Datasets:
Tasks:
Text Generation
Modalities:
Text
Sub-tasks:
language-modeling
Languages:
English
Size:
100K - 1M
License:
(* ========================================================================= *) | |
(* Two interesting axiom systems: full Peano Arithmetic and Robinson's Q. *) | |
(* ========================================================================= *) | |
(* ------------------------------------------------------------------------- *) | |
(* We define PA as an "inductive" predicate because the pattern-matching *) | |
(* is a bit nicer, but of course we could just define the term explicitly. *) | |
(* In effect, the returned PA_CASES would be our explicit definition. *) | |
(* *) | |
(* The induction axiom is done a little strangely in order to avoid using *) | |
(* substitution as a primitive concept. *) | |
(* ------------------------------------------------------------------------- *) | |
let PA_RULES,PA_INDUCT,PA_CASES = new_inductive_definition | |
`(!s. PA(Not (Z === Suc(s)))) /\ | |
(!s t. PA(Suc(s) === Suc(t) --> s === t)) /\ | |
(!t. PA(t ++ Z === t)) /\ | |
(!s t. PA(s ++ Suc(t) === Suc(s ++ t))) /\ | |
(!t. PA(t ** Z === Z)) /\ | |
(!s t. PA(s ** Suc(t) === s ** t ++ s)) /\ | |
(!p i j. ~(j IN FV(p)) | |
==> PA | |
((??i (V i === Z && p)) && | |
(!!j (??i (V i === V j && p) | |
--> ??i (V i === Suc(V j) && p))) | |
--> !!i p))`;; | |
let PA_SOUND = prove | |
(`!A p. (!a. a IN A ==> true a) /\ (PA UNION A) |-- p ==> true p`, | |
REPEAT STRIP_TAC THEN MATCH_MP_TAC THEOREMS_TRUE THEN | |
EXISTS_TAC `PA UNION A` THEN | |
ASM_SIMP_TAC[IN_UNION; TAUT `(a \/ b ==> c) <=> (a ==> c) /\ (b ==> c)`] THEN | |
REWRITE_TAC[IN] THEN MATCH_MP_TAC PA_INDUCT THEN | |
REWRITE_TAC[true_def; holds; termval] THEN | |
REWRITE_TAC[CONJ_ASSOC] THEN CONJ_TAC THENL | |
[SIMP_TAC[ADD_CLAUSES; MULT_CLAUSES; EXP; SUC_INJ; NOT_SUC] THEN ARITH_TAC; | |
ALL_TAC] THEN | |
MAP_EVERY X_GEN_TAC [`q:form`; `i:num`; `j:num`] THEN | |
ASM_CASES_TAC `j:num = i` THEN | |
ASM_REWRITE_TAC[VALMOD; VALMOD_VALMOD_BASIC] THEN | |
SIMP_TAC[HOLDS_VALMOD_OTHER] THENL [MESON_TAC[]; ALL_TAC] THEN | |
REWRITE_TAC[UNWIND_THM2] THEN DISCH_TAC THEN | |
SUBGOAL_THEN | |
`!a b v. holds ((i |-> a) ((j |-> b) v)) q <=> holds ((i |-> a) v) q` | |
(fun th -> REWRITE_TAC[th]) | |
THENL | |
[REPEAT STRIP_TAC THEN MATCH_MP_TAC HOLDS_VALUATION THEN | |
ASM_REWRITE_TAC[valmod] THEN ASM_MESON_TAC[]; | |
GEN_TAC THEN STRIP_TAC THEN INDUCT_TAC THEN ASM_SIMP_TAC[]]);; | |
(* ------------------------------------------------------------------------- *) | |
(* Robinson's axiom system Q. *) | |
(* *) | |
(* <<(forall m n. S(m) = S(n) ==> m = n) /\ *) | |
(* (forall n. ~(n = 0) <=> exists m. n = S(m)) /\ *) | |
(* (forall n. 0 + n = n) /\ *) | |
(* (forall m n. S(m) + n = S(m + n)) /\ *) | |
(* (forall n. 0 * n = 0) /\ *) | |
(* (forall m n. S(m) * n = n + m * n) /\ *) | |
(* (forall m n. m <= n <=> exists d. m + d = n) /\ *) | |
(* (forall m n. m < n <=> S(m) <= n)>>;; *) | |
(* ------------------------------------------------------------------------- *) | |
let robinson = new_definition | |
`robinson = | |
(!!0 (!!1 (Suc(V 0) === Suc(V 1) --> V 0 === V 1))) && | |
(!!1 (Not(V 1 === Z) <-> ??0 (V 1 === Suc(V 0)))) && | |
(!!1 (Z ++ V 1 === V 1)) && | |
(!!0 (!!1 (Suc(V 0) ++ V 1 === Suc(V 0 ++ V 1)))) && | |
(!!1 (Z ** V 1 === Z)) && | |
(!!0 (!!1 (Suc(V 0) ** V 1 === V 1 ++ V 0 ** V 1))) && | |
(!!0 (!!1 (V 0 <<= V 1 <-> ??2 (V 0 ++ V 2 === V 1)))) && | |
(!!0 (!!1 (V 0 << V 1 <-> Suc(V 0) <<= V 1)))`;; | |