Datasets:

Modalities:
Text
Languages:
English
Libraries:
Datasets
License:
proof-pile / formal /hol /Logic /birkhoff.ml
Zhangir Azerbayev
squashed?
4365a98
raw
history blame
55.9 kB
(* ========================================================================= *)
(* Birkhoff's theorem and canonical version for congruence closure. *)
(* ========================================================================= *)
let ALL2_SYM = prove
(`!l1 l2. ALL2 P l1 l2 <=> ALL2 (\x y. P y x) l2 l1`,
LIST_INDUCT_TAC THEN LIST_INDUCT_TAC THEN ASM_REWRITE_TAC[ALL2]);;
let MAP_EQ_ALL2 = prove
(`!f l1 l2. ALL2 (\x y. f x = f y) l1 l2 ==> (MAP f l1 = MAP f l2)`,
GEN_TAC THEN LIST_INDUCT_TAC THEN LIST_INDUCT_TAC THEN
ASM_SIMP_TAC[ALL2; MAP; CONS_11] THEN STRIP_TAC THEN
FIRST_ASSUM MATCH_MP_TAC THEN ASM_REWRITE_TAC[]);;
let FORMSUBST_EQ = prove
(`!i s t. formsubst i (s === t) = (termsubst i s === termsubst i t)`,
REWRITE_TAC[Equal_DEF; formsubst; MAP]);;
(* ------------------------------------------------------------------------- *)
(* Avoid tedious language details, for sake of simplicity. *)
(* ------------------------------------------------------------------------- *)
let TERMS_UNIV = prove
(`terms UNIV = UNIV`,
REWRITE_TAC[IN_UNIV; EXTENSION] THEN REWRITE_TAC[IN] THEN
MATCH_MP_TAC term_INDUCT THEN REWRITE_TAC[terms_RULES] THEN
CONV_TAC(ONCE_DEPTH_CONV ETA_CONV) THEN
REPEAT STRIP_TAC THEN MATCH_MP_TAC(CONJUNCT2(SPEC_ALL terms_RULES)) THEN
ASM_REWRITE_TAC[IN_UNIV]);;
let FUNCTIONS_UNIV = prove
(`functions UNIV = UNIV`,
REWRITE_TAC[IN_UNIV; EXTENSION] THEN
REWRITE_TAC[functions; IN_UNIONS; IN_ELIM_THM; IN_UNIV] THEN
ONCE_REWRITE_TAC[FORALL_PAIR_THM] THEN
MAP_EVERY X_GEN_TAC [`f:num`; `n:num`] THEN
EXISTS_TAC `functions_form(Atom p [Fn f (REPLICATE n (V x))])` THEN
REWRITE_TAC[functions_form; MAP; LIST_UNION; UNION_EMPTY] THEN
REWRITE_TAC[functions_term; IN_INSERT; LENGTH_REPLICATE] THEN
EXISTS_TAC `Atom p [Fn f (REPLICATE n (V x))]` THEN
REWRITE_TAC[functions_form; MAP; LIST_UNION; UNION_EMPTY] THEN
REWRITE_TAC[functions_term; IN_INSERT; LENGTH_REPLICATE]);;
let PREDICATES_UNIV = prove
(`predicates UNIV = UNIV`,
REWRITE_TAC[IN_UNIV; EXTENSION] THEN
REWRITE_TAC[predicates; IN_UNIONS; IN_ELIM_THM; IN_UNIV] THEN
ONCE_REWRITE_TAC[FORALL_PAIR_THM] THEN
MAP_EVERY X_GEN_TAC [`p:num`; `n:num`] THEN
EXISTS_TAC `predicates_form(Atom p (REPLICATE n (V x)))` THEN
REWRITE_TAC[predicates_form; LENGTH_REPLICATE; IN_INSERT] THEN
EXISTS_TAC `Atom p (REPLICATE n (V x))` THEN
REWRITE_TAC[predicates_form; LENGTH_REPLICATE; IN_INSERT]);;
let LANGUAGE_UNIV = prove
(`language UNIV = UNIV,UNIV`,
REWRITE_TAC[language; FUNCTIONS_UNIV; PREDICATES_UNIV]);;
(* ------------------------------------------------------------------------- *)
(* Trivial properties of object equality. *)
(* ------------------------------------------------------------------------- *)
let EQUAL_INJ = prove
(`!s t u v. ((s === t) = (u === v)) <=> (s = u) /\ (t = v)`,
REWRITE_TAC[Equal_DEF; form_INJ; CONS_11]);;
let EQUAL_INJ_ALT = prove
(`!s t u v. ((s === t) = (u === v)) <=> (u = s) /\ (v = t)`,
REWRITE_TAC[EQUAL_INJ; EQ_SYM_EQ]);;
(* ------------------------------------------------------------------------- *)
(* Provability. *)
(* ------------------------------------------------------------------------- *)
parse_as_infix("|-",(11,"right"));;
let provable_RULES,provable_INDUCT,provable_CASES = new_inductive_definition
`(!s t. s === t IN E ==> E |- s === t) /\
(!t. E |- t === t) /\
(!s t. E |- s === t ==> E |- t === s) /\
(!s t u. E |- s === t /\ E |- t === u ==> E |- s === u) /\
(!f a b. ALL2 (\l r. E |- l === r) a b ==> E |- Fn f a === Fn f b) /\
(!s t i. E |- s === t ==> E |- formsubst i (s === t))`;;
(* ------------------------------------------------------------------------- *)
(* Weakly canonical provability: instantiation and symmetry at leaves. *)
(* ------------------------------------------------------------------------- *)
parse_as_infix("|--",(11,"right"));;
let wcprovable_RULES,wcprovable_INDUCT,wcprovable_CASES =
new_inductive_definition
`(!s t i. s === t IN E ==> E |-- formsubst i (s === t)) /\
(!s t i. s === t IN E ==> E |-- formsubst i (t === s)) /\
(!t. E |-- t === t) /\
(!s t u. E |-- s === t /\ E |-- t === u ==> E |-- s === u) /\
(!f a b. ALL2 (\l r. E |-- l === r) a b ==> E |-- Fn f a === Fn f b)`;;
(* ------------------------------------------------------------------------- *)
(* Equivalence (fairly easy). *)
(* ------------------------------------------------------------------------- *)
let WCPROVABLE_SYM = prove
(`!E a. E |-- a ==> !s t. (a = (s === t)) ==> E |-- t === s`,
GEN_TAC THEN MATCH_MP_TAC wcprovable_INDUCT THEN
SIMP_TAC[EQUAL_INJ_ALT; LEFT_FORALL_IMP_THM;
RIGHT_EXISTS_AND_THM; LEFT_EXISTS_AND_THM; EXISTS_REFL] THEN
REWRITE_TAC[wcprovable_RULES] THEN REPEAT CONJ_TAC THENL
[ALL_TAC;
ALL_TAC;
MESON_TAC[wcprovable_RULES];
ONCE_REWRITE_TAC[GSYM ALL2_SYM] THEN REWRITE_TAC[wcprovable_RULES]] THEN
REWRITE_TAC[FORMSUBST_EQ] THEN
SIMP_TAC[EQUAL_INJ_ALT; LEFT_FORALL_IMP_THM;
RIGHT_EXISTS_AND_THM; LEFT_EXISTS_AND_THM; EXISTS_REFL] THEN
REWRITE_TAC[GSYM FORMSUBST_EQ] THEN REWRITE_TAC[wcprovable_RULES]);;
let WCPROVABLE_INST = prove
(`!E a. E |-- a
==> !i s t. (a = (s === t)) ==> (E |-- formsubst i (s === t))`,
GEN_TAC THEN MATCH_MP_TAC wcprovable_INDUCT THEN
SIMP_TAC[EQUAL_INJ_ALT; LEFT_FORALL_IMP_THM; FORMSUBST_EQ;
RIGHT_EXISTS_AND_THM; LEFT_EXISTS_AND_THM; EXISTS_REFL] THEN
REWRITE_TAC[TERMSUBST_TERMSUBST] THEN REPEAT CONJ_TAC THENL
[SIMP_TAC[GSYM FORMSUBST_EQ; wcprovable_RULES];
SIMP_TAC[GSYM FORMSUBST_EQ; wcprovable_RULES];
REWRITE_TAC[wcprovable_RULES];
MESON_TAC[wcprovable_RULES];
ALL_TAC] THEN
REPEAT STRIP_TAC THEN REWRITE_TAC[termsubst] THEN
MATCH_MP_TAC(last(CONJUNCTS(SPEC_ALL wcprovable_RULES))) THEN
REWRITE_TAC[ALL2_MAP2] THEN
POP_ASSUM MP_TAC THEN MATCH_MP_TAC MONO_ALL2 THEN SIMP_TAC[]);;
let WCPROVABLE_PROVABLE = prove
(`!E s t. (E |-- s === t) <=> (E |- s === t)`,
GEN_TAC THEN
SUBGOAL_THEN
`(!a. E |- a ==> !s t. (a = (s === t)) ==> E |-- s === t) /\
(!a. E |-- a ==> !s t. (a = (s === t)) ==> E |- s === t)`
(fun th -> MESON_TAC[th]) THEN
CONJ_TAC THENL
[MATCH_MP_TAC provable_INDUCT;
MATCH_MP_TAC wcprovable_INDUCT] THEN
SIMP_TAC[EQUAL_INJ_ALT; LEFT_FORALL_IMP_THM;
RIGHT_EXISTS_AND_THM; LEFT_EXISTS_AND_THM; EXISTS_REFL] THEN
REWRITE_TAC[provable_RULES; wcprovable_RULES] THENL
[MESON_TAC[FORMSUBST_TRIV; wcprovable_RULES; Equal_DEF; WCPROVABLE_SYM;
WCPROVABLE_INST];
MESON_TAC[FORMSUBST_TRIV; provable_RULES; Equal_DEF]]);;
(* ------------------------------------------------------------------------- *)
(* R-assoc transitivity chains and congruences maximally pushed down. *)
(* ------------------------------------------------------------------------- *)
parse_as_infix("|---",(11,"right"));;
parse_as_infix("|--_axiom",(11,"right"));;
parse_as_infix("|--_cong",(11,"right"));;
parse_as_infix("|--_achain",(11,"right"));;
parse_as_infix("|--_cchain",(11,"right"));;
let aprovable_RULES,aprovable_INDUCT,aprovable_CASES =
new_inductive_definition
`(!s t i. s === t IN E ==> E |--_axiom formsubst i (s === t)) /\
(!s t i. s === t IN E ==> E |--_axiom formsubst i (t === s))`;;
let cprovable_RULES,cprovable_INDUCT,cprovable_CASES =
new_inductive_definition
`(!s t. E |--_axiom s === t ==> E |--_achain s === t) /\
(!s t. E |--_cong s === t ==> E |--_cchain s === t) /\
(!s t u. E |--_axiom s === t /\ E |--- t === u ==> E |--_achain s === u) /\
(!s t u. E |--_cong s === t /\ E |--_achain t === u
==> E |--_cchain s === u) /\
(!f a b. ALL2 (\l r. E |--- l === r) a b
==> E |--_cong Fn f a === Fn f b) /\
(!s t. (s = t) \/ E |--_achain s === t \/ E |--_cchain s === t
==> E |--- s === t)`;;
let CPROVABLE_PROVABLE_LEMMA = prove
(`!E a. E |-- a
==> E |-- a /\
E |--- a /\
!u s t. (a = (s === t))
==> E |--- t === u ==> E |--- s === u`,
GEN_TAC THEN MATCH_MP_TAC wcprovable_INDUCT THEN
SIMP_TAC[EQUAL_INJ_ALT; LEFT_FORALL_IMP_THM;
RIGHT_EXISTS_AND_THM; LEFT_EXISTS_AND_THM; EXISTS_REFL] THEN
REWRITE_TAC[wcprovable_RULES] THEN
REPEAT(CONJ_TAC THENL
[MESON_TAC[FORMSUBST_EQ; wcprovable_RULES;
cprovable_RULES; aprovable_RULES]; ALL_TAC]) THEN
REWRITE_TAC[GSYM AND_ALL2] THEN SIMP_TAC[wcprovable_RULES] THEN
REPEAT GEN_TAC THEN STRIP_TAC THEN
ASM_SIMP_TAC[cprovable_RULES] THEN X_GEN_TAC `u:term` THEN
GEN_REWRITE_TAC LAND_CONV [cprovable_CASES] THEN
REWRITE_TAC[EQUAL_INJ_ALT] THEN
ONCE_REWRITE_TAC[TAUT `a /\ b <=> ~(a ==> ~b)`] THEN
SIMP_TAC[] THEN REWRITE_TAC[NOT_IMP; LEFT_EXISTS_AND_THM] THEN
REWRITE_TAC[LEFT_EXISTS_AND_THM; RIGHT_EXISTS_AND_THM; EXISTS_REFL] THEN
DISCH_THEN (DISJ_CASES_THEN MP_TAC) THENL
[DISCH_THEN(SUBST1_TAC o SYM) THEN
MATCH_MP_TAC(el 5 (CONJUNCTS(SPEC_ALL cprovable_RULES))) THEN
DISJ2_TAC THEN DISJ2_TAC THEN
MATCH_MP_TAC(el 1 (CONJUNCTS(SPEC_ALL cprovable_RULES))) THEN
MATCH_MP_TAC(el 4 (CONJUNCTS(SPEC_ALL cprovable_RULES))) THEN
ASM_REWRITE_TAC[]; ALL_TAC] THEN
DISCH_THEN DISJ_CASES_TAC THENL
[MATCH_MP_TAC(el 5 (CONJUNCTS(SPEC_ALL cprovable_RULES))) THEN
DISJ2_TAC THEN DISJ2_TAC THEN
MATCH_MP_TAC(el 3 (CONJUNCTS(SPEC_ALL cprovable_RULES))) THEN
EXISTS_TAC `Fn f b` THEN ASM_SIMP_TAC[cprovable_RULES]; ALL_TAC] THEN
FIRST_X_ASSUM(MP_TAC o GEN_REWRITE_RULE I [cprovable_CASES]) THEN
REWRITE_TAC[EQUAL_INJ_ALT] THEN
ONCE_REWRITE_TAC[TAUT `a /\ b <=> ~(a ==> ~b)`] THEN
SIMP_TAC[] THEN REWRITE_TAC[NOT_IMP; LEFT_EXISTS_AND_THM] THEN
REWRITE_TAC[LEFT_EXISTS_AND_THM; RIGHT_EXISTS_AND_THM; EXISTS_REFL] THEN
DISCH_THEN(DISJ_CASES_THEN MP_TAC) THENL
[GEN_REWRITE_TAC LAND_CONV [cprovable_CASES] THEN
REWRITE_TAC[EQUAL_INJ_ALT; term_INJ; LEFT_IMP_EXISTS_THM] THEN
GEN_TAC THEN GEN_TAC THEN X_GEN_TAC `c:term list` THEN
REWRITE_TAC[GSYM CONJ_ASSOC] THEN
SIMP_TAC[TAUT `a /\ b /\ c ==> d <=> a ==> b ==> c ==> d`] THEN
DISCH_THEN(K ALL_TAC) THEN DISCH_THEN(K ALL_TAC) THEN
DISCH_THEN(CONJUNCTS_THEN2 (SUBST1_TAC o SYM) ASSUME_TAC) THEN
MATCH_MP_TAC(el 5 (CONJUNCTS(SPEC_ALL cprovable_RULES))) THEN
DISJ2_TAC THEN DISJ2_TAC THEN
MATCH_MP_TAC(el 1 (CONJUNCTS(SPEC_ALL cprovable_RULES))) THEN
MATCH_MP_TAC(el 4 (CONJUNCTS(SPEC_ALL cprovable_RULES))) THEN
MAP_EVERY UNDISCH_TAC
[`ALL2 (\l r. !u. E |--- r === u ==> E |--- l === u) a b`;
`ALL2 (\l r. E |--- l === r) b c`] THEN
REWRITE_TAC[IMP_IMP] THEN
MAP_EVERY (fun t -> SPEC_TAC(t,t))
[`c:term list`; `b:term list`; `a:term list`] THEN
LIST_INDUCT_TAC THEN LIST_INDUCT_TAC THEN LIST_INDUCT_TAC THEN
REWRITE_TAC[ALL2] THEN REPEAT STRIP_TAC THEN ASM_SIMP_TAC[] THEN
FIRST_ASSUM MATCH_MP_TAC THEN
FIRST_ASSUM(fun th ->
EXISTS_TAC (rand(concl th)) THEN ASM_REWRITE_TAC[] THEN NO_TAC);
ALL_TAC] THEN
DISCH_THEN(X_CHOOSE_THEN `s:term` (CONJUNCTS_THEN2 MP_TAC ASSUME_TAC)) THEN
GEN_REWRITE_TAC LAND_CONV [cprovable_CASES] THEN
REWRITE_TAC[EQUAL_INJ_ALT; term_INJ; LEFT_IMP_EXISTS_THM] THEN
GEN_TAC THEN GEN_TAC THEN X_GEN_TAC `c:term list` THEN
REWRITE_TAC[GSYM CONJ_ASSOC] THEN
SIMP_TAC[TAUT `a /\ b /\ c ==> d <=> a ==> b ==> c ==> d`] THEN
DISCH_THEN(K ALL_TAC) THEN DISCH_THEN(K ALL_TAC) THEN
DISCH_THEN(CONJUNCTS_THEN2 (SUBST_ALL_TAC o SYM) ASSUME_TAC) THEN
MATCH_MP_TAC(el 5 (CONJUNCTS(SPEC_ALL cprovable_RULES))) THEN DISJ2_TAC THEN
DISJ2_TAC THEN MATCH_MP_TAC(el 3 (CONJUNCTS(SPEC_ALL cprovable_RULES))) THEN
EXISTS_TAC `Fn f c` THEN ASM_REWRITE_TAC[] THEN
MATCH_MP_TAC(el 4 (CONJUNCTS(SPEC_ALL cprovable_RULES))) THEN
MAP_EVERY UNDISCH_TAC
[`ALL2 (\l r. !u. E |--- r === u ==> E |--- l === u) a b`;
`ALL2 (\l r. E |--- l === r) b c`] THEN
REWRITE_TAC[IMP_IMP] THEN
MAP_EVERY (fun t -> SPEC_TAC(t,t))
[`c:term list`; `b:term list`; `a:term list`] THEN
LIST_INDUCT_TAC THEN LIST_INDUCT_TAC THEN LIST_INDUCT_TAC THEN
REWRITE_TAC[ALL2] THEN REPEAT STRIP_TAC THEN ASM_SIMP_TAC[] THEN
FIRST_ASSUM MATCH_MP_TAC THEN
FIRST_ASSUM(fun th ->
EXISTS_TAC (rand(concl th)) THEN ASM_REWRITE_TAC[] THEN NO_TAC));;
let CPROVABLE_PROVABLE = prove
(`!E s t. (E |--- s === t) <=> (E |- s === t)`,
REPEAT GEN_TAC THEN EQ_TAC THENL
[ALL_TAC; MESON_TAC[CPROVABLE_PROVABLE_LEMMA; WCPROVABLE_PROVABLE]] THEN
SUBGOAL_THEN
`(!a. E |--_achain a ==> !s t. (a = (s === t)) ==> E |- s === t) /\
(!a. E |--_cchain a ==> !s t. (a = (s === t)) ==> E |- s === t) /\
(!a. E |--_cong a ==> !s t. (a = (s === t)) ==> E |- s === t) /\
(!a. E |--- a ==> !s t. (a = (s === t)) ==> E |- s === t)`
(fun th -> MESON_TAC[th]) THEN
MATCH_MP_TAC cprovable_INDUCT THEN
SIMP_TAC[EQUAL_INJ_ALT; LEFT_FORALL_IMP_THM;
RIGHT_EXISTS_AND_THM; LEFT_EXISTS_AND_THM; EXISTS_REFL] THEN
REWRITE_TAC[provable_RULES] THEN
SUBGOAL_THEN `!a. E |--_axiom a ==> !s t. (a = (s === t)) ==> E |- s === t`
(fun th -> MESON_TAC[th; provable_RULES]) THEN
MATCH_MP_TAC aprovable_INDUCT THEN
REWRITE_TAC[FORMSUBST_EQ; EQUAL_INJ_ALT] THEN
SIMP_TAC[] THEN MESON_TAC[provable_RULES; FORMSUBST_EQ]);;
(* ------------------------------------------------------------------------- *)
(* Auxiliary notion of set of subterms in equations. *)
(* ------------------------------------------------------------------------- *)
let subterms = new_recursive_definition term_RECURSION
`(subterms (V x) = {(V x)}) /\
(subterms (Fn f args) =
(Fn f args) INSERT (LIST_UNION (MAP subterms args)))`;;
let subtermsa = new_recursive_definition form_RECURSION
`subtermsa (Atom P args) = LIST_UNION (MAP subterms args)`;;
let subtermss = new_definition
`subtermss E = UNIONS {subtermsa p | p IN E}`;;
let SUBTERMS_REFL = prove
(`!t. t IN subterms t`,
MATCH_MP_TAC term_INDUCT THEN REWRITE_TAC[subterms; IN_INSERT]);;
(* ------------------------------------------------------------------------- *)
(* Show that this maintains the subterm property for congruence closure. *)
(* ------------------------------------------------------------------------- *)
let esubterms = new_definition
`esubterms E s t =
subtermss ((s === t) INSERT {formsubst i p |i,p| p IN E})`;;
parse_as_infix("|----",(11,"right"));;
parse_as_infix("|--_scong",(11,"right"));;
parse_as_infix("|--_sachain",(11,"right"));;
parse_as_infix("|--_scchain",(11,"right"));;
let scprovable_RULES,scprovable_INDUCT,scprovable_CASES =
new_inductive_definition
`(!s t. E |--_axiom s === t ==> E |--_sachain s === t) /\
(!s t. E |--_scong s === t ==> E |--_scchain s === t) /\
(!s t u. E |--_axiom s === t /\ E |---- t === u /\ t IN esubterms E s u
==> E |--_sachain s === u) /\
(!s t u. E |--_scong s === t /\ E |--_sachain t === u /\ t IN esubterms E s u
==> E |--_scchain s === u) /\
(!f a b. ALL2 (\l r. E |---- l === r) a b
==> E |--_scong Fn f a === Fn f b) /\
(!s t. (s = t) \/ E |--_sachain s === t \/ E |--_scchain s === t
==> E |---- s === t)`;;
let ESUBTERMS_TRIVIAL_L = prove
(`!u. u IN subterms s ==> u IN esubterms E s t`,
REWRITE_TAC[esubterms; subtermss; IN_UNIONS; IN_INSERT; IN_ELIM_THM] THEN
REPEAT STRIP_TAC THEN EXISTS_TAC `subterms s UNION subterms t` THEN
ASM_REWRITE_TAC[IN_UNION] THEN
EXISTS_TAC `s === t` THEN REWRITE_TAC[subtermsa; Equal_DEF; MAP; LIST_UNION] THEN
REWRITE_TAC[UNION_EMPTY]);;
let ESUBTERMS_TRIVIAL_R = prove
(`!u. u IN subterms t ==> u IN esubterms E s t`,
REWRITE_TAC[esubterms; subtermss; IN_UNIONS; IN_INSERT; IN_ELIM_THM] THEN
REPEAT STRIP_TAC THEN EXISTS_TAC `subterms s UNION subterms t` THEN
ASM_REWRITE_TAC[IN_UNION] THEN
EXISTS_TAC `s === t` THEN REWRITE_TAC[subtermsa; Equal_DEF; MAP; LIST_UNION] THEN
REWRITE_TAC[UNION_EMPTY]);;
let SCPROVABLE_SUBTERMS = prove
(`!a. E |--_sachain a
==> !s t. (a = (s === t))
==> !u v. s IN esubterms E u v`,
GEN_TAC THEN GEN_REWRITE_TAC LAND_CONV [scprovable_CASES] THEN
SUBGOAL_THEN
`!a. E |--_axiom a
==> !s t. (a = (s === t))
==> !u v. s IN esubterms E u v`
(fun th -> STRIP_TAC THEN ASM_REWRITE_TAC[EQUAL_INJ_ALT] THEN
ASM_MESON_TAC[th]) THEN
GEN_TAC THEN ONCE_REWRITE_TAC[aprovable_CASES] THEN
STRIP_TAC THEN ASM_REWRITE_TAC[FORMSUBST_EQ; EQUAL_INJ_ALT] THEN
REPEAT STRIP_TAC THEN ASM_REWRITE_TAC[] THEN
(REWRITE_TAC[esubterms; subtermss; IN_UNIONS; IN_ELIM_THM; IN_INSERT] THEN
EXISTS_TAC `subtermsa (formsubst i (s === t))` THEN CONJ_TAC THENL
[ASM_MESON_TAC[]; ALL_TAC] THEN
REWRITE_TAC[subtermsa; FORMSUBST_EQ] THEN
REWRITE_TAC[subtermsa; Equal_DEF; MAP; LIST_UNION; UNION_EMPTY] THEN
MESON_TAC[IN_UNION; SUBTERMS_REFL]));;
let SCPROVABLE_CPROVABLE_LEMMA = prove
(`(!a. E |--_achain a ==> !s t. (a = (s === t)) ==> E |--_sachain s === t) /\
(!a. E |--_cchain a ==> !s t. (a = (s === t)) ==> E |--_scchain s === t) /\
(!a. E |--_cong a ==> !s t. (a = (s === t)) ==> E |--_scong s === t) /\
(!a. E |--- a ==> !s t. (a = (s === t)) ==> E |---- s === t)`,
MATCH_MP_TAC cprovable_INDUCT THEN
SIMP_TAC[EQUAL_INJ_ALT; LEFT_FORALL_IMP_THM;
RIGHT_EXISTS_AND_THM; LEFT_EXISTS_AND_THM; EXISTS_REFL] THEN
REWRITE_TAC[scprovable_RULES] THEN REPEAT STRIP_TAC THENL
[MATCH_MP_TAC(el 2 (CONJUNCTS(SPEC_ALL scprovable_RULES))) THEN
EXISTS_TAC `t:term` THEN ASM_REWRITE_TAC[] THEN
FIRST_X_ASSUM(MP_TAC o GEN_REWRITE_RULE I [aprovable_CASES]) THEN
REWRITE_TAC[FORMSUBST_EQ; EQUAL_INJ_ALT] THEN
DISCH_THEN(REPEAT_TCL DISJ_CASES_THEN MP_TAC) THEN
(REWRITE_TAC[LEFT_IMP_EXISTS_THM] THEN
MAP_EVERY X_GEN_TAC [`v:term`; `w:term`; `i:num->term`] THEN
DISCH_THEN(STRIP_ASSUME_TAC o GSYM) THEN ASM_REWRITE_TAC[] THEN
REWRITE_TAC[esubterms; subtermss; IN_UNIONS; IN_ELIM_THM; IN_INSERT] THEN
EXISTS_TAC `subtermsa (formsubst i (v === w))` THEN CONJ_TAC THENL
[ASM_MESON_TAC[]; ALL_TAC] THEN
REWRITE_TAC[subtermsa; FORMSUBST_EQ] THEN
REWRITE_TAC[subtermsa; Equal_DEF; MAP; LIST_UNION; UNION_EMPTY] THEN
MESON_TAC[IN_UNION; SUBTERMS_REFL]);
ALL_TAC] THEN
MATCH_MP_TAC(el 3 (CONJUNCTS(SPEC_ALL scprovable_RULES))) THEN
EXISTS_TAC `t:term` THEN ASM_REWRITE_TAC[] THEN
ASM_MESON_TAC[SCPROVABLE_SUBTERMS]);;
let SCPROVABLE_CPROVABLE = prove
(`!E s t. (E |--- s === t) <=> (E |---- s === t)`,
REPEAT GEN_TAC THEN EQ_TAC THENL
[ASM_MESON_TAC[SCPROVABLE_CPROVABLE_LEMMA]; ALL_TAC] THEN
SUBGOAL_THEN
`(!a. E |--_sachain a ==> !s t. (a = (s === t)) ==> E |--_achain s === t) /\
(!a. E |--_scchain a ==> !s t. (a = (s === t)) ==> E |--_cchain s === t) /\
(!a. E |--_scong a ==> !s t. (a = (s === t)) ==> E |--_cong s === t) /\
(!a. E |---- a ==> !s t. (a = (s === t)) ==> E |--- s === t)`
(fun th -> MESON_TAC[th]) THEN
MATCH_MP_TAC scprovable_INDUCT THEN
SIMP_TAC[EQUAL_INJ_ALT; LEFT_FORALL_IMP_THM;
RIGHT_EXISTS_AND_THM; LEFT_EXISTS_AND_THM; EXISTS_REFL] THEN
REWRITE_TAC[cprovable_RULES] THEN MESON_TAC[cprovable_RULES]);;
let SCPROVABLE_PROVABLE = prove
(`!E s t. (E |--- s === t) <=> (E |- s === t)`,
MESON_TAC[SCPROVABLE_CPROVABLE; CPROVABLE_PROVABLE]);;
(* ------------------------------------------------------------------------- *)
(* Clausal version of equality properties. *)
(* ------------------------------------------------------------------------- *)
let Eqclause_Func = new_definition
`Eqclause_Func (f,n) =
set_of_list
(CONS (Fn f (MAP FST (Varpairs n)) === Fn f (MAP SND (Varpairs n)))
(MAP (\(s,t). Not(s === t)) (Varpairs n)))`;;
let Eqclause_Pred = new_definition
`Eqclause_Pred (p,n) =
set_of_list
(CONS (Atom p (MAP SND (Varpairs n)))
(CONS (Not(Atom p (MAP FST (Varpairs n))))
(MAP (\(s,t). Not(s === t)) (Varpairs n))))`;;
let Eqclauses_DEF = new_definition
`Eqclauses L =
{(V 0 === V 0)} INSERT
{(Not(V 0 === V 1)), (Not(V 2 === V 1)), (V 0 === V 2)} INSERT
({Eqclause_Func fa | fa IN FST L} UNION
{Eqclause_Pred pa | pa IN SND L})`;;
let EQCLAUSE_EQAXIOM_FUNC = prove
(`!M f n. ~(Dom M :A->bool = {})
==> (M satisfies {(interp(Eqclause_Func (f,n)))} <=>
M satisfies {(Eqaxiom_Func (f,n))})`,
REPEAT GEN_TAC THEN REWRITE_TAC[Eqclause_Func; Eqaxiom_Func] THEN
SIMP_TAC[satisfies; IN_INSERT; NOT_IN_EMPTY] THEN
REWRITE_TAC[LEFT_FORALL_IMP_THM; RIGHT_EXISTS_AND_THM] THEN
REWRITE_TAC[EXISTS_REFL] THEN
SIMP_TAC[HOLDS_UCLOSE_ALL_EQ] THEN
SIMP_TAC[HOLDS_INTERP; FINITE_SET_OF_LIST] THEN
REWRITE_TAC[set_of_list; IN_INSERT; HOLDS] THEN
REWRITE_TAC[TAUT `(a \/ b) /\ c <=> a /\ c \/ b /\ c`; EXISTS_OR_THM] THEN
REWRITE_TAC[UNWIND_THM2] THEN DISCH_TAC THEN
AP_TERM_TAC THEN GEN_REWRITE_TAC I [FUN_EQ_THM] THEN
X_GEN_TAC `v:num->A` THEN REWRITE_TAC[] THEN
MATCH_MP_TAC(TAUT `(a ==> (b <=> c)) ==> (a ==> b <=> a ==> c)`) THEN
DISCH_TAC THEN
MATCH_MP_TAC(TAUT `(~a <=> b) ==> (c \/ a <=> b ==> c)`) THEN
SPEC_TAC(`Varpairs n`,`l:(term#term)list`) THEN
ONCE_REWRITE_TAC[CONJ_SYM] THEN
REWRITE_TAC[EX_MEM; IN_SET_OF_LIST] THEN
REWRITE_TAC[NOT_EX; ALL_MAP; o_THM] THEN
MATCH_MP_TAC list_INDUCT THEN
REWRITE_TAC[ALL; ITLIST; HOLDS; MAP] THEN SIMP_TAC[] THEN
GEN_REWRITE_TAC I [FORALL_PAIR_THM] THEN
REPEAT STRIP_TAC THEN REWRITE_TAC[o_THM] THEN
CONV_TAC(ONCE_DEPTH_CONV GEN_BETA_CONV) THEN
REWRITE_TAC[HOLDS]);;
let Eqaxiom_Pred_imp = new_definition
`Eqaxiom_Pred_imp (p,n) =
uclose
(ITLIST (&&) (MAP (\(s,t). s === t) (Varpairs n)) True
--> Atom p (MAP FST (Varpairs n))
--> Atom p (MAP SND (Varpairs n)))`;;
let lemma = prove(`a INSERT s = {a} UNION s`,SET_TAC[]);;
let EQCLAUSES_EQAXIOMS = prove
(`!M L. ~(Dom M :A->bool = {})
==> (M satisfies (IMAGE interp (Eqclauses L)) <=>
M satisfies (Eqaxioms L))`,
REPEAT STRIP_TAC THEN
REWRITE_TAC[Eqclauses_DEF; Eqaxioms_DEF; IMAGE_CLAUSES; IMAGE_UNION] THEN
GEN_REWRITE_TAC (LAND_CONV o RAND_CONV o RAND_CONV) [lemma] THEN
GEN_REWRITE_TAC (LAND_CONV o RAND_CONV) [lemma] THEN
REWRITE_TAC[SATISFIES_UNION] THEN
MATCH_MP_TAC(TAUT
`(a' <=> a) /\ (a ==> (b' <=> b)) ==> (a' /\ b' <=> a /\ b)`) THEN
CONJ_TAC THENL
[REWRITE_TAC[SATISFIES_1] THEN ASM_REWRITE_TAC[HOLDS_UCLOSE] THEN
SIMP_TAC[HOLDS_INTERP; FINITE_RULES] THEN
REWRITE_TAC[IN_SING] THEN MESON_TAC[];
ALL_TAC] THEN
DISCH_TAC THEN
MATCH_MP_TAC(TAUT
`(a' <=> a) /\ (a ==> (b' <=> b)) ==> (a' /\ b' <=> a /\ b)`) THEN
CONJ_TAC THENL
[REWRITE_TAC[SATISFIES_1] THEN ASM_REWRITE_TAC[HOLDS_UCLOSE] THEN
SIMP_TAC[HOLDS_INTERP; FINITE_INSERT; FINITE_EMPTY] THEN
REWRITE_TAC[IN_INSERT; NOT_IN_EMPTY; HOLDS] THEN
REWRITE_TAC[TAUT `(a \/ b) /\ c <=> a /\ c \/ b /\ c`] THEN
REWRITE_TAC[EXISTS_OR_THM; UNWIND_THM2] THEN
REWRITE_TAC[HOLDS] THEN AP_TERM_TAC THEN ABS_TAC THEN
CONV_TAC TAUT; ALL_TAC] THEN
DISCH_TAC THEN
MATCH_MP_TAC(TAUT
`(a' <=> a) /\ (a ==> (b' <=> b)) ==> (a' /\ b' <=> a /\ b)`) THEN
CONJ_TAC THENL
[REWRITE_TAC[SATISFIES_IMAGE] THEN
REWRITE_TAC[satisfies; IN_ELIM_THM] THEN
SIMP_TAC[RIGHT_AND_EXISTS_THM; LEFT_IMP_EXISTS_THM] THEN
FIRST_ASSUM(MP_TAC o MATCH_MP EQCLAUSE_EQAXIOM_FUNC) THEN
REWRITE_TAC[SATISFIES_1] THEN
ONCE_REWRITE_TAC[FORALL_PAIR_THM] THEN MESON_TAC[]; ALL_TAC] THEN
DISCH_TAC THEN
REWRITE_TAC[SATISFIES_IMAGE] THEN
REWRITE_TAC[satisfies; IN_ELIM_THM] THEN
ONCE_REWRITE_TAC[EXISTS_PAIR_THM] THEN
SUBGOAL_THEN
`!p n. (!v:num->A. valuation M v
==> holds M v (interp(Eqclause_Pred(p,n)))) <=>
(!v:num->A. valuation M v
==> holds M v (Eqaxiom_Pred(p,n)))`
(fun th -> MESON_TAC[th]) THEN
GEN_TAC THEN GEN_TAC THEN
MATCH_MP_TAC EQ_TRANS THEN
EXISTS_TAC
`!v:num->A. valuation M v ==> holds M v (Eqaxiom_Pred_imp(p,n))` THEN
CONJ_TAC THENL
[REWRITE_TAC[Eqclause_Pred; Eqaxiom_Pred_imp] THEN
ASM_SIMP_TAC[HOLDS_UCLOSE_ALL_EQ] THEN
SIMP_TAC[HOLDS_INTERP; FINITE_SET_OF_LIST] THEN
REWRITE_TAC[set_of_list; IN_INSERT; HOLDS] THEN
REWRITE_TAC[TAUT `(a \/ b) /\ c <=> a /\ c \/ b /\ c`; EXISTS_OR_THM] THEN
REWRITE_TAC[UNWIND_THM2] THEN
AP_TERM_TAC THEN GEN_REWRITE_TAC I [FUN_EQ_THM] THEN
X_GEN_TAC `v:num->A` THEN REWRITE_TAC[] THEN
MATCH_MP_TAC(TAUT `(a ==> (b <=> c)) ==> (a ==> b <=> a ==> c)`) THEN
DISCH_TAC THEN REWRITE_TAC[HOLDS] THEN
MATCH_MP_TAC(TAUT
`(~c <=> d) ==> (a \/ ~b \/ c <=> d ==> b ==> a)`) THEN
SPEC_TAC(`Varpairs n`,`l:(term#term)list`) THEN
ONCE_REWRITE_TAC[CONJ_SYM] THEN
REWRITE_TAC[EX_MEM; IN_SET_OF_LIST] THEN
REWRITE_TAC[NOT_EX; ALL_MAP; o_THM] THEN
MATCH_MP_TAC list_INDUCT THEN
REWRITE_TAC[ALL; ITLIST; HOLDS; MAP] THEN SIMP_TAC[] THEN
GEN_REWRITE_TAC I [FORALL_PAIR_THM] THEN
REPEAT STRIP_TAC THEN REWRITE_TAC[o_THM] THEN
CONV_TAC(ONCE_DEPTH_CONV GEN_BETA_CONV) THEN
REWRITE_TAC[HOLDS];
ALL_TAC] THEN
REWRITE_TAC[Eqaxiom_Pred_imp; Eqaxiom_Pred; HOLDS] THEN
ASM_SIMP_TAC[HOLDS_UCLOSE_ALL_EQ; HOLDS] THEN
EQ_TAC THEN SIMP_TAC[] THEN DISCH_TAC THEN X_GEN_TAC `v:num->A` THEN
DISCH_TAC THEN DISCH_TAC THEN EQ_TAC THEN ASM_SIMP_TAC[] THEN
DISCH_TAC THEN
FIRST_X_ASSUM(MP_TAC o SPEC
`\x. if EVEN(x) then v(x + 1):A else v(x - 1)`) THEN
REWRITE_TAC[GSYM MAP_o] THEN
MAP_EVERY UNDISCH_TAC
[`Pred M p (MAP (termval M (v:num->A)) (MAP SND (Varpairs n)))`;
`holds M (v:num->A)
(ITLIST (&&) (MAP (\(s,t). s === t) (Varpairs n)) True)`] THEN
MATCH_MP_TAC(TAUT
`a /\ (x <=> b) /\ (y <=> c) /\ (d <=> e)
==> x ==> y ==> (a ==> b ==> c ==> d) ==> e`) THEN
CONJ_TAC THENL
[REWRITE_TAC[valuation] THEN GEN_TAC THEN COND_CASES_TAC THEN
ASM_MESON_TAC[valuation]; ALL_TAC] THEN
SUBGOAL_THEN
`!v:num->A x y. valuation M v
==> (holds M v (V x === V y) <=> holds M v (V y === V x))`
ASSUME_TAC THENL
[X_GEN_TAC `w:num->A` THEN REPEAT STRIP_TAC THEN
REPEAT(FIRST_X_ASSUM(MP_TAC o GEN_REWRITE_RULE I [SATISFIES_1])) THEN
ASM_REWRITE_TAC[HOLDS_UCLOSE] THEN
REWRITE_TAC[IMP_IMP] THEN
REWRITE_TAC[AND_FORALL_THM] THEN
DISCH_THEN(fun th ->
MP_TAC(SPEC `\n. if n = 2 then (w:num->A)(y) else w(x)` th) THEN
MP_TAC(SPEC `\n. if n = 2 then (w:num->A)(x) else w(y)` th)) THEN
REWRITE_TAC[HOLDS; Equal_DEF; MAP; termval; ARITH_EQ; valuation] THEN
RULE_ASSUM_TAC(REWRITE_RULE[valuation]) THEN
ONCE_REWRITE_TAC[COND_RAND] THEN ONCE_REWRITE_TAC[COND_RATOR] THEN
ASM_REWRITE_TAC[COND_ID] THEN CONV_TAC TAUT; ALL_TAC] THEN
CONJ_TAC THENL
[SPEC_TAC(`n:num`,`n:num`) THEN
INDUCT_TAC THEN ASM_REWRITE_TAC[Varpairs_DEF; MAP; ITLIST; HOLDS] THEN
AP_THM_TAC THEN AP_TERM_TAC THEN
CONV_TAC(ONCE_DEPTH_CONV GEN_BETA_CONV) THEN
MATCH_MP_TAC EQ_TRANS THEN
EXISTS_TAC `holds M (v:num->A) (V(2 * n + 1) === V(2 * n))` THEN
CONJ_TAC THENL [ASM_SIMP_TAC[]; ALL_TAC] THEN
REWRITE_TAC[HOLDS; Equal_DEF; MAP; termval; ARITH_EQ] THEN
REWRITE_TAC[EVEN_ADD; EVEN_MULT; ARITH] THEN REWRITE_TAC[ADD_SUB];
ALL_TAC] THEN
CONJ_TAC THEN
(AP_TERM_TAC THEN SPEC_TAC(`n:num`,`n:num`) THEN
INDUCT_TAC THEN ASM_REWRITE_TAC[Varpairs_DEF; MAP] THEN
REWRITE_TAC[CONS_11] THEN
REWRITE_TAC[ADD_SUB; o_THM; termval; EVEN_ADD; EVEN_MULT; ARITH]));;
let FUNCTIONS_VAREQLIST = prove
(`!n. functions(set_of_list (MAP (\(s,t). Not(s === t)) (Varpairs n))) = {}`,
INDUCT_TAC THEN REWRITE_TAC[Varpairs_DEF; MAP; set_of_list] THENL
[REWRITE_TAC[functions; NOT_IN_EMPTY; IN_ELIM_THM; EXTENSION; IN_UNIONS];
ASM_REWRITE_TAC[FUNCTIONS_INSERT; UNION_EMPTY] THEN
CONV_TAC(ONCE_DEPTH_CONV GEN_BETA_CONV) THEN
REWRITE_TAC[Equal_DEF; functions_form; Not_DEF; MAP; functions_term] THEN
REWRITE_TAC[LIST_UNION; UNION_EMPTY]]);;
let FUNCTIONS_TERM_FN_VARPAIRS = prove
(`(!f n. functions_term(Fn f (MAP FST (Varpairs n))) = {(f,n)}) /\
(!f n. functions_term(Fn f (MAP SND (Varpairs n))) = {(f,n)})`,
REWRITE_TAC[functions_term; LENGTH_VARPAIRS; LENGTH_MAP] THEN
REPEAT STRIP_TAC THEN
SUBGOAL_THEN
`(LIST_UNION (MAP functions_term (MAP FST (Varpairs n))) = {}) /\
(LIST_UNION (MAP functions_term (MAP SND (Varpairs n))) = {})`
(fun th -> REWRITE_TAC[th]) THEN
SPEC_TAC(`n:num`,`n:num`) THEN
INDUCT_TAC THEN REWRITE_TAC[Varpairs_DEF; MAP; LIST_UNION; functions_term] THEN
ASM_REWRITE_TAC[UNION_EMPTY]);;
let FUNCTIONS_FORM_PRED_VARPAIRS = prove
(`(!p n. functions_form(Atom p (MAP FST (Varpairs n))) = {}) /\
(!p n. functions_form(Atom p (MAP SND (Varpairs n))) = {})`,
REWRITE_TAC[functions_form; LENGTH_VARPAIRS; LENGTH_MAP] THEN
REPEAT STRIP_TAC THEN
SUBGOAL_THEN
`(LIST_UNION (MAP functions_term (MAP FST (Varpairs n))) = {}) /\
(LIST_UNION (MAP functions_term (MAP SND (Varpairs n))) = {})`
(fun th -> REWRITE_TAC[th]) THEN
SPEC_TAC(`n:num`,`n:num`) THEN
INDUCT_TAC THEN REWRITE_TAC[Varpairs_DEF; MAP; LIST_UNION; functions_term] THEN
ASM_REWRITE_TAC[UNION_EMPTY]);;
let FUNCTIONS_FORM_EQCLAUSE_FUNC = prove
(`!fn. functions_form(interp(Eqclause_Func fn)) = {fn}`,
GEN_REWRITE_TAC I [FORALL_PAIR_THM] THEN
MAP_EVERY X_GEN_TAC [`f:num`; `n:num`] THEN
REWRITE_TAC[Eqclause_Func] THEN
SIMP_TAC[FUNCTIONS_FORM_INTERP; FINITE_SET_OF_LIST] THEN
REWRITE_TAC[set_of_list; FUNCTIONS_INSERT; FUNCTIONS_UNION] THEN
REWRITE_TAC[functions_form; Equal_DEF; MAP; FUNCTIONS_TERM_FN_VARPAIRS] THEN
REWRITE_TAC[GSYM Equal_DEF; FUNCTIONS_VAREQLIST] THEN
REWRITE_TAC[LIST_UNION; UNION_EMPTY; UNION_ACI]);;
let FUNCTIONS_FORM_EQCLAUSE_PRED = prove
(`!pn. functions_form(interp(Eqclause_Pred pn)) = {}`,
GEN_REWRITE_TAC I [FORALL_PAIR_THM] THEN
MAP_EVERY X_GEN_TAC [`p:num`; `n:num`] THEN
REWRITE_TAC[Eqclause_Pred] THEN
SIMP_TAC[FUNCTIONS_FORM_INTERP; FINITE_SET_OF_LIST] THEN
REWRITE_TAC[set_of_list; FUNCTIONS_INSERT; FUNCTIONS_UNION] THEN
REWRITE_TAC[FUNCTIONS_VAREQLIST; UNION_EMPTY] THEN
REWRITE_TAC[Not_DEF; FUNCTIONS_FORM_PRED_VARPAIRS] THEN
ONCE_REWRITE_TAC[functions_form] THEN
REWRITE_TAC[FUNCTIONS_FORM_PRED_VARPAIRS] THEN
REWRITE_TAC[functions_form; UNION_EMPTY]);;
let FUNCTIONS_EQCLAUSES = prove
(`functions(IMAGE interp (Eqclauses(language s))) = functions s`,
REWRITE_TAC[functions; Eqclauses_DEF] THEN
GEN_REWRITE_TAC I [EXTENSION] THEN
REWRITE_TAC[IN_ELIM_THM; IN_IMAGE; IN_UNIONS] THEN
GEN_REWRITE_TAC I [FORALL_PAIR_THM] THEN
MAP_EVERY X_GEN_TAC [`f:num`; `n:num`] THEN
REWRITE_TAC[LEFT_AND_EXISTS_THM] THEN
GEN_REWRITE_TAC (LAND_CONV o BINDER_CONV) [SWAP_EXISTS_THM] THEN
REWRITE_TAC[GSYM CONJ_ASSOC] THEN REWRITE_TAC[UNWIND_THM2] THEN
REWRITE_TAC[IN_INSERT; IN_UNION; NOT_IN_EMPTY; IN_ELIM_THM] THEN
REWRITE_TAC[TAUT `(a \/ b) /\ c <=> a /\ c \/ b /\ c`] THEN
REWRITE_TAC[EXISTS_OR_THM] THEN REWRITE_TAC[UNWIND_THM2] THEN
SIMP_TAC[FUNCTIONS_FORM_INTERP; FINITE_INSERT; FINITE_EMPTY] THEN
REWRITE_TAC[functions; IN_UNIONS; IN_ELIM_THM; IN_INSERT; NOT_IN_EMPTY] THEN
REWRITE_TAC[UNWIND_THM2] THEN
REWRITE_TAC[TAUT `(a \/ b) /\ c <=> a /\ c \/ b /\ c`] THEN
REWRITE_TAC[EXISTS_OR_THM; UNWIND_THM2] THEN
REWRITE_TAC[functions_form; Not_DEF; Equal_DEF; MAP; functions_term] THEN
REWRITE_TAC[LIST_UNION; UNION_EMPTY] THEN
REWRITE_TAC[UNWIND_THM2; NOT_IN_EMPTY] THEN
ONCE_REWRITE_TAC[TAUT `a /\ b <=> ~(a ==> ~b)`] THEN SIMP_TAC[] THEN
REWRITE_TAC[NOT_IMP] THEN REWRITE_TAC[LEFT_AND_EXISTS_THM] THEN
GEN_REWRITE_TAC (LAND_CONV o BINOP_CONV o BINDER_CONV) [SWAP_EXISTS_THM] THEN
ONCE_REWRITE_TAC[TAUT `(a /\ b) /\ c /\ d <=> b /\ a /\ c /\ d`] THEN
REWRITE_TAC[UNWIND_THM2] THEN
ONCE_REWRITE_TAC[EXISTS_PAIR_THM] THEN
REWRITE_TAC[Eqclause_Func; Eqclause_Pred; FINITE_SET_OF_LIST;
FUNCTIONS_FORM_INTERP] THEN
REWRITE_TAC[GSYM Eqclause_Func; GSYM Eqclause_Pred] THEN
REWRITE_TAC[FUNCTIONS_FORM_EQCLAUSE_PRED; FUNCTIONS_FORM_EQCLAUSE_FUNC] THEN
ONCE_REWRITE_TAC[TAUT `a /\ b /\ c <=> a /\ ~(b ==> ~c)`] THEN
SIMP_TAC[IN_INSERT; NOT_IN_EMPTY] THEN REWRITE_TAC[language] THEN
REWRITE_TAC[functions; IN_UNIONS; IN_ELIM_THM] THEN
REWRITE_TAC[PAIR_EQ; NOT_IMP] THEN MESON_TAC[]);;
(* ------------------------------------------------------------------------- *)
(* Completeness. *)
(* ------------------------------------------------------------------------- *)
let FUNCTIONS_FORM_NOT_UCLOSE = prove
(`functions_form(Not(uclose p)) = functions_form p`,
REWRITE_TAC[Not_DEF; functions_form; FUNCTIONS_FORM_UCLOSE; UNION_EMPTY]);;
let PREDICATES_FORM_NOT_UCLOSE = prove
(`predicates_form(Not(uclose p)) = predicates_form p`,
REWRITE_TAC[Not_DEF; predicates_form; PREDICATES_FORM_UCLOSE; UNION_EMPTY]);;
let FUNCTIONS_INSERT_NOT_UCLOSE = prove
(`functions(p INSERT s) = functions(Not(uclose p) INSERT s)`,
ONCE_REWRITE_TAC[EXTENSION] THEN
REWRITE_TAC[functions; IN_UNIONS; IN_ELIM_THM] THEN
REWRITE_TAC[IN_INSERT] THEN MESON_TAC[FUNCTIONS_FORM_NOT_UCLOSE]);;
let PREDICATES_INSERT_NOT_UCLOSE = prove
(`predicates(p INSERT s) = predicates(Not(uclose p) INSERT s)`,
ONCE_REWRITE_TAC[EXTENSION] THEN
REWRITE_TAC[predicates; IN_UNIONS; IN_ELIM_THM] THEN
REWRITE_TAC[IN_INSERT] THEN MESON_TAC[PREDICATES_FORM_NOT_UCLOSE]);;
let LANGUAGE_INSERT_NOT_UCLOSE = prove
(`language(p INSERT s) = language (Not(uclose p) INSERT s)`,
REWRITE_TAC[language; GSYM FUNCTIONS_INSERT_NOT_UCLOSE;
GSYM PREDICATES_INSERT_NOT_UCLOSE]);;
let lemma1 = prove
(`(!m. p m /\ q m /\ r m /\ s m ==> t m) <=>
~(?m. p m /\ q m /\ r m /\ s m /\ ~(t m))`,
MESON_TAC[]);;
let lemma2 = prove
(`(x INSERT s) UNION t = x INSERT (s UNION t)`,
SET_TAC[]);;
let EQCLAUSES_DEFINITE = prove
(`!L cl. cl IN Eqclauses L ==> definite cl`,
REPEAT GEN_TAC THEN REWRITE_TAC[Eqclauses_DEF] THEN
REWRITE_TAC[IN_INSERT; IN_UNION; IN_ELIM_THM] THEN
ONCE_REWRITE_TAC[EXISTS_PAIR_THM] THEN
DISCH_THEN(DISJ_CASES_THEN2 SUBST1_TAC MP_TAC) THENL
[REWRITE_TAC[definite; IN_SING] THEN
SUBGOAL_THEN `{p | (p = V 0 === V 0) /\ positive p} = {(V 0 === V 0)}`
SUBST1_TAC THENL
[REWRITE_TAC[EXTENSION; IN_ELIM_THM; IN_SING;
positive; negative; Equal_DEF; Not_DEF] THEN
MESON_TAC[form_DISTINCT]; ALL_TAC] THEN
SIMP_TAC[clause; FINITE_INSERT; CARD_CLAUSES; FINITE_EMPTY] THEN
REWRITE_TAC[NOT_IN_EMPTY; ARITH; IN_SING] THEN
SIMP_TAC[Equal_DEF] THEN MESON_TAC[LITERAL];
ALL_TAC] THEN
DISCH_THEN(DISJ_CASES_THEN2 SUBST1_TAC MP_TAC) THENL
[REWRITE_TAC[definite; IN_SING] THEN
SUBGOAL_THEN
`{p | p IN {(Not (V 0 === V 1)), (Not (V 2 === V 1)), (V 0 === V 2)} /\
positive p} = {(V 0 === V 2)}`
SUBST1_TAC THENL
[REWRITE_TAC[EXTENSION; IN_ELIM_THM; IN_INSERT; NOT_IN_EMPTY] THEN
REWRITE_TAC[Equal_DEF; positive; negative] THEN
MESON_TAC[Not_DEF; form_DISTINCT]; ALL_TAC] THEN
SIMP_TAC[clause; FINITE_INSERT; CARD_CLAUSES; FINITE_EMPTY] THEN
REWRITE_TAC[NOT_IN_EMPTY; ARITH; IN_INSERT] THEN
SIMP_TAC[Equal_DEF] THEN MESON_TAC[LITERAL];
ALL_TAC] THEN
DISCH_THEN(DISJ_CASES_THEN MP_TAC) THEN
REWRITE_TAC[LEFT_IMP_EXISTS_THM] THEN
MAP_EVERY X_GEN_TAC [`f:num`; `n:num`] THEN STRIP_TAC THEN
ASM_REWRITE_TAC[Eqclause_Pred; Eqclause_Func; definite; set_of_list] THENL
[SUBGOAL_THEN
`{p | p IN
(Fn f (MAP FST (Varpairs n)) === Fn f (MAP SND (Varpairs n))) INSERT
set_of_list (MAP (\(s,t). Not (s === t)) (Varpairs n)) /\
positive p} =
{(Fn f (MAP FST (Varpairs n)) === Fn f (MAP SND (Varpairs n)))}`
SUBST1_TAC THENL
[REWRITE_TAC[EXTENSION; IN_ELIM_THM; IN_INSERT] THEN GEN_TAC THEN
REWRITE_TAC[NOT_IN_EMPTY] THEN
MATCH_MP_TAC(TAUT `(a ==> c) /\ (b ==> ~c) ==> ((a \/ b) /\ c <=> a)`) THEN
CONJ_TAC THEN SIMP_TAC[] THENL
[DISCH_THEN(K ALL_TAC) THEN
REWRITE_TAC[positive; negative; Equal_DEF; Not_DEF; form_DISTINCT];
ALL_TAC] THEN
REWRITE_TAC[IN_SET_OF_LIST; MEM_MAP; EXISTS_PAIR_THM] THEN
STRIP_TAC THEN ASM_REWRITE_TAC[] THEN
CONV_TAC(ONCE_DEPTH_CONV GEN_BETA_CONV) THEN
REWRITE_TAC[positive; negative] THEN MESON_TAC[];
ALL_TAC] THEN
SIMP_TAC[clause; CARD_CLAUSES; FINITE_INSERT; FINITE_EMPTY;
NOT_IN_EMPTY; ARITH; FINITE_SET_OF_LIST] THEN
REWRITE_TAC[IN_INSERT; IN_SET_OF_LIST; MEM_MAP; EXISTS_PAIR_THM] THEN
REPEAT STRIP_TAC THEN ASM_REWRITE_TAC[] THEN
CONV_TAC(ONCE_DEPTH_CONV GEN_BETA_CONV) THEN
ASM_REWRITE_TAC[LITERAL; Equal_DEF]; ALL_TAC] THEN
SUBGOAL_THEN
`{p | p IN
Atom f (MAP SND (Varpairs n)) INSERT
Not (Atom f (MAP FST (Varpairs n))) INSERT
set_of_list (MAP (\(s,t). Not (s === t)) (Varpairs n)) /\
positive p} =
{(Atom f (MAP SND (Varpairs n)))}`
SUBST1_TAC THENL
[REWRITE_TAC[EXTENSION; IN_ELIM_THM; IN_INSERT] THEN GEN_TAC THEN
REWRITE_TAC[NOT_IN_EMPTY] THEN
MATCH_MP_TAC(TAUT
`(a ==> c) /\ (b ==> ~c) /\ (d ==> ~c)
==> ((a \/ b \/ d) /\ c <=> a)`) THEN
CONJ_TAC THEN SIMP_TAC[] THENL
[DISCH_THEN(K ALL_TAC) THEN
REWRITE_TAC[positive; negative; Equal_DEF; Not_DEF; form_DISTINCT];
ALL_TAC] THEN
CONJ_TAC THENL [MESON_TAC[positive; negative]; ALL_TAC] THEN
REWRITE_TAC[IN_SET_OF_LIST; MEM_MAP; EXISTS_PAIR_THM] THEN
STRIP_TAC THEN ASM_REWRITE_TAC[] THEN
CONV_TAC(ONCE_DEPTH_CONV GEN_BETA_CONV) THEN
REWRITE_TAC[positive; negative] THEN MESON_TAC[];
ALL_TAC] THEN
SIMP_TAC[clause; CARD_CLAUSES; FINITE_INSERT; FINITE_EMPTY;
NOT_IN_EMPTY; ARITH; FINITE_SET_OF_LIST] THEN
REWRITE_TAC[IN_INSERT; IN_SET_OF_LIST; MEM_MAP; EXISTS_PAIR_THM] THEN
REPEAT STRIP_TAC THEN ASM_REWRITE_TAC[] THEN
CONV_TAC(ONCE_DEPTH_CONV GEN_BETA_CONV) THEN
ASM_REWRITE_TAC[LITERAL; Equal_DEF]);;
let EQLOGIC_COMPLETE = prove
(`!E s t. (!e. e IN E ==> ?s t. e = (s === t)) /\
(!M. interpretation (language((s === t) INSERT E)) M /\
~(Dom M :term->bool = {}) /\
normal (functions ((s === t) INSERT E)) M /\
M satisfies E
==> M satisfies {(s === t)})
==> E |- s === t`,
REPEAT GEN_TAC THEN DISCH_THEN(CONJUNCTS_THEN2 ASSUME_TAC MP_TAC) THEN
ONCE_REWRITE_TAC[lemma1] THEN
ONCE_REWRITE_TAC[TAUT `a /\ b /\ c /\ d <=> a /\ b /\ c /\ (b ==> d)`] THEN
SIMP_TAC[SATISFIES_NOT] THEN
REWRITE_TAC[TAUT `a /\ b /\ c /\ (b ==> d) <=> a /\ b /\ c /\ d`] THEN
ONCE_REWRITE_TAC[FUNCTIONS_INSERT_NOT_UCLOSE; LANGUAGE_INSERT_NOT_UCLOSE] THEN
REWRITE_TAC[NORMAL_THM] THEN
ONCE_REWRITE_TAC[TAUT `a /\ b /\ c <=> a /\ b /\ (b ==> c)`] THEN
REWRITE_TAC[lemma2] THEN SIMP_TAC[GSYM SATISFIES_NOT] THEN
REWRITE_TAC[TAUT `a /\ b /\ (b ==> c) <=> a /\ b /\ c`] THEN
REWRITE_TAC[SATISFIES_UNION; GSYM CONJ_ASSOC; GSYM lemma1] THEN
REWRITE_TAC[GSYM FUNCTIONS_INSERT_NOT_UCLOSE;
GSYM LANGUAGE_INSERT_NOT_UCLOSE] THEN
DISCH_TAC THEN
SUBGOAL_THEN
`?n. ibackchain ({{e} | e IN E} UNION
Eqclauses(language ((s === t) INSERT E)))
n (s === t)`
MP_TAC THENL
[MP_TAC(SPECL
[`{{e} | e IN E} UNION
Eqclauses(language ((s === t) INSERT E))`;
`s === t`] IBACKCHAIN_MINIMAL) THEN
MATCH_MP_TAC(TAUT `b /\ c /\ a ==> (a /\ b ==> (c <=> d)) ==> d`) THEN
CONJ_TAC THENL [REWRITE_TAC[Equal_DEF; atom]; ALL_TAC] THEN
SUBGOAL_THEN `functions (IMAGE interp {{e} | e IN E}) = functions E`
ASSUME_TAC THENL
[MATCH_MP_TAC EQ_TRANS THEN
EXISTS_TAC `UNIONS {functions p | p IN {{e} | e IN E}}` THEN
CONJ_TAC THENL
[MATCH_MP_TAC FUNCTIONS_IMAGE_INTERP THEN
SIMP_TAC[IN_ELIM_THM; LEFT_IMP_EXISTS_THM; FINITE_RULES];
ALL_TAC] THEN
GEN_REWRITE_TAC RAND_CONV [functions] THEN
GEN_REWRITE_TAC I [EXTENSION] THEN
REWRITE_TAC[IN_UNIONS; functions; IN_ELIM_THM] THEN
GEN_TAC THEN ONCE_REWRITE_TAC[LEFT_AND_EXISTS_THM] THEN
GEN_REWRITE_TAC LAND_CONV [SWAP_EXISTS_THM] THEN
ONCE_REWRITE_TAC[TAUT `(a /\ b) /\ c <=> b /\ a /\ c`] THEN
REWRITE_TAC[UNWIND_THM2] THEN
ONCE_REWRITE_TAC[LEFT_AND_EXISTS_THM] THEN
GEN_REWRITE_TAC LAND_CONV [SWAP_EXISTS_THM] THEN
ONCE_REWRITE_TAC[TAUT `(a /\ b) /\ c <=> b /\ a /\ c`] THEN
REWRITE_TAC[UNWIND_THM2] THEN
REWRITE_TAC[IN_UNIONS; IN_SING; IN_ELIM_THM] THEN MESON_TAC[];
ALL_TAC] THEN
SUBGOAL_THEN
`functions(IMAGE interp
({{e} | e IN E} UNION Eqclauses (language ((s === t) INSERT E)))) =
functions((s === t) INSERT E)`
ASSUME_TAC THENL
[REWRITE_TAC[IMAGE_UNION; FUNCTIONS_UNION; FUNCTIONS_EQCLAUSES] THEN
REWRITE_TAC[FUNCTIONS_INSERT] THEN
ASM_REWRITE_TAC[FUNCTIONS_INSERT; UNION_ACI]; ALL_TAC] THEN
ASM_REWRITE_TAC[] THEN CONJ_TAC THENL
[X_GEN_TAC `v:num->term` THEN DISCH_TAC THEN
SUBGOAL_THEN `atom(s === t)` MP_TAC THENL
[REWRITE_TAC[atom; Equal_DEF]; ALL_TAC] THEN
DISCH_THEN(fun th ->
ONCE_REWRITE_TAC[MATCH_MP IMINMODEL_MINIMAL th]) THEN
FIRST_X_ASSUM(fun th -> MP_TAC th THEN MATCH_MP_TAC MONO_FORALL) THEN
X_GEN_TAC
`C:(term->bool)#
((num->((term)list->term))#(num->((term)list->bool)))` THEN
ASM_REWRITE_TAC[] THEN
MATCH_MP_TAC
(TAUT `(w /\ x ==> a1) /\ (w ==> b1) /\
(w ==> b1 ==> y ==> c1 /\ d1) /\ (w ==> e1 ==> z)
==> (a1 /\ b1 /\ c1 /\ d1 ==> e1) ==> w /\ x /\ y ==> z`) THEN
CONJ_TAC THENL
[SIMP_TAC[interpretation; language; Dom_DEF] THEN
DISCH_THEN(K ALL_TAC) THEN
REPEAT GEN_TAC THEN DISCH_THEN(CONJUNCTS_THEN2 ASSUME_TAC MP_TAC) THEN
REWRITE_TAC[IN] THEN CONV_TAC(ONCE_DEPTH_CONV ETA_CONV) THEN
STRIP_TAC THEN MATCH_MP_TAC(CONJUNCT2(SPEC_ALL terms_RULES)) THEN
ASM_REWRITE_TAC[] THEN REWRITE_TAC[GSYM language] THEN
REWRITE_TAC[FUNCTIONS_UNION; FUNCTIONS_EQAXIOM] THEN
ASM_REWRITE_TAC[IN_UNION]; ALL_TAC] THEN
CONJ_TAC THENL
[DISCH_THEN SUBST1_TAC THEN
REWRITE_TAC[EXTENSION; NOT_IN_EMPTY; NOT_FORALL_THM] THEN
EXISTS_TAC `V 0` THEN REWRITE_TAC[IN; terms_RULES]; ALL_TAC] THEN
CONJ_TAC THENL
[DISCH_TAC THEN SIMP_TAC[IMAGE_UNION; GSYM EQCLAUSES_EQAXIOMS] THEN
DISCH_TAC THEN ASM_REWRITE_TAC[satisfies; valuation] THEN
REWRITE_TAC[IN_UNION; TAUT `(a \/ b) /\ c <=> a /\ c \/ b /\ c`] THEN
REWRITE_TAC[TAUT `(a \/ b ==> c) <=> (a ==> c) /\ (b ==> c)`] THEN
REWRITE_TAC[FORALL_AND_THM] THEN SIMP_TAC[] THEN
DISCH_THEN(MP_TAC o CONJUNCT1) THEN
REWRITE_TAC[IN_IMAGE; IN_ELIM_THM; IN_SING] THEN
SIMP_TAC[LEFT_IMP_EXISTS_THM; LEFT_AND_EXISTS_THM;
RIGHT_AND_EXISTS_THM] THEN
SIMP_TAC[HOLDS_INTERP; FINITE_RULES] THEN
REWRITE_TAC[IN_SING; UNWIND_THM2] THEN MESON_TAC[];
ALL_TAC] THEN
SIMP_TAC[satisfies; valuation; IN_SING] THEN ASM_MESON_TAC[];
ALL_TAC] THEN
REWRITE_TAC[IN_UNION; TAUT `(a \/ b ==> c) <=> (a ==> c) /\ (b ==> c)`] THEN
REWRITE_TAC[EQCLAUSES_DEFINITE] THEN
SIMP_TAC[IN_ELIM_THM; LEFT_IMP_EXISTS_THM] THEN
GEN_TAC THEN X_GEN_TAC `e:form` THEN
DISCH_THEN(fun th -> FIRST_ASSUM(MP_TAC o C MATCH_MP (CONJUNCT1 th))) THEN
REWRITE_TAC[LEFT_IMP_EXISTS_THM] THEN
MAP_EVERY X_GEN_TAC [`u:term`; `v:term`] THEN DISCH_THEN SUBST1_TAC THEN
SIMP_TAC[FINITE_RULES; definite; clause; IN_SING; LITERAL; Equal_DEF] THEN
REWRITE_TAC[GSYM Equal_DEF] THEN
SUBGOAL_THEN `{p | (p = u === v) /\ positive p} = {(u === v)}` SUBST1_TAC
THENL
[REWRITE_TAC[EXTENSION; IN_ELIM_THM; IN_SING] THEN
MESON_TAC[Equal_DEF; positive; negative; Not_DEF; form_DISTINCT];
ALL_TAC] THEN
SIMP_TAC[CARD_CLAUSES; FINITE_RULES; ARITH; NOT_IN_EMPTY];
ALL_TAC] THEN
SUBGOAL_THEN
`!n p. ibackchain
({{e} | e IN E} UNION Eqclauses (language ((s === t) INSERT E)))
n p
==> !s t. (p = (s === t)) ==> E |- s === t`
MP_TAC THENL
[ALL_TAC;
REWRITE_TAC[LEFT_IMP_EXISTS_THM] THEN MATCH_MP_TAC MONO_FORALL THEN
GEN_TAC THEN DISCH_THEN(MP_TAC o SPEC `s === t`) THEN
DISCH_THEN(fun th -> DISCH_TAC THEN MP_TAC th) THEN ASM_REWRITE_TAC[] THEN
MESON_TAC[]] THEN
MATCH_MP_TAC ibackchain_INDUCT THEN
MAP_EVERY X_GEN_TAC
[`cl:form->bool`; `i:num->term`; `ns:num list`] THEN
MATCH_MP_TAC(TAUT `(a /\ c ==> d) ==> a /\ b /\ c ==> d`) THEN
STRIP_TAC THEN MAP_EVERY X_GEN_TAC [`si:term`; `ti:term`] THEN
DISCH_TAC THEN
UNDISCH_TAC
`cl IN {{e} | e IN E} UNION Eqclauses (language ((s === t) INSERT E))` THEN
REWRITE_TAC[IN_UNION; IN_INSERT; GSYM DISJ_ASSOC] THEN
DISCH_THEN(DISJ_CASES_THEN MP_TAC) THENL
[SIMP_TAC[IN_ELIM_THM; LEFT_IMP_EXISTS_THM] THEN
X_GEN_TAC `e:form` THEN STRIP_TAC THEN
UNDISCH_TAC `formsubst i (conclusion cl) = si === ti` THEN
FIRST_X_ASSUM(MP_TAC o SPEC `e:form`) THEN
ASM_REWRITE_TAC[LEFT_IMP_EXISTS_THM] THEN
MAP_EVERY X_GEN_TAC [`s0:term`; `t0:term`] THEN
DISCH_THEN SUBST_ALL_TAC THEN
SUBGOAL_THEN `conclusion {(s0 === t0)} = (s0 === t0)` SUBST1_TAC THENL
[MATCH_MP_TAC CONCLUSION_DEFINITE THEN
REWRITE_TAC[definite; IN_SING] THEN
MATCH_MP_TAC(TAUT `b /\ (b ==> a) ==> a /\ b`) THEN CONJ_TAC THENL
[REWRITE_TAC[positive; negative; Equal_DEF; Not_DEF] THEN
MESON_TAC[form_DISTINCT];
ALL_TAC] THEN
DISCH_TAC THEN REWRITE_TAC[clause] THEN
SIMP_TAC[FINITE_INSERT; FINITE_EMPTY; IN_SING] THEN
SUBGOAL_THEN
`{p | (p = s0 === t0) /\ positive p} = {(s0 === t0)}`
SUBST1_TAC THENL
[REWRITE_TAC[EXTENSION; IN_ELIM_THM; IN_SING] THEN ASM_MESON_TAC[];
ALL_TAC] THEN
SIMP_TAC[CARD_CLAUSES; FINITE_INSERT; FINITE_EMPTY] THEN
REWRITE_TAC[Equal_DEF; NOT_IN_EMPTY; ARITH; LITERAL];
ALL_TAC] THEN
DISCH_THEN(SUBST_ALL_TAC o SYM) THEN
ASM_MESON_TAC[provable_RULES];
ALL_TAC] THEN
DISCH_THEN(fun th -> ASSUME_TAC(MATCH_MP EQCLAUSES_DEFINITE th) THEN
MP_TAC th) THEN
REWRITE_TAC[Eqclauses_DEF; IN_UNION; IN_INSERT; GSYM DISJ_ASSOC] THEN
DISCH_THEN(DISJ_CASES_THEN2 SUBST_ALL_TAC MP_TAC) THENL
[SUBGOAL_THEN `conclusion {(V 0 === V 0)} = (V 0 === V 0)`
SUBST_ALL_TAC THENL
[MATCH_MP_TAC CONCLUSION_DEFINITE THEN ASM_REWRITE_TAC[IN_SING] THEN
REWRITE_TAC[positive; Equal_DEF; negative; Not_DEF; form_DISTINCT];
ALL_TAC] THEN
FIRST_X_ASSUM(fun th -> GEN_REWRITE_TAC RAND_CONV [SYM th]) THEN
ASM_MESON_TAC[provable_RULES];
ALL_TAC] THEN
DISCH_THEN(DISJ_CASES_THEN2 SUBST_ALL_TAC MP_TAC) THENL
[SUBGOAL_THEN
`conclusion {(Not (V 0 === V 1)), (Not(V 2 === V 1)), (V 0 === V 2)} =
(V 0 === V 2)`
(fun th -> SUBST_ALL_TAC th THEN ASSUME_TAC th) THENL
[MATCH_MP_TAC CONCLUSION_DEFINITE_ALT THEN
ASM_REWRITE_TAC[IN_INSERT; NOT_IN_EMPTY] THEN
REWRITE_TAC[clause; FINITE_INSERT; FINITE_RULES] THEN
SIMP_TAC[IN_INSERT; NOT_IN_EMPTY] THEN
REWRITE_TAC[TAUT `(a \/ b) /\ c <=> a /\ c \/ b /\ c`] THEN
REWRITE_TAC[TAUT `(a \/ b ==> c) <=> (a ==> c) /\ (b ==> c)`] THEN
SIMP_TAC[Equal_DEF; LITERAL] THEN
REWRITE_TAC[positive; negative] THEN
MESON_TAC[Not_DEF; form_DISTINCT];
ALL_TAC] THEN
FIRST_X_ASSUM(fun th -> GEN_REWRITE_TAC RAND_CONV [SYM th]) THEN
FIRST_X_ASSUM(MP_TAC o GEN_REWRITE_RULE I [ALL2_TRIV]) THEN
DISCH_THEN(MP_TAC o CONJUNCT2) THEN REWRITE_TAC[ALL_MAP] THEN
REWRITE_TAC[GSYM ALL_MEM] THEN REWRITE_TAC[GSYM IN_SET_OF_LIST] THEN
ASM_SIMP_TAC[HYPOTHESES_CONCLUSION] THEN
SUBGOAL_THEN
`IMAGE ~~
({(Not(V 0 === V 1)), (Not(V 2 === V 1)), (V 0 === V 2)}
DELETE (V 0 === V 2)) =
{(V 0 === V 1), (V 2 === V 1)}`
SUBST1_TAC THENL
[REWRITE_TAC[EXTENSION; IN_IMAGE; IN_DELETE; IN_INSERT; NOT_IN_EMPTY] THEN
REWRITE_TAC[Equal_DEF] THEN
MESON_TAC[NEGATE_NEG; NEGATE_ATOM; atom; NEGATE_NEGATE; literal;
Not_DEF; form_DISTINCT];
ALL_TAC] THEN
REWRITE_TAC[IN_INSERT; NOT_IN_EMPTY] THEN
REWRITE_TAC[TAUT `(a \/ b ==> c) <=> (a ==> c) /\ (b ==> c)`] THEN
SIMP_TAC[o_THM] THEN
REWRITE_TAC[FORALL_AND_THM; LEFT_FORALL_IMP_THM; EXISTS_REFL] THEN
ASM_MESON_TAC[provable_RULES; FORMSUBST_EQ];
ALL_TAC] THEN
DISCH_THEN(DISJ_CASES_THEN MP_TAC) THENL
[ALL_TAC;
REWRITE_TAC[IN_ELIM_THM; EXISTS_PAIR_THM; Eqclause_Pred] THEN
REWRITE_TAC[LEFT_IMP_EXISTS_THM] THEN
MAP_EVERY X_GEN_TAC [`p:num`; `n:num`] THEN
DISCH_THEN(STRIP_ASSUME_TAC o GSYM) THEN
SUBGOAL_THEN `conclusion cl = Atom p (MAP SND (Varpairs n))`
(fun th -> SUBST_ALL_TAC th THEN ASSUME_TAC th) THENL
[MATCH_MP_TAC CONCLUSION_DEFINITE THEN ASM_REWRITE_TAC[] THEN
REWRITE_TAC[positive; negative; form_DISTINCT; Not_DEF] THEN
EXPAND_TAC "cl" THEN REWRITE_TAC[IN_SET_OF_LIST; MEM];
ALL_TAC] THEN
MP_TAC(ASSUME
`formsubst i (Atom p (MAP SND (Varpairs n))) = si === ti`) THEN
REWRITE_TAC[Equal_DEF; formsubst; form_INJ] THEN
ASM_CASES_TAC `n = 2` THENL
[ALL_TAC;
DISCH_THEN(MP_TAC o AP_TERM `LENGTH:(term)list->num` o CONJUNCT2) THEN
ASM_REWRITE_TAC[LENGTH; LENGTH_MAP; LENGTH_VARPAIRS; ARITH]] THEN
UNDISCH_THEN `n = 2` SUBST_ALL_TAC THEN
DISCH_THEN(CONJUNCTS_THEN2 SUBST_ALL_TAC MP_TAC) THEN
ASM_REWRITE_TAC[Varpairs_DEF; num_CONV `2`; num_CONV `1`] THEN
REWRITE_TAC[ARITH; MAP; CONS_11] THEN
DISCH_THEN(CONJUNCTS_THEN(SUBST_ALL_TAC o SYM)) THEN
FIRST_X_ASSUM(MP_TAC o GEN_REWRITE_RULE I [ALL2_TRIV]) THEN
DISCH_THEN(MP_TAC o CONJUNCT2) THEN REWRITE_TAC[ALL_MAP] THEN
REWRITE_TAC[GSYM ALL_MEM] THEN REWRITE_TAC[GSYM IN_SET_OF_LIST] THEN
ASM_SIMP_TAC[HYPOTHESES_CONCLUSION] THEN
SUBGOAL_THEN
`IMAGE (~~) (cl DELETE (Atom 0 (MAP SND (Varpairs 2)))) =
{(V 2 === V 0), (V 2 === V 3), (V 0 === V 1)}`
SUBST1_TAC THENL
[EXPAND_TAC "cl" THEN
REWRITE_TAC[EXTENSION; set_of_list; IN_SET_OF_LIST; MAP; MEM_MAP;
IN_IMAGE; IN_DELETE; IN_INSERT; NOT_IN_EMPTY] THEN
REWRITE_TAC[num_CONV `2`; num_CONV `1`; Varpairs_DEF] THEN
CONV_TAC NUM_REDUCE_CONV THEN REWRITE_TAC[MAP; GSYM Equal_DEF] THEN
REWRITE_TAC[MEM; TAUT `(a \/ b) /\ c <=> a /\ c \/ b /\ c`] THEN
REWRITE_TAC[EXISTS_PAIR_THM] THEN
CONV_TAC(ONCE_DEPTH_CONV GEN_BETA_CONV) THEN
REWRITE_TAC[PAIR_EQ; GSYM CONJ_ASSOC] THEN
ONCE_REWRITE_TAC[SWAP_EXISTS_THM] THEN
REWRITE_TAC[EXISTS_OR_THM; UNWIND_THM2; TAUT `~(p /\ ~p)`] THEN
REWRITE_TAC[Equal_DEF] THEN
MESON_TAC[NEGATE_NEG; NEGATE_ATOM; atom; NEGATE_NEGATE; literal;
Not_DEF; form_DISTINCT];
ALL_TAC] THEN
REWRITE_TAC[IN_INSERT; NOT_IN_EMPTY] THEN
REWRITE_TAC[TAUT `(a \/ b ==> c) <=> (a ==> c) /\ (b ==> c)`] THEN
SIMP_TAC[o_THM] THEN
REWRITE_TAC[FORALL_AND_THM; LEFT_FORALL_IMP_THM; EXISTS_REFL] THEN
REWRITE_TAC[GSYM Equal_DEF] THEN REWRITE_TAC[FORMSUBST_EQ] THEN
ONCE_REWRITE_TAC[EQ_SYM_EQ] THEN
SIMP_TAC[LEFT_IMP_EXISTS_THM] THEN
ASM_MESON_TAC[provable_RULES; FORMSUBST_EQ]] THEN
REWRITE_TAC[IN_ELIM_THM; EXISTS_PAIR_THM; Eqclause_Func] THEN
REWRITE_TAC[LEFT_IMP_EXISTS_THM] THEN
MAP_EVERY X_GEN_TAC [`f:num`; `n:num`] THEN
DISCH_THEN(STRIP_ASSUME_TAC o GSYM) THEN
SUBGOAL_THEN
`conclusion cl = (Fn f (MAP FST (Varpairs n)) ===
Fn f (MAP SND (Varpairs n)))`
(fun th -> SUBST_ALL_TAC th THEN ASSUME_TAC th) THENL
[MATCH_MP_TAC CONCLUSION_DEFINITE THEN ASM_REWRITE_TAC[] THEN
REWRITE_TAC[positive; negative; form_DISTINCT; Not_DEF] THEN
EXPAND_TAC "cl" THEN REWRITE_TAC[IN_SET_OF_LIST; MEM] THEN
REWRITE_TAC[Equal_DEF; form_DISTINCT];
ALL_TAC] THEN
FIRST_X_ASSUM(fun th -> GEN_REWRITE_TAC RAND_CONV [GSYM th]) THEN
FIRST_X_ASSUM(MP_TAC o GEN_REWRITE_RULE I [ALL2_TRIV]) THEN
DISCH_THEN(MP_TAC o CONJUNCT2) THEN REWRITE_TAC[ALL_MAP] THEN
REWRITE_TAC[GSYM ALL_MEM] THEN REWRITE_TAC[GSYM IN_SET_OF_LIST] THEN
ASM_SIMP_TAC[HYPOTHESES_CONCLUSION] THEN
SUBGOAL_THEN
`IMAGE (~~) (cl DELETE
(Fn f (MAP FST (Varpairs n)) === Fn f (MAP SND (Varpairs n)))) =
{(s === t) | MEM (s,t) (Varpairs n)}`
SUBST1_TAC THENL
[EXPAND_TAC "cl" THEN
REWRITE_TAC[EXTENSION; set_of_list; IN_SET_OF_LIST; MAP; MEM_MAP;
IN_IMAGE; IN_DELETE; IN_INSERT; NOT_IN_EMPTY] THEN
REWRITE_TAC[MEM; TAUT `(a \/ b) /\ c <=> a /\ c \/ b /\ c`] THEN
REWRITE_TAC[TAUT `~(p /\ ~p)`; IN_ELIM_THM] THEN
REWRITE_TAC[MEM_MAP; EXISTS_PAIR_THM] THEN
CONV_TAC(ONCE_DEPTH_CONV GEN_BETA_CONV) THEN REWRITE_TAC[Equal_DEF] THEN
MESON_TAC[NEGATE_NEG; NEGATE_ATOM; atom; NEGATE_NEGATE; literal;
Not_DEF; form_DISTINCT];
ALL_TAC] THEN
SIMP_TAC[IN_ELIM_THM; LEFT_IMP_EXISTS_THM] THEN
REWRITE_TAC[o_THM; FORMSUBST_EQ] THEN
REWRITE_TAC[Equal_DEF; form_INJ; CONS_11] THEN
REWRITE_TAC[GSYM Equal_DEF] THEN ONCE_REWRITE_TAC[EQ_SYM_EQ] THEN
SIMP_TAC[LEFT_FORALL_IMP_THM; LEFT_EXISTS_AND_THM; RIGHT_EXISTS_AND_THM] THEN
REWRITE_TAC[EXISTS_REFL] THEN
REWRITE_TAC[termsubst; GSYM MAP_o] THEN
ONCE_REWRITE_TAC[EQ_SYM_EQ] THEN
ONCE_REWRITE_TAC[IMP_CONJ_ALT] THEN
GEN_REWRITE_TAC LAND_CONV [SWAP_FORALL_THM] THEN
GEN_REWRITE_TAC (LAND_CONV o BINDER_CONV) [SWAP_FORALL_THM] THEN
REWRITE_TAC[LEFT_FORALL_IMP_THM; EXISTS_REFL] THEN
DISCH_TAC THEN
MATCH_MP_TAC(el 4 (CONJUNCTS(SPEC_ALL provable_RULES))) THEN
REWRITE_TAC[ALL2_MAP2] THEN REWRITE_TAC[ALL2_ALL] THEN
ASM_REWRITE_TAC[GSYM ALL_MEM; FORALL_PAIR_THM; o_THM]);;
let EQLOGIC_SOUND = prove
(`!E s t. E |- s === t
==> !M:(A->bool)#(num->((A)list->A))#(num->((A)list->bool)).
normal UNIV (M) /\ interpretation (UNIV,UNIV) (M) /\
M satisfies E
==> M satisfies {(s === t)}`,
GEN_TAC THEN REWRITE_TAC[satisfies] THEN
SIMP_TAC[IN_INSERT; NOT_IN_EMPTY] THEN
REWRITE_TAC[LEFT_FORALL_IMP_THM; RIGHT_EXISTS_AND_THM; EXISTS_REFL] THEN
SUBGOAL_THEN
`!M:(A->bool)#(num->((A)list->A))#(num->((A)list->bool)).
normal UNIV (M) /\ interpretation (UNIV,UNIV) (M) /\
(!v p. valuation M v /\ p IN E ==> holds M v p)
==> !a. E |- a
==> !s t. (a = (s === t))
==> !v. valuation M v ==> holds M v (s === t)`
(fun th -> MESON_TAC[th]) THEN
GEN_TAC THEN REWRITE_TAC[normal; satisfies; TERMS_UNIV; IN_UNIV] THEN
STRIP_TAC THEN
MATCH_MP_TAC provable_INDUCT THEN
SIMP_TAC[EQUAL_INJ_ALT; LEFT_FORALL_IMP_THM;
RIGHT_EXISTS_AND_THM; LEFT_EXISTS_AND_THM; EXISTS_REFL] THEN
ASM_SIMP_TAC[] THEN REPEAT CONJ_TAC THENL
[ASM_MESON_TAC[];
REPEAT STRIP_TAC THEN REWRITE_TAC[termval] THEN
AP_TERM_TAC THEN MATCH_MP_TAC MAP_EQ_ALL2 THEN
UNDISCH_TAC
`ALL2 (\l r. !v:num->A. valuation M v
==> (termval M v l = termval M v r)) a b` THEN
MATCH_MP_TAC MONO_ALL2 THEN ASM_SIMP_TAC[];
REPEAT GEN_TAC THEN DISCH_TAC THEN REWRITE_TAC[FORMSUBST_EQ] THEN
REWRITE_TAC[Equal_DEF; form_INJ; CONS_11] THEN
REPEAT GEN_TAC THEN DISCH_THEN(CONJUNCTS_THEN(SUBST_ALL_TAC o SYM)) THEN
REWRITE_TAC[TERMVAL_TERMSUBST] THEN REPEAT GEN_TAC THEN
DISCH_TAC THEN FIRST_ASSUM MATCH_MP_TAC THEN
REWRITE_TAC[o_THM; valuation] THEN
GEN_TAC THEN MATCH_MP_TAC INTERPRETATION_TERMVAL THEN
EXISTS_TAC `UNIV:(num#num)->bool` THEN ASM_REWRITE_TAC[] THEN
FIRST_ASSUM(fun th -> MP_TAC th THEN
MATCH_MP_TAC INTERPRETATION_SUBLANGUAGE) THEN
REWRITE_TAC[SUBSET_UNIV]]);;