Datasets:
Tasks:
Text Generation
Modalities:
Text
Sub-tasks:
language-modeling
Languages:
English
Size:
100K - 1M
License:
(* ========================================================================= *) | |
(* Arithmetization of syntax and Tarski's theorem. *) | |
(* ========================================================================= *) | |
prioritize_num();; | |
(* ------------------------------------------------------------------------- *) | |
(* This is to fake the fact that we might really be using strings. *) | |
(* ------------------------------------------------------------------------- *) | |
let number = new_definition | |
`number(x) = 2 * (x DIV 2) + (1 - x MOD 2)`;; | |
let denumber = new_definition | |
`denumber = number`;; | |
let NUMBER_DENUMBER = prove | |
(`(!s. denumber(number s) = s) /\ | |
(!n. number(denumber n) = n)`, | |
REWRITE_TAC[number; denumber] THEN ONCE_REWRITE_TAC[MULT_SYM] THEN | |
SIMP_TAC[ARITH_RULE `x < 2 ==> (2 * y + x) DIV 2 = y`; | |
MOD_MULT_ADD; MOD_LT; GSYM DIVISION; ARITH_EQ; | |
ARITH_RULE `1 - m < 2`; ARITH_RULE `x < 2 ==> 1 - (1 - x) = x`]);; | |
let NUMBER_INJ = prove | |
(`!x y. number(x) = number(y) <=> x = y`, | |
MESON_TAC[NUMBER_DENUMBER]);; | |
let NUMBER_SURJ = prove | |
(`!y. ?x. number(x) = y`, | |
MESON_TAC[NUMBER_DENUMBER]);; | |
(* ------------------------------------------------------------------------- *) | |
(* Arithmetization. *) | |
(* ------------------------------------------------------------------------- *) | |
let gterm = new_recursive_definition term_RECURSION | |
`(gterm (V x) = NPAIR 0 (number x)) /\ | |
(gterm Z = NPAIR 1 0) /\ | |
(gterm (Suc t) = NPAIR 2 (gterm t)) /\ | |
(gterm (s ++ t) = NPAIR 3 (NPAIR (gterm s) (gterm t))) /\ | |
(gterm (s ** t) = NPAIR 4 (NPAIR (gterm s) (gterm t)))`;; | |
let gform = new_recursive_definition form_RECURSION | |
`(gform False = NPAIR 0 0) /\ | |
(gform True = NPAIR 0 1) /\ | |
(gform (s === t) = NPAIR 1 (NPAIR (gterm s) (gterm t))) /\ | |
(gform (s << t) = NPAIR 2 (NPAIR (gterm s) (gterm t))) /\ | |
(gform (s <<= t) = NPAIR 3 (NPAIR (gterm s) (gterm t))) /\ | |
(gform (Not p) = NPAIR 4 (gform p)) /\ | |
(gform (p && q) = NPAIR 5 (NPAIR (gform p) (gform q))) /\ | |
(gform (p || q) = NPAIR 6 (NPAIR (gform p) (gform q))) /\ | |
(gform (p --> q) = NPAIR 7 (NPAIR (gform p) (gform q))) /\ | |
(gform (p <-> q) = NPAIR 8 (NPAIR (gform p) (gform q))) /\ | |
(gform (!! x p) = NPAIR 9 (NPAIR (number x) (gform p))) /\ | |
(gform (?? x p) = NPAIR 10 (NPAIR (number x) (gform p)))`;; | |
(* ------------------------------------------------------------------------- *) | |
(* Injectivity. *) | |
(* ------------------------------------------------------------------------- *) | |
let GTERM_INJ = prove | |
(`!s t. (gterm s = gterm t) <=> (s = t)`, | |
MATCH_MP_TAC term_INDUCT THEN REPEAT CONJ_TAC THENL | |
[ALL_TAC; | |
GEN_TAC; | |
GEN_TAC THEN DISCH_TAC; | |
REPEAT GEN_TAC THEN STRIP_TAC; | |
REPEAT GEN_TAC THEN STRIP_TAC] THEN | |
MATCH_MP_TAC term_INDUCT THEN | |
ASM_REWRITE_TAC[term_DISTINCT; term_INJ; gterm; | |
NPAIR_INJ; NUMBER_INJ; ARITH_EQ]);; | |
let GFORM_INJ = prove | |
(`!p q. (gform p = gform q) <=> (p = q)`, | |
MATCH_MP_TAC form_INDUCT THEN REPEAT CONJ_TAC THENL | |
[ALL_TAC; | |
ALL_TAC; | |
GEN_TAC THEN GEN_TAC; | |
GEN_TAC THEN GEN_TAC; | |
GEN_TAC THEN GEN_TAC; | |
REPEAT GEN_TAC THEN STRIP_TAC; | |
REPEAT GEN_TAC THEN STRIP_TAC; | |
REPEAT GEN_TAC THEN STRIP_TAC; | |
REPEAT GEN_TAC THEN STRIP_TAC; | |
REPEAT GEN_TAC THEN STRIP_TAC; | |
REPEAT GEN_TAC THEN STRIP_TAC; | |
REPEAT GEN_TAC THEN STRIP_TAC] THEN | |
MATCH_MP_TAC form_INDUCT THEN | |
ASM_REWRITE_TAC[form_DISTINCT; form_INJ; gform; NPAIR_INJ; ARITH_EQ] THEN | |
REWRITE_TAC[GTERM_INJ; NUMBER_INJ]);; | |
(* ------------------------------------------------------------------------- *) | |
(* Useful case theorems. *) | |
(* ------------------------------------------------------------------------- *) | |
let GTERM_CASES = prove | |
(`((gterm u = NPAIR 0 (number x)) <=> (u = V x)) /\ | |
((gterm u = NPAIR 1 0) <=> (u = Z)) /\ | |
((gterm u = NPAIR 2 n) <=> (?t. (u = Suc t) /\ (gterm t = n))) /\ | |
((gterm u = NPAIR 3 (NPAIR m n)) <=> | |
(?s t. (u = s ++ t) /\ (gterm s = m) /\ (gterm t = n))) /\ | |
((gterm u = NPAIR 4 (NPAIR m n)) <=> | |
(?s t. (u = s ** t) /\ (gterm s = m) /\ (gterm t = n)))`, | |
STRUCT_CASES_TAC(SPEC `u:term` term_CASES) THEN | |
ASM_REWRITE_TAC[gterm; NPAIR_INJ; ARITH_EQ; NUMBER_INJ; | |
term_DISTINCT; term_INJ] THEN | |
MESON_TAC[]);; | |
let GFORM_CASES = prove | |
(`((gform r = NPAIR 0 0) <=> (r = False)) /\ | |
((gform r = NPAIR 0 1) <=> (r = True)) /\ | |
((gform r = NPAIR 1 (NPAIR m n)) <=> | |
(?s t. (r = s === t) /\ (gterm s = m) /\ (gterm t = n))) /\ | |
((gform r = NPAIR 2 (NPAIR m n)) <=> | |
(?s t. (r = s << t) /\ (gterm s = m) /\ (gterm t = n))) /\ | |
((gform r = NPAIR 3 (NPAIR m n)) <=> | |
(?s t. (r = s <<= t) /\ (gterm s = m) /\ (gterm t = n))) /\ | |
((gform r = NPAIR 4 n) = (?p. (r = Not p) /\ (gform p = n))) /\ | |
((gform r = NPAIR 5 (NPAIR m n)) <=> | |
(?p q. (r = p && q) /\ (gform p = m) /\ (gform q = n))) /\ | |
((gform r = NPAIR 6 (NPAIR m n)) <=> | |
(?p q. (r = p || q) /\ (gform p = m) /\ (gform q = n))) /\ | |
((gform r = NPAIR 7 (NPAIR m n)) <=> | |
(?p q. (r = p --> q) /\ (gform p = m) /\ (gform q = n))) /\ | |
((gform r = NPAIR 8 (NPAIR m n)) <=> | |
(?p q. (r = p <-> q) /\ (gform p = m) /\ (gform q = n))) /\ | |
((gform r = NPAIR 9 (NPAIR (number x) n)) <=> | |
(?p. (r = !!x p) /\ (gform p = n))) /\ | |
((gform r = NPAIR 10 (NPAIR (number x) n)) <=> | |
(?p. (r = ??x p) /\ (gform p = n)))`, | |
STRUCT_CASES_TAC(SPEC `r:form` form_CASES) THEN | |
ASM_REWRITE_TAC[gform; NPAIR_INJ; ARITH_EQ; NUMBER_INJ; | |
form_DISTINCT; form_INJ] THEN | |
MESON_TAC[]);; | |
(* ------------------------------------------------------------------------- *) | |
(* Definability of "godel number of numeral n". *) | |
(* ------------------------------------------------------------------------- *) | |
let gnumeral = new_definition | |
`gnumeral m n = (gterm(numeral m) = n)`;; | |
let arith_gnumeral1 = new_definition | |
`arith_gnumeral1 a b = formsubst ((3 |-> a) ((4 |-> b) V)) | |
(??0 (??1 | |
(V 3 === arith_pair (V 0) (V 1) && | |
V 4 === arith_pair (Suc(V 0)) (arith_pair (numeral 2) (V 1)))))`;; | |
let ARITH_GNUMERAL1 = prove | |
(`!v a b. holds v (arith_gnumeral1 a b) <=> | |
?x y. termval v a = NPAIR x y /\ | |
termval v b = NPAIR (SUC x) (NPAIR 2 y)`, | |
REWRITE_TAC[arith_gnumeral1; holds; HOLDS_FORMSUBST] THEN | |
REWRITE_TAC[termval; ARITH_EQ; o_THM; valmod; ARITH_PAIR; TERMVAL_NUMERAL]);; | |
let FV_GNUMERAL1 = prove | |
(`!s t. FV(arith_gnumeral1 s t) = FVT s UNION FVT t`, | |
REWRITE_TAC[arith_gnumeral1] THEN FV_TAC[FVT_PAIR; FVT_NUMERAL]);; | |
let arith_gnumeral1' = new_definition | |
`arith_gnumeral1' x y = arith_rtc arith_gnumeral1 x y`;; | |
let ARITH_GNUMERAL1' = prove | |
(`!v s t. holds v (arith_gnumeral1' s t) <=> | |
RTC (\a b. ?x y. a = NPAIR x y /\ | |
b = NPAIR (SUC x) (NPAIR 2 y)) | |
(termval v s) (termval v t)`, | |
REWRITE_TAC[arith_gnumeral1'] THEN MATCH_MP_TAC ARITH_RTC THEN | |
REWRITE_TAC[ARITH_GNUMERAL1]);; | |
let FV_GNUMERAL1' = prove | |
(`!s t. FV(arith_gnumeral1' s t) = FVT s UNION FVT t`, | |
SIMP_TAC[arith_gnumeral1'; FV_RTC; FV_GNUMERAL1]);; | |
let arith_gnumeral = new_definition | |
`arith_gnumeral n p = | |
formsubst ((0 |-> n) ((1 |-> p) V)) | |
(arith_gnumeral1' (arith_pair Z (numeral 3)) | |
(arith_pair (V 0) (V 1)))`;; | |
let ARITH_GNUMERAL = prove | |
(`!v s t. holds v (arith_gnumeral s t) <=> | |
gnumeral (termval v s) (termval v t)`, | |
REWRITE_TAC[arith_gnumeral; holds; HOLDS_FORMSUBST; | |
ARITH_GNUMERAL1'; ARITH_PAIR; TERMVAL_NUMERAL] THEN | |
REWRITE_TAC[termval; ARITH_EQ; o_THM; valmod] THEN | |
MP_TAC(INST | |
[`(gterm o numeral)`,`fn:num->num`; | |
`3`,`e:num`; | |
`\a:num b:num. NPAIR 2 a`,`f:num->num->num`] PRIMREC_SIGMA) THEN | |
ANTS_TAC THENL | |
[REWRITE_TAC[gterm; numeral; o_THM] THEN REWRITE_TAC[NPAIR; ARITH]; | |
SIMP_TAC[gnumeral; o_THM]]);; | |
let FV_GNUMERAL = prove | |
(`!s t. FV(arith_gnumeral s t) = FVT(s) UNION FVT(t)`, | |
REWRITE_TAC[arith_gnumeral] THEN | |
FV_TAC[FV_GNUMERAL1'; FVT_PAIR; FVT_NUMERAL]);; | |
(* ------------------------------------------------------------------------- *) | |
(* Diagonal substitution. *) | |
(* ------------------------------------------------------------------------- *) | |
let qdiag = new_definition | |
`qdiag x q = qsubst (x,numeral(gform q)) q`;; | |
let arith_qdiag = new_definition | |
`arith_qdiag x s t = | |
formsubst ((1 |-> s) ((2 |-> t) V)) | |
(?? 3 | |
(arith_gnumeral (V 1) (V 3) && | |
arith_pair (numeral 10) (arith_pair (numeral(number x)) | |
(arith_pair (numeral 5) | |
(arith_pair (arith_pair (numeral 1) | |
(arith_pair (arith_pair (numeral 0) (numeral(number x))) (V 3))) | |
(V 1)))) === | |
V 2))`;; | |
let QDIAG_FV = prove | |
(`FV(qdiag x q) = FV(q) DELETE x`, | |
REWRITE_TAC[qdiag; FV_QSUBST; FVT_NUMERAL; UNION_EMPTY]);; | |
let HOLDS_QDIAG = prove | |
(`!v x q. holds v (qdiag x q) = holds ((x |-> gform q) v) q`, | |
SIMP_TAC[qdiag; HOLDS_QSUBST; FVT_NUMERAL; NOT_IN_EMPTY; TERMVAL_NUMERAL]);; | |
let ARITH_QDIAG = prove | |
(`(termval v s = gform p) | |
==> (holds v (arith_qdiag x s t) <=> (termval v t = gform(qdiag x p)))`, | |
REPEAT STRIP_TAC THEN | |
REWRITE_TAC[qdiag; qsubst; arith_qdiag; gform; gterm] THEN | |
ASM_REWRITE_TAC[HOLDS_FORMSUBST; holds; termval; TERMVAL_NUMERAL; | |
gnumeral; ARITH_GNUMERAL; ARITH_PAIR] THEN | |
ASM_REWRITE_TAC[o_DEF; valmod; ARITH_EQ; termval] THEN MESON_TAC[]);; | |
let FV_QDIAG = prove | |
(`!x s t. FV(arith_qdiag x s t) = FVT(s) UNION FVT(t)`, | |
REWRITE_TAC[arith_qdiag; FORMSUBST_FV; FV; FV_GNUMERAL; FVT_PAIR; | |
UNION_EMPTY; FVT_NUMERAL; FVT; TERMSUBST_FVT] THEN | |
REWRITE_TAC[EXTENSION; IN_ELIM_THM] THEN | |
REWRITE_TAC[DISJ_ACI; IN_DELETE; IN_UNION; IN_SING] THEN | |
REWRITE_TAC[TAUT `(a \/ b) /\ c <=> a /\ c \/ b /\ c`] THEN | |
REWRITE_TAC[EXISTS_OR_THM; GSYM CONJ_ASSOC; UNWIND_THM2; ARITH_EQ] THEN | |
REWRITE_TAC[valmod; ARITH_EQ; DISJ_ACI]);; | |
(* ------------------------------------------------------------------------- *) | |
(* Hence diagonalization of a predicate. *) | |
(* ------------------------------------------------------------------------- *) | |
let diagonalize = new_definition | |
`diagonalize x q = | |
let y = VARIANT(x INSERT FV(q)) in | |
??y (arith_qdiag x (V x) (V y) && formsubst ((x |-> V y) V) q)`;; | |
let FV_DIAGONALIZE = prove | |
(`!x q. FV(diagonalize x q) = x INSERT (FV q)`, | |
REPEAT GEN_TAC THEN REWRITE_TAC[diagonalize] THEN LET_TAC THEN | |
REWRITE_TAC[FV; FV_QDIAG; FORMSUBST_FV; EXTENSION; IN_INSERT; IN_DELETE; | |
IN_UNION; IN_ELIM_THM; FVT; NOT_IN_EMPTY] THEN | |
X_GEN_TAC `u:num` THEN | |
SUBGOAL_THEN `~(y = x) /\ !z. z IN FV(q) ==> ~(y = z)` STRIP_ASSUME_TAC THENL | |
[ASM_MESON_TAC[VARIANT_FINITE; FINITE_INSERT; FV_FINITE; IN_INSERT]; | |
ALL_TAC] THEN | |
ASM_CASES_TAC `u:num = x` THEN ASM_REWRITE_TAC[] THEN | |
ASM_CASES_TAC `u:num = y` THEN ASM_REWRITE_TAC[] THEN | |
REWRITE_TAC[valmod; COND_RAND; FVT; IN_SING; COND_EXPAND] THEN | |
ASM_MESON_TAC[]);; | |
let ARITH_DIAGONALIZE = prove | |
(`(v x = gform p) | |
==> !q. holds v (diagonalize x q) <=> holds ((x |-> gform(qdiag x p)) v) q`, | |
REPEAT STRIP_TAC THEN REWRITE_TAC[diagonalize] THEN LET_TAC THEN | |
REWRITE_TAC[holds] THEN | |
SUBGOAL_THEN `!a. holds ((y |-> a) v) (arith_qdiag x (V x) (V y)) <=> | |
(termval ((y |-> a) v) (V y) = gform(qdiag x p))` | |
(fun th -> REWRITE_TAC[th]) | |
THENL | |
[GEN_TAC THEN MATCH_MP_TAC ARITH_QDIAG THEN REWRITE_TAC[termval; valmod] THEN | |
SUBGOAL_THEN `~(x:num = y)` (fun th -> ASM_REWRITE_TAC[th]) THEN | |
ASM_MESON_TAC[VARIANT_FINITE; FINITE_INSERT; FV_FINITE; IN_INSERT]; | |
ALL_TAC] THEN | |
REWRITE_TAC[HOLDS_FORMSUBST; termval; VALMOD_BASIC; UNWIND_THM2] THEN | |
MATCH_MP_TAC HOLDS_VALUATION THEN | |
X_GEN_TAC `u:num` THEN DISCH_TAC THEN | |
REWRITE_TAC[o_THM; termval; valmod] THEN | |
COND_CASES_TAC THEN REWRITE_TAC[termval] THEN | |
COND_CASES_TAC THEN ASM_REWRITE_TAC[] THEN | |
ASM_MESON_TAC[VARIANT_FINITE; FINITE_INSERT; FV_FINITE; IN_INSERT]);; | |
(* ------------------------------------------------------------------------- *) | |
(* And hence the fixed point. *) | |
(* ------------------------------------------------------------------------- *) | |
let fixpoint = new_definition | |
`fixpoint x q = qdiag x (diagonalize x q)`;; | |
let FV_FIXPOINT = prove | |
(`!x p. FV(fixpoint x p) = FV(p) DELETE x`, | |
REWRITE_TAC[fixpoint; FV_QDIAG; QDIAG_FV; FV_DIAGONALIZE; | |
FVT_NUMERAL] THEN | |
SET_TAC[]);; | |
let HOLDS_FIXPOINT = prove | |
(`!x p v. holds v (fixpoint x p) <=> | |
holds ((x |-> gform(fixpoint x p)) v) p`, | |
REPEAT GEN_TAC THEN SIMP_TAC[fixpoint; holds; HOLDS_QDIAG] THEN | |
SUBGOAL_THEN | |
`((x |-> gform(diagonalize x p)) v) x = gform (diagonalize x p)` | |
MP_TAC THENL [REWRITE_TAC[VALMOD_BASIC]; ALL_TAC] THEN | |
DISCH_THEN(fun th -> REWRITE_TAC[MATCH_MP ARITH_DIAGONALIZE th]) THEN | |
REWRITE_TAC[VALMOD_VALMOD_BASIC]);; | |
let HOLDS_IFF_FIXPOINT = prove | |
(`!x p v. holds v | |
(fixpoint x p <-> qsubst (x,numeral(gform(fixpoint x p))) p)`, | |
SIMP_TAC[holds; HOLDS_FIXPOINT; HOLDS_QSUBST; FVT_NUMERAL; NOT_IN_EMPTY; | |
TERMVAL_NUMERAL]);; | |
let CARNAP = prove | |
(`!x q. ?p. (FV(p) = FV(q) DELETE x) /\ | |
true (p <-> qsubst (x,numeral(gform p)) q)`, | |
REPEAT GEN_TAC THEN EXISTS_TAC `fixpoint x q` THEN | |
REWRITE_TAC[true_def; HOLDS_IFF_FIXPOINT; FV_FIXPOINT]);; | |
(* ------------------------------------------------------------------------- *) | |
(* Hence Tarski's theorem on the undefinability of truth. *) | |
(* ------------------------------------------------------------------------- *) | |
let definable_by = new_definition | |
`definable_by P s <=> ?p x. P p /\ (!v. holds v p <=> (v(x)) IN s)`;; | |
let definable = new_definition | |
`definable s <=> ?p x. !v. holds v p <=> (v(x)) IN s`;; | |
let TARSKI_THEOREM = prove | |
(`~(definable {gform p | true p})`, | |
REWRITE_TAC[definable; IN_ELIM_THM; NOT_EXISTS_THM] THEN | |
MAP_EVERY X_GEN_TAC [`p:form`; `x:num`] THEN DISCH_TAC THEN | |
MP_TAC(SPECL [`x:num`; `Not p`] CARNAP) THEN | |
DISCH_THEN(X_CHOOSE_THEN `q:form` (MP_TAC o CONJUNCT2)) THEN | |
SIMP_TAC[true_def; holds; HOLDS_QSUBST; FVT_NUMERAL; NOT_IN_EMPTY] THEN | |
ONCE_ASM_REWRITE_TAC[] THEN REWRITE_TAC[VALMOD_BASIC; TERMVAL_NUMERAL] THEN | |
REWRITE_TAC[true_def; GFORM_INJ] THEN MESON_TAC[]);; | |