | |
(`(!m. p m /\ q m /\ r m /\ s m ==> t m) <=> | |
~(?m. p m /\ q m /\ r m /\ s m /\ ~(t m))`, | |
MESON_TAC[]);; | |
let lemma2 = prove | |
(`(x INSERT s) UNION t = x INSERT (s UNION t)`, | |
SET_TAC[]);; | |
let EQCLAUSES_DEFINITE = prove | |
(`!L cl. cl IN Eqclauses L ==> definite cl`, | |
REPEAT GEN_TAC THEN REWRITE_TAC[Eqclauses_DEF] THEN | |
REWRITE_TAC[IN_INSERT; IN_UNION; IN_ELIM_THM] THEN | |
ONCE_REWRITE_TAC[EXISTS_PAIR_THM] THEN | |
DISCH_THEN(DISJ_CASES_THEN2 SUBST1_TAC MP_TAC) THENL | |
[REWRITE_TAC[definite; IN_SING] THEN | |
SUBGOAL_THEN `{p | (p = V 0 === V 0) /\ positive p} = {(V 0 === V 0)}` | |
SUBST1_TAC THENL | |
[REWRITE_TAC[EXTENSION; IN_ELIM_THM; IN_SING; | |
positive; negative; Equal_DEF; Not_DEF] THEN | |
MESON_TAC[form_DISTINCT]; ALL_TAC] THEN | |
SIMP_TAC[clause; FINITE_INSERT; CARD_CLAUSES; FINITE_EMPTY] THEN | |
REWRITE_TAC[NOT_IN_EMPTY; ARITH; IN_SING] THEN | |
SIMP_TAC[Equal_DEF] THEN MESON_TAC[LITERAL]; | |
ALL_TAC] THEN | |
DISCH_THEN(DISJ_CASES_THEN2 SUBST1_TAC MP_TAC) THENL | |
[REWRITE_TAC[definite; IN_SING] THEN | |
SUBGOAL_THEN | |
`{p | p IN {(Not (V 0 === V 1)), (Not (V 2 === V 1)), (V 0 === V 2)} /\ | |
positive p} = {(V 0 === V 2)}` | |
SUBST1_TAC THENL | |
[REWRITE_TAC[EXTENSION; IN_ELIM_THM; IN_INSERT; NOT_IN_EMPTY] THEN | |
REWRITE_TAC[Equal_DEF; positive; negative] THEN | |
MESON_TAC[Not_DEF; form_DISTINCT]; ALL_TAC] THEN | |
SIMP_TAC[clause; FINITE_INSERT; CARD_CLAUSES; FINITE_EMPTY] THEN | |
REWRITE_TAC[NOT_IN_EMPTY; ARITH; IN_INSERT] THEN | |
SIMP_TAC[Equal_DEF] THEN MESON_TAC[LITERAL]; | |
ALL_TAC] THEN | |
DISCH_THEN(DISJ_CASES_THEN MP_TAC) THEN | |
REWRITE_TAC[LEFT_IMP_EXISTS_THM] THEN | |
MAP_EVERY X_GEN_TAC [`f:num`; `n:num`] THEN STRIP_TAC THEN | |
ASM_REWRITE_TAC[Eqclause_Pred; Eqclause_Func; definite; set_of_list] THENL | |
[SUBGOAL_THEN | |
`{p | p IN | |
(Fn f (MAP FST (Varpairs n)) === Fn f (MAP SND (Varpairs n))) INSERT | |
set_of_list (MAP (\(s,t). Not (s === t)) (Varpairs n)) /\ | |
positive p} = | |
{(Fn f (MAP FST (Varpairs n)) === Fn f (MAP SND (Varpairs n)))}` | |
SUBST1_TAC THENL | |
[REWRITE_TAC[EXTENSION; IN_ELIM_THM; IN_INSERT] THEN GEN_TAC THEN | |
REWRITE_TAC[NOT_IN_EMPTY] THEN | |
MATCH_MP_TAC(TAUT `(a ==> c) /\ (b ==> ~c) ==> ((a \/ b) /\ c <=> a)`) THEN | |
CONJ_TAC THEN SIMP_TAC[] THENL | |
[DISCH_THEN(K ALL_TAC) THEN | |
REWRITE_TAC[positive; negative; Equal_DEF; Not_DEF; form_DISTINCT]; | |
ALL_TAC] THEN | |
REWRITE_TAC[IN_SET_OF_LIST; MEM_MAP; EXISTS_PAIR_THM] THEN | |
STRIP_TAC THEN ASM_REWRITE_TAC[] THEN | |
CONV_TAC(ONCE_DEPTH_CONV GEN_BETA_CONV) THEN | |
REWRITE_TAC[positive; negative] THEN MESON_TAC[]; | |
ALL_TAC] THEN | |
SIMP_TAC[clause; CARD_CLAUSES; FINITE_INSERT; FINITE_EMPTY; | |
NOT_IN_EMPTY; ARITH; FINITE_SET_OF_LIST] THEN | |
REWRITE_TAC[IN_INSERT; IN_SET_OF_LIST; MEM_MAP; EXISTS_PAIR_THM] THEN | |
REPEAT STRIP_TAC THEN ASM_REWRITE_TAC[] THEN | |
CONV_TAC(ONCE_DEPTH_CONV GEN_BETA_CONV) THEN | |
ASM_REWRITE_TAC[LITERAL; Equal_DEF]; ALL_TAC] THEN | |
SUBGOAL_THEN | |
`{p | p IN | |
Atom f (MAP SND (Varpairs n)) INSERT | |
Not (Atom f (MAP FST (Varpairs n))) INSERT | |
set_of_list (MAP (\(s,t). Not (s === t)) (Varpairs n)) /\ | |
positive p} = | |
{(Atom f (MAP SND (Varpairs n)))}` | |
SUBST1_TAC THENL | |
[REWRITE_TAC[EXTENSION; IN_ELIM_THM; IN_INSERT] THEN GEN_TAC THEN | |
REWRITE_TAC[NOT_IN_EMPTY] THEN | |
MATCH_MP_TAC(TAUT | |
`(a ==> c) /\ (b ==> ~c) /\ (d ==> ~c) | |
==> ((a \/ b \/ d) /\ c <=> a)`) THEN | |
CONJ_TAC THEN SIMP_TAC[] THENL | |
[DISCH_THEN(K ALL_TAC) THEN | |
REWRITE_TAC[positive; negative; Equal_DEF; Not_DEF; form_DISTINCT]; | |
ALL_TAC] THEN | |
CONJ_TAC THENL [MESON_TAC[positive; negative]; ALL_TAC] THEN | |
REWRITE_TAC[IN_SET_OF_LIST; MEM_MAP; EXISTS_PAIR_THM] THEN | |
STRIP_TAC THEN ASM_REWRITE_TAC[] THEN | |
CONV_TAC(ONCE_DEPTH_CONV GEN_BETA_CONV) THEN | |
REWRITE_TAC[positive; negative] THEN MESON_TAC[]; | |
ALL_TAC] THEN | |
SIMP_TAC[clause; CARD_CLAUSES; FINITE_INSERT; FINITE_EMPTY; | |
NOT_IN_EMPTY; ARITH; FINITE_SET_OF_LIST] THEN | |
REWRITE_TAC[IN_INSERT; IN_SET_OF_LIST; MEM_MAP; EXISTS_PAIR_THM] THEN | |
REPEAT STRIP_TAC THEN ASM_REWRITE_TAC[] THEN | |
CONV_TAC(ONCE_DEPTH_CONV GEN_BETA_CONV) THEN | |
ASM_REWRITE_TAC[LITERAL; Equal_DEF]);; | |
let EQLOGIC_COMPLETE = prove | |
(`!E s t. (!e. e IN E ==> ?s t. e = (s === t)) /\ | |
(!M. interpretation (language((s === t) INSERT E)) M /\ | |
~(Dom M :term->bool = {}) /\ | |
normal (functions ((s === t) INSERT E)) M /\ | |
M satisfies E | |
==> M satisfies {(s === t)}) | |
==> E |- s === t`, | |
REPEAT GEN_TAC THEN DISCH_THEN(CONJUNCTS_THEN2 ASSUME_TAC MP_TAC) THEN | |
ONCE_REWRITE_TAC[lemma1] THEN | |
ONCE_REWRITE_TAC[TAUT `a /\ b /\ c /\ d <=> a /\ b /\ c /\ (b ==> d)`] THEN | |
SIMP_TAC[SATISFIES_NOT] THEN | |
REWRITE_TAC[TAUT `a /\ b /\ c /\ (b ==> d) <=> a /\ b /\ c /\ d`] THEN | |
ONCE_REWRITE_TAC[FUNCTIONS_INSERT_NOT_UCLOSE; LANGUAGE_INSERT_NOT_UCLOSE] THEN | |
REWRITE_TAC[NORMAL_THM] THEN | |
ONCE_REWRITE_TAC[TAUT `a /\ b /\ c <=> a /\ b /\ (b ==> c)`] THEN | |
REWRITE_TAC[lemma2] THEN SIMP_TAC[GSYM SATISFIES_NOT] THEN | |
REWRITE_TAC[TAUT `a /\ b /\ (b ==> c) <=> a /\ b /\ c`] THEN | |
REWRITE_TAC[SATISFIES_UNION; GSYM CONJ_ASSOC; GSYM lemma1] THEN | |
REWRITE_TAC[GSYM FUNCTIONS_INSERT_NOT_UCLOSE; | |
GSYM LANGUAGE_INSERT_NOT_UCLOSE] THEN | |
DISCH_TAC THEN | |
SUBGOAL_THEN | |
`?n. ibackchain ({{e} | e IN E} UNION | |
Eqclauses(language ((s === t) INSERT E))) | |
n (s === t)` | |
MP_TAC THENL | |
[MP_TAC(SPECL | |
[`{{e} | e IN E} UNION | |
Eqclauses(language ((s === t) INSERT E))`; | |
`s === t`] IBACKCHAIN_MINIMAL) THEN | |
MATCH_MP_TAC(TAUT `b /\ c /\ a ==> (a /\ b ==> (c <=> d)) ==> d`) THEN | |
CONJ_TAC THENL [REWRITE_TAC[Equal_DEF; atom]; ALL_TAC] THEN | |
SUBGOAL_THEN `functions (IMAGE interp {{e} | e IN E}) = functions E` | |
ASSUME_TAC THENL | |
[MATCH_MP_TAC EQ_TRANS THEN | |
EXISTS_TAC `UNIONS {functions p | p IN {{e} | e IN E}}` THEN | |
CONJ_TAC THENL | |
[MATCH_MP_TAC FUNCTIONS_IMAGE_INTERP THEN | |
SIMP_TAC[IN_ELIM_THM; LEFT_IMP_EXISTS_THM; FINITE_RULES]; | |
ALL_TAC] THEN | |
GEN_REWRITE_TAC RAND_CONV [functions] THEN | |
GEN_REWRITE_TAC I [EXTENSION] THEN | |
REWRITE_TAC[IN_UNIONS; functions; IN_ELIM_THM] THEN | |
GEN_TAC THEN ONCE_REWRITE_TAC[LEFT_AND_EXISTS_THM] THEN | |
GEN_REWRITE_TAC LAND_CONV [SWAP_EXISTS_THM] THEN | |
ONCE_REWRITE_TAC[TAUT `(a /\ b) /\ c <=> b /\ a /\ c`] THEN | |
REWRITE_TAC[UNWIND_THM2] THEN | |
ONCE_REWRITE_TAC[LEFT_AND_EXISTS_THM] THEN | |
GEN_REWRITE_TAC LAND_CONV [SWAP_EXISTS_THM] THEN | |
ONCE_REWRITE_TAC[TAUT `(a /\ b) /\ c <=> b /\ a /\ c`] THEN | |
REWRITE_TAC[UNWIND_THM2] THEN | |
REWRITE_TAC[IN_UNIONS; IN_SING; IN_ELIM_THM] THEN MESON_TAC[]; | |
ALL_TAC] THEN | |
SUBGOAL_THEN | |
`functions(IMAGE interp | |
({{e} | e IN E} UNION Eqclauses (language ((s === t) INSERT E)))) = | |
functions((s === t) INSERT E)` | |
ASSUME_TAC THENL | |
[REWRITE_TAC[IMAGE_UNION; FUNCTIONS_UNION; FUNCTIONS_EQCLAUSES] THEN | |
REWRITE_TAC[FUNCTIONS_INSERT] THEN | |
ASM_REWRITE_TAC[FUNCTIONS_INSERT; UNION_ACI]; ALL_TAC] THEN | |
ASM_REWRITE_TAC[] THEN CONJ_TAC THENL | |
[X_GEN_TAC `v:num->term` THEN DISCH_TAC THEN | |
SUBGOAL_THEN `atom(s === t)` MP_TAC THENL | |
[REWRITE_TAC[atom; Equal_DEF]; ALL_TAC] THEN | |
DISCH_THEN(fun th -> | |
ONCE_REWRITE_TAC[MATCH_MP IMINMODEL_MINIMAL th]) THEN | |
FIRST_X_ASSUM(fun th -> MP_TAC th THEN MATCH_MP_TAC MONO_FORALL) THEN | |
X_GEN_TAC | |
`C:(term->bool)# | |
((num->((term)list->term))#(num->((term)list->bool)))` THEN | |
ASM_REWRITE_TAC[] THEN | |
MATCH_MP_TAC | |
(TAUT `(w /\ x ==> a1) /\ (w ==> b1) /\ | |
(w ==> b1 ==> y ==> c1 /\ d1) /\ (w ==> e1 ==> z) | |
==> (a1 /\ b1 /\ c1 /\ d1 ==> e1) ==> w /\ x /\ y ==> z`) THEN | |
CONJ_TAC THENL | |
[SIMP_TAC[interpretation; language; Dom_DEF] THEN | |
DISCH_THEN(K ALL_TAC) THEN | |
REPEAT GEN_TAC THEN DISCH_THEN(CONJUNCTS_THEN2 ASSUME_TAC MP_TAC) THEN | |
REWRITE_TAC[IN] THEN CONV_TAC(ONCE_DEPTH_CONV ETA_CONV) THEN | |
STRIP_TAC THEN MATCH_MP_TAC(CONJUNCT2(SPEC_ALL terms_RULES)) THEN | |
ASM_REWRITE_TAC[] THEN REWRITE_TAC[GSYM language] THEN | |
REWRITE_TAC[FUNCTIONS_UNION; FUNCTIONS_EQAXIOM] THEN | |
ASM_REWRITE_TAC[IN_UNION]; ALL_TAC] THEN | |
CONJ_TAC THENL | |
[DISCH_THEN SUBST1_TAC THEN | |
REWRITE_TAC[EXTENSION; NOT_IN_EMPTY; NOT_FORALL_THM] THEN | |
EXISTS_TAC `V 0` THEN REWRITE_TAC[IN; terms_RULES]; ALL_TAC] THEN | |
CONJ_TAC THENL | |
[DISCH_TAC THEN SIMP_TAC[IMAGE_UNION; GSYM EQCLAUSES_EQAXIOMS] THEN | |
DISCH_TAC THEN ASM_REWRITE_TAC[satisfies; valuation] THEN | |
REWRITE_TAC[IN_UNION; TAUT `(a \/ b) /\ c <=> a /\ c \/ b /\ c`] THEN | |
REWRITE_TAC[TAUT `(a \/ b ==> c) <=> (a ==> c) /\ (b ==> c)`] THEN | |
REWRITE_TAC[FORALL_AND_THM] THEN SIMP_TAC[] THEN | |
DISCH_THEN(MP_TAC o CONJUNCT1) THEN | |
REWRITE_TAC[IN_IMAGE; IN_ELIM_THM; IN_SING] THEN | |
SIMP_TAC[LEFT_IMP_EXISTS_THM; LEFT_AND_EXISTS_THM; | |
RIGHT_AND_EXISTS_THM] THEN | |
SIMP_TAC[HOLDS_INTERP; FINITE_RULES] THEN | |
REWRITE_TAC[IN_SING; UNWIND_THM2] THEN MESON_TAC[]; | |
ALL_TAC] THEN | |
SIMP_TAC[satisfies; valuation; IN_SING] THEN ASM_MESON_TAC[]; | |
ALL_TAC] THEN | |
REWRITE_TAC[IN_UNION; TAUT `(a \/ b ==> c) <=> (a ==> c) /\ (b ==> c)`] THEN | |
REWRITE_TAC[EQCLAUSES_DEFINITE] THEN | |
SIMP_TAC[IN_ELIM_THM; LEFT_IMP_EXISTS_THM] THEN | |
GEN_TAC THEN X_GEN_TAC `e:form` THEN | |
DISCH_THEN(fun th -> FIRST_ASSUM(MP_TAC o C MATCH_MP (CONJUNCT1 th))) THEN | |
REWRITE_TAC[LEFT_IMP_EXISTS_THM] THEN | |
MAP_EVERY X_GEN_TAC [`u:term`; `v:term`] THEN DISCH_THEN SUBST1_TAC THEN | |
SIMP_TAC[FINITE_RULES; definite; clause; IN_SING; LITERAL; Equal_DEF] THEN | |
REWRITE_TAC[GSYM Equal_DEF] THEN | |
SUBGOAL_THEN `{p | (p = u === v) /\ positive p} = {(u === v)}` SUBST1_TAC | |
THENL | |
[REWRITE_TAC[EXTENSION; IN_ELIM_THM; IN_SING] THEN | |
MESON_TAC[Equal_DEF; positive; negative; Not_DEF; form_DISTINCT]; | |
ALL_TAC] THEN | |
SIMP_TAC[CARD_CLAUSES; FINITE_RULES; ARITH; NOT_IN_EMPTY]; | |
ALL_TAC] THEN | |
SUBGOAL_THEN | |
`!n p. ibackchain | |
({{e} | e IN E} UNION Eqclauses (language ((s === t) INSERT E))) | |
n p | |
==> !s t. (p = (s === t)) ==> E |- s === t` | |
MP_TAC THENL | |
[ALL_TAC; | |
REWRITE_TAC[LEFT_IMP_EXISTS_THM] THEN MATCH_MP_TAC MONO_FORALL THEN | |
GEN_TAC THEN DISCH_THEN(MP_TAC o SPEC `s === t`) THEN | |
DISCH_THEN(fun th -> DISCH_TAC THEN MP_TAC th) THEN ASM_REWRITE_TAC[] THEN | |
MESON_TAC[]] THEN | |
MATCH_MP_TAC ibackchain_INDUCT THEN | |
MAP_EVERY X_GEN_TAC | |
[`cl:form->bool`; `i:num->term`; `ns:num list`] THEN | |
MATCH_MP_TAC(TAUT `(a /\ c ==> d) ==> a /\ b /\ c ==> d`) THEN | |
STRIP_TAC THEN MAP_EVERY X_GEN_TAC [`si:term`; `ti:term`] THEN | |
DISCH_TAC THEN | |
UNDISCH_TAC | |
`cl IN {{e} | e IN E} UNION Eqclauses (language ((s === t) INSERT E))` THEN | |
REWRITE_TAC[IN_UNION; IN_INSERT; GSYM DISJ_ASSOC] THEN | |
DISCH_THEN(DISJ_CASES_THEN MP_TAC) THENL | |
[SIMP_TAC[IN_ELIM_THM; LEFT_IMP_EXISTS_THM] THEN | |
X_GEN_TAC `e:form` THEN STRIP_TAC THEN | |
UNDISCH_TAC `formsubst i (conclusion cl) = si === ti` THEN | |
FIRST_X_ASSUM(MP_TAC o SPEC `e:form`) THEN | |
ASM_REWRITE_TAC[LEFT_IMP_EXISTS_THM] THEN | |
MAP_EVERY X_GEN_TAC [`s0:term`; `t0:term`] THEN | |
DISCH_THEN SUBST_ALL_TAC THEN | |
SUBGOAL_THEN `conclusion {(s0 === t0)} = (s0 === t0)` SUBST1_TAC THENL | |
[MATCH_MP_TAC CONCLUSION_DEFINITE THEN | |
REWRITE_TAC[definite; IN_SING] THEN | |
MATCH_MP_TAC(TAUT `b /\ (b ==> a) ==> a /\ b`) THEN CONJ_TAC THENL | |
[REWRITE_TAC[positive; negative; Equal_DEF; Not_DEF] THEN | |
MESON_TAC[form_DISTINCT]; | |
ALL_TAC] THEN | |
DISCH_TAC THEN REWRITE_TAC[clause] THEN | |
SIMP_TAC[FINITE_INSERT; FINITE_EMPTY; IN_SING] THEN | |
SUBGOAL_THEN | |
`{p | (p = s0 === t0) /\ positive p} = {(s0 === t0)}` | |
SUBST1_TAC THENL | |
[REWRITE_TAC[EXTENSION; IN_ELIM_THM; IN_SING] THEN ASM_MESON_TAC[]; | |
ALL_TAC] THEN | |
SIMP_TAC[CARD_CLAUSES; FINITE_INSERT; FINITE_EMPTY] THEN | |
REWRITE_TAC[Equal_DEF; NOT_IN_EMPTY; ARITH; LITERAL]; | |
ALL_TAC] THEN | |
DISCH_THEN(SUBST_ALL_TAC o SYM) THEN | |
ASM_MESON_TAC[provable_RULES]; | |
ALL_TAC] THEN | |
DISCH_THEN(fun th -> ASSUME_TAC(MATCH_MP EQCLAUSES_DEFINITE th) THEN | |
MP_TAC th) THEN | |
REWRITE_TAC[Eqclauses_DEF; IN_UNION; IN_INSERT; GSYM DISJ_ASSOC] THEN | |
DISCH_THEN(DISJ_CASES_THEN2 SUBST_ALL_TAC MP_TAC) THENL | |
[SUBGOAL_THEN `conclusion {(V 0 === V 0)} = (V 0 === V 0)` | |
SUBST_ALL_TAC THENL | |
[MATCH_MP_TAC CONCLUSION_DEFINITE THEN ASM_REWRITE_TAC[IN_SING] THEN | |
REWRITE_TAC[positive; Equal_DEF; negative; Not_DEF; form_DISTINCT]; | |
ALL_TAC] THEN | |
FIRST_X_ASSUM(fun th -> GEN_REWRITE_TAC RAND_CONV [SYM th]) THEN | |
ASM_MESON_TAC[provable_RULES]; | |
ALL_TAC] THEN | |
DISCH_THEN(DISJ_CASES_THEN2 SUBST_ALL_TAC MP_TAC) THENL | |
[SUBGOAL_THEN | |
`conclusion {(Not (V 0 === V 1)), (Not(V 2 === V 1)), (V 0 === V 2)} = | |
(V 0 === V 2)` | |
(fun th -> SUBST_ALL_TAC th THEN ASSUME_TAC th) THENL | |
[MATCH_MP_TAC CONCLUSION_DEFINITE_ALT THEN | |
ASM_REWRITE_TAC[IN_INSERT; NOT_IN_EMPTY] THEN | |
REWRITE_TAC[clause; FINITE_INSERT; FINITE_RULES] THEN | |
SIMP_TAC[IN_INSERT; NOT_IN_EMPTY] THEN | |
REWRITE_TAC[TAUT `(a \/ b) /\ c <=> a /\ c \/ b /\ c`] THEN | |
REWRITE_TAC[TAUT `(a \/ b ==> c) <=> (a ==> c) /\ (b ==> c)`] THEN | |
SIMP_TAC[Equal_DEF; LITERAL] THEN | |
REWRITE_TAC[positive; negative] THEN | |
MESON_TAC[Not_DEF; form_DISTINCT]; | |
ALL_TAC] THEN | |
FIRST_X_ASSUM(fun th -> GEN_REWRITE_TAC RAND_CONV [SYM th]) THEN | |
FIRST_X_ASSUM(MP_TAC o GEN_REWRITE_RULE I [ALL2_TRIV]) THEN | |
DISCH_THEN(MP_TAC o CONJUNCT2) THEN REWRITE_TAC[ALL_MAP] THEN | |
REWRITE_TAC[GSYM ALL_MEM] THEN REWRITE_TAC[GSYM IN_SET_OF_LIST] THEN | |
ASM_SIMP_TAC[HYPOTHESES_CONCLUSION] THEN | |
SUBGOAL_THEN | |
`IMAGE ~~ | |
({(Not(V 0 === V 1)), (Not(V 2 === V 1)), (V 0 === V 2)} | |
DELETE (V 0 === V 2)) = | |
{(V 0 === V 1), (V 2 === V 1)}` | |
SUBST1_TAC THENL | |
[REWRITE_TAC[EXTENSION; IN_IMAGE; IN_DELETE; IN_INSERT; NOT_IN_EMPTY] THEN | |
REWRITE_TAC[Equal_DEF] THEN | |
MESON_TAC[NEGATE_NEG; NEGATE_ATOM; atom; NEGATE_NEGATE; literal; | |
Not_DEF; form_DISTINCT]; | |
ALL_TAC] THEN | |
REWRITE_TAC[IN_INSERT; NOT_IN_EMPTY] THEN | |
REWRITE_TAC[TAUT `(a \/ b ==> c) <=> (a ==> c) /\ (b ==> c)`] THEN | |
SIMP_TAC[o_THM] THEN | |
REWRITE_TAC[FORALL_AND_THM; LEFT_FORALL_IMP_THM; EXISTS_REFL] THEN | |
ASM_MESON_TAC[provable_RULES; FORMSUBST_EQ]; | |
ALL_TAC] THEN | |
DISCH_THEN(DISJ_CASES_THEN MP_TAC) THENL | |
[ALL_TAC; | |
REWRITE_TAC[IN_ELIM_THM; EXISTS_PAIR_THM; Eqclause_Pred] THEN | |
REWRITE_TAC[LEFT_IMP_EXISTS_THM] THEN | |
MAP_EVERY X_GEN_TAC [`p:num`; `n:num`] THEN | |
DISCH_THEN(STRIP_ASSUME_TAC o GSYM) THEN | |
SUBGOAL_THEN `conclusion cl = Atom p (MAP SND (Varpairs n))` | |
(fun th -> SUBST_ALL_TAC th THEN ASSUME_TAC th) THENL | |
[MATCH_MP_TAC CONCLUSION_DEFINITE THEN ASM_REWRITE_TAC[] THEN | |
REWRITE_TAC[positive; negative; form_DISTINCT; Not_DEF] THEN | |
EXPAND_TAC "cl" THEN REWRITE_TAC[IN_SET_OF_LIST; MEM]; | |
ALL_TAC] THEN | |
MP_TAC(ASSUME | |
`formsubst i (Atom p (MAP SND (Varpairs n))) = si === ti`) THEN | |
REWRITE_TAC[Equal_DEF; formsubst; form_INJ] THEN | |
ASM_CASES_TAC `n = 2` THENL | |
[ALL_TAC; | |
DISCH_THEN(MP_TAC o AP_TERM `LENGTH:(term)list->num` o CONJUNCT2) THEN | |
ASM_REWRITE_TAC[LENGTH; LENGTH_MAP; LENGTH_VARPAIRS; ARITH]] THEN | |
UNDISCH_THEN `n = 2` SUBST_ALL_TAC THEN | |
DISCH_THEN(CONJUNCTS_THEN2 SUBST_ALL_TAC MP_TAC) THEN | |
ASM_REWRITE_TAC[Varpairs_DEF; num_CONV `2`; num_CONV `1`] THEN | |
REWRITE_TAC[ARITH; MAP; CONS_11] THEN | |
DISCH_THEN(CONJUNCTS_THEN(SUBST_ALL_TAC o SYM)) THEN | |
FIRST_X_ASSUM(MP_TAC o GEN_REWRITE_RULE I [ALL2_TRIV]) THEN | |
DISCH_THEN(MP_TAC o CONJUNCT2) THEN REWRITE_TAC[ALL_MAP] THEN | |
REWRITE_TAC[GSYM ALL_MEM] THEN REWRITE_TAC[GSYM IN_SET_OF_LIST] THEN | |
ASM_SIMP_TAC[HYPOTHESES_CONCLUSION] THEN | |
SUBGOAL_THEN | |
`IMAGE (~~) (cl DELETE (Atom 0 (MAP SND (Varpairs 2)))) = | |
{(V 2 === V 0), (V 2 === V 3), (V 0 === V 1)}` | |
SUBST1_TAC THENL | |
[EXPAND_TAC "cl" THEN | |
REWRITE_TAC[EXTENSION; set_of_list; IN_SET_OF_LIST; MAP; MEM_MAP; | |
IN_IMAGE; IN_DELETE; IN_INSERT; NOT_IN_EMPTY] THEN | |
REWRITE_TAC[num_CONV `2`; num_CONV `1`; Varpairs_DEF] THEN | |
CONV_TAC NUM_REDUCE_CONV THEN REWRITE_TAC[MAP; GSYM Equal_DEF] THEN | |
REWRITE_TAC[MEM; TAUT `(a \/ b) /\ c <=> a /\ c \/ b /\ c`] THEN | |
REWRITE_TAC[EXISTS_PAIR_THM] THEN | |
CONV_TAC(ONCE_DEPTH_CONV GEN_BETA_CONV) THEN | |
REWRITE_TAC[PAIR_EQ; GSYM CONJ_ASSOC] THEN | |
ONCE_REWRITE_TAC[SWAP_EXISTS_THM] THEN | |
REWRITE_TAC[EXISTS_OR_THM; UNWIND_THM2; TAUT `~(p /\ ~p)`] THEN | |
REWRITE_TAC[Equal_DEF] THEN | |
MESON_TAC[NEGATE_NEG; NEGATE_ATOM; atom; NEGATE_NEGATE; literal; | |
Not_DEF; form_DISTINCT]; | |
ALL_TAC] THEN | |
REWRITE_TAC[IN_INSERT; NOT_IN_EMPTY] THEN | |
REWRITE_TAC[TAUT `(a \/ b ==> c) <=> (a ==> c) /\ (b ==> c)`] THEN | |
SIMP_TAC[o_THM] THEN | |
REWRITE_TAC[FORALL_AND_THM; LEFT_FORALL_IMP_THM; EXISTS_REFL] THEN | |
REWRITE_TAC[GSYM Equal_DEF] THEN REWRITE_TAC[FORMSUBST_EQ] THEN | |
ONCE_REWRITE_TAC[EQ_SYM_EQ] THEN | |
SIMP_TAC[LEFT_IMP_EXISTS_THM] THEN | |
ASM_MESON_TAC[provable_RULES; FORMSUBST_EQ]] THEN | |
REWRITE_TAC[IN_ELIM_THM; EXISTS_PAIR_THM; Eqclause_Func] THEN | |
REWRITE_TAC[LEFT_IMP_EXISTS_THM] THEN | |
MAP_EVERY X_GEN_TAC [`f:num`; `n:num`] THEN | |
DISCH_THEN(STRIP_ASSUME_TAC o GSYM) THEN | |
SUBGOAL_THEN | |
`conclusion cl = (Fn f (MAP FST (Varpairs n)) === | |
Fn f (MAP SND (Varpairs n)))` | |
(fun th -> SUBST_ALL_TAC th THEN ASSUME_TAC th) THENL | |
[MATCH_MP_TAC CONCLUSION_DEFINITE THEN ASM_REWRITE_TAC[] THEN | |
REWRITE_TAC[positive; negative; form_DISTINCT; Not_DEF] THEN | |
EXPAND_TAC "cl" THEN REWRITE_TAC[IN_SET_OF_LIST; MEM] THEN | |
REWRITE_TAC[Equal_DEF; form_DISTINCT]; | |
ALL_TAC] THEN | |
FIRST_X_ASSUM(fun th -> GEN_REWRITE_TAC RAND_CONV [GSYM th]) THEN | |
FIRST_X_ASSUM(MP_TAC o GEN_REWRITE_RULE I [ALL2_TRIV]) THEN | |
DISCH_THEN(MP_TAC o CONJUNCT2) THEN REWRITE_TAC[ALL_MAP] THEN | |
REWRITE_TAC[GSYM ALL_MEM] THEN REWRITE_TAC[GSYM IN_SET_OF_LIST] THEN | |
ASM_SIMP_TAC[HYPOTHESES_CONCLUSION] THEN | |
SUBGOAL_THEN | |
`IMAGE (~~) (cl DELETE | |
(Fn f (MAP FST (Varpairs n)) === Fn f (MAP SND (Varpairs n)))) = | |
{(s === t) | MEM (s,t) (Varpairs n)}` | |
SUBST1_TAC THENL | |
[EXPAND_TAC "cl" THEN | |
REWRITE_TAC[EXTENSION; set_of_list; IN_SET_OF_LIST; MAP; MEM_MAP; | |
IN_IMAGE; IN_DELETE; IN_INSERT; NOT_IN_EMPTY] THEN | |
REWRITE_TAC[MEM; TAUT `(a \/ b) /\ c <=> a /\ c \/ b /\ c`] THEN | |
REWRITE_TAC[TAUT `~(p /\ ~p)`; IN_ELIM_THM] THEN | |
REWRITE_TAC[MEM_MAP; EXISTS_PAIR_THM] THEN | |
CONV_TAC(ONCE_DEPTH_CONV GEN_BETA_CONV) THEN REWRITE_TAC[Equal_DEF] THEN | |
MESON_TAC[NEGATE_NEG; NEGATE_ATOM; atom; NEGATE_NEGATE; literal; | |
Not_DEF; form_DISTINCT]; | |
ALL_TAC] THEN | |
SIMP_TAC[IN_ELIM_THM; LEFT_IMP_EXISTS_THM] THEN | |
REWRITE_TAC[o_THM; FORMSUBST_EQ] THEN | |
REWRITE_TAC[Equal_DEF; form_INJ; CONS_11] THEN | |
REWRITE_TAC[GSYM Equal_DEF] THEN ONCE_REWRITE_TAC[EQ_SYM_EQ] THEN | |
SIMP_TAC[LEFT_FORALL_IMP_THM; LEFT_EXISTS_AND_THM; RIGHT_EXISTS_AND_THM] THEN | |
REWRITE_TAC[EXISTS_REFL] THEN | |
REWRITE_TAC[termsubst; GSYM MAP_o] THEN | |
ONCE_REWRITE_TAC[EQ_SYM_EQ] THEN | |
ONCE_REWRITE_TAC[IMP_CONJ_ALT] THEN | |
GEN_REWRITE_TAC LAND_CONV [SWAP_FORALL_THM] THEN | |
GEN_REWRITE_TAC (LAND_CONV o BINDER_CONV) [SWAP_FORALL_THM] THEN | |
REWRITE_TAC[LEFT_FORALL_IMP_THM; EXISTS_REFL] THEN | |
DISCH_TAC THEN | |
MATCH_MP_TAC(el 4 (CONJUNCTS(SPEC_ALL provable_RULES))) THEN | |
REWRITE_TAC[ALL2_MAP2] THEN REWRITE_TAC[ALL2_ALL] THEN | |
ASM_REWRITE_TAC[GSYM ALL_MEM; FORALL_PAIR_THM; o_THM]);; | |
let EQLOGIC_SOUND = prove | |
(`!E s t. E |- s === t | |
==> !M:(A->bool)#(num->((A)list->A))#(num->((A)list->bool)). | |
normal UNIV (M) /\ interpretation (UNIV,UNIV) (M) /\ | |
M satisfies E | |
==> M satisfies {(s === t)}`, | |
GEN_TAC THEN REWRITE_TAC[satisfies] THEN | |
SIMP_TAC[IN_INSERT; NOT_IN_EMPTY] THEN | |
REWRITE_TAC[LEFT_FORALL_IMP_THM; RIGHT_EXISTS_AND_THM; EXISTS_REFL] THEN | |
SUBGOAL_THEN | |
`!M:(A->bool)#(num->((A)list->A))#(num->((A)list->bool)). | |
normal UNIV (M) /\ interpretation (UNIV,UNIV) (M) /\ | |
(!v p. valuation M v /\ p IN E ==> holds M v p) | |
==> !a. E |- a | |
==> !s t. (a = (s === t)) | |
==> !v. valuation M v ==> holds M v (s === t)` | |
(fun th -> MESON_TAC[th]) THEN | |
GEN_TAC THEN REWRITE_TAC[normal; satisfies; TERMS_UNIV; IN_UNIV] THEN | |
STRIP_TAC THEN | |
MATCH_MP_TAC provable_INDUCT THEN | |
SIMP_TAC[EQUAL_INJ_ALT; LEFT_FORALL_IMP_THM; | |
RIGHT_EXISTS_AND_THM; LEFT_EXISTS_AND_THM; EXISTS_REFL] THEN | |
ASM_SIMP_TAC[] THEN REPEAT CONJ_TAC THENL | |
[ASM_MESON_TAC[]; | |
REPEAT STRIP_TAC THEN REWRITE_TAC[termval] THEN | |
AP_TERM_TAC THEN MATCH_MP_TAC MAP_EQ_ALL2 THEN | |
UNDISCH_TAC | |
`ALL2 (\l r. !v:num->A. valuation M v | |
==> (termval M v l = termval M v r)) a b` THEN | |
MATCH_MP_TAC MONO_ALL2 THEN ASM_SIMP_TAC[]; | |
REPEAT GEN_TAC THEN DISCH_TAC THEN REWRITE_TAC[FORMSUBST_EQ] THEN | |
REWRITE_TAC[Equal_DEF; form_INJ; CONS_11] THEN | |
REPEAT GEN_TAC THEN DISCH_THEN(CONJUNCTS_THEN(SUBST_ALL_TAC o SYM)) THEN | |
REWRITE_TAC[TERMVAL_TERMSUBST] THEN REPEAT GEN_TAC THEN | |
DISCH_TAC THEN FIRST_ASSUM MATCH_MP_TAC THEN | |
REWRITE_TAC[o_THM; valuation] THEN | |
GEN_TAC THEN MATCH_MP_TAC INTERPRETATION_TERMVAL THEN | |
EXISTS_TAC `UNIV:(num#num)->bool` THEN ASM_REWRITE_TAC[] THEN | |
FIRST_ASSUM(fun th -> MP_TAC th THEN | |
MATCH_MP_TAC INTERPRETATION_SUBLANGUAGE) THEN | |
REWRITE_TAC[SUBSET_UNIV]]);; | |