Datasets:
Tasks:
Text Generation
Modalities:
Text
Sub-tasks:
language-modeling
Languages:
English
Size:
100K - 1M
License:
(* ========================================================================= *) | |
(* First order logic based on the language of arithmetic. *) | |
(* ========================================================================= *) | |
prioritize_num();; | |
(* ------------------------------------------------------------------------- *) | |
(* Syntax of terms. *) | |
(* ------------------------------------------------------------------------- *) | |
parse_as_infix("++",(20,"right"));; | |
parse_as_infix("**",(22,"right"));; | |
let term_INDUCT,term_RECURSION = define_type | |
"term = Z | |
| V num | |
| Suc term | |
| ++ term term | |
| ** term term";; | |
let term_CASES = prove_cases_thm term_INDUCT;; | |
let term_DISTINCT = distinctness "term";; | |
let term_INJ = injectivity "term";; | |
(* ------------------------------------------------------------------------- *) | |
(* Syntax of formulas. *) | |
(* ------------------------------------------------------------------------- *) | |
parse_as_infix("===",(18,"right"));; | |
parse_as_infix("<<",(18,"right"));; | |
parse_as_infix("<<=",(18,"right"));; | |
parse_as_infix("&&",(16,"right"));; | |
parse_as_infix("||",(15,"right"));; | |
parse_as_infix("-->",(14,"right"));; | |
parse_as_infix("<->",(13,"right"));; | |
let form_INDUCT,form_RECURSION = define_type | |
"form = False | |
| True | |
| === term term | |
| << term term | |
| <<= term term | |
| Not form | |
| && form form | |
| || form form | |
| --> form form | |
| <-> form form | |
| !! num form | |
| ?? num form";; | |
let form_CASES = prove_cases_thm form_INDUCT;; | |
let form_DISTINCT = distinctness "form";; | |
let form_INJ = injectivity "form";; | |
(* ------------------------------------------------------------------------- *) | |
(* Semantics of terms and formulas in the standard model. *) | |
(* ------------------------------------------------------------------------- *) | |
parse_as_infix("|->",(22,"right"));; | |
let valmod = new_definition | |
`(x |-> a) (v:A->B) = \y. if y = x then a else v(y)`;; | |
let termval = new_recursive_definition term_RECURSION | |
`(termval v Z = 0) /\ | |
(termval v (V n) = v(n)) /\ | |
(termval v (Suc t) = SUC (termval v t)) /\ | |
(termval v (s ++ t) = termval v s + termval v t) /\ | |
(termval v (s ** t) = termval v s * termval v t)`;; | |
let holds = new_recursive_definition form_RECURSION | |
`(holds v False <=> F) /\ | |
(holds v True <=> T) /\ | |
(holds v (s === t) <=> (termval v s = termval v t)) /\ | |
(holds v (s << t) <=> (termval v s < termval v t)) /\ | |
(holds v (s <<= t) <=> (termval v s <= termval v t)) /\ | |
(holds v (Not p) <=> ~(holds v p)) /\ | |
(holds v (p && q) <=> holds v p /\ holds v q) /\ | |
(holds v (p || q) <=> holds v p \/ holds v q) /\ | |
(holds v (p --> q) <=> holds v p ==> holds v q) /\ | |
(holds v (p <-> q) <=> (holds v p <=> holds v q)) /\ | |
(holds v (!! x p) <=> !a. holds ((x|->a) v) p) /\ | |
(holds v (?? x p) <=> ?a. holds ((x|->a) v) p)`;; | |
let true_def = new_definition | |
`true p <=> !v. holds v p`;; | |
let VALMOD = prove | |
(`!v x y a. ((x |-> y) v) a = if a = x then y else v(a)`, | |
REWRITE_TAC[valmod]);; | |
let VALMOD_BASIC = prove | |
(`!v x y. (x |-> y) v x = y`, | |
REWRITE_TAC[valmod]);; | |
let VALMOD_VALMOD_BASIC = prove | |
(`!v a b x. (x |-> a) ((x |-> b) v) = (x |-> a) v`, | |
REWRITE_TAC[valmod; FUN_EQ_THM] THEN | |
REPEAT GEN_TAC THEN COND_CASES_TAC THEN ASM_REWRITE_TAC[]);; | |
let VALMOD_REPEAT = prove | |
(`!v x. (x |-> v(x)) v = v`, | |
REWRITE_TAC[valmod; FUN_EQ_THM] THEN MESON_TAC[]);; | |
let FORALL_VALMOD = prove | |
(`!x. (!v a. P((x |-> a) v)) <=> (!v. P v)`, | |
MESON_TAC[VALMOD_REPEAT]);; | |
let VALMOD_SWAP = prove | |
(`!v x y a b. | |
~(x = y) ==> ((x |-> a) ((y |-> b) v) = (y |-> b) ((x |-> a) v))`, | |
REWRITE_TAC[valmod; FUN_EQ_THM] THEN MESON_TAC[]);; | |
let VALMOD_TRIVIAL = prove | |
(`!v x. v x = t ==> (x |-> t) v = v`, | |
REWRITE_TAC[valmod; FUN_EQ_THM] THEN MESON_TAC[]);; | |
(* ------------------------------------------------------------------------- *) | |
(* Assignment. *) | |
(* ------------------------------------------------------------------------- *) | |
parse_as_infix("|=>",(22,"right"));; | |
let assign = new_definition | |
`(x |=> a) = (x |-> a) V`;; | |
let ASSIGN = prove | |
(`!x y a. (x |=> a) y = if y = x then a else V(y)`, | |
REWRITE_TAC[assign; valmod]);; | |
let ASSIGN_TRIV = prove | |
(`!x. (x |=> V x) = V`, | |
REWRITE_TAC[VALMOD_REPEAT; assign]);; | |
(* ------------------------------------------------------------------------- *) | |
(* Variables in a term and free variables in a formula. *) | |
(* ------------------------------------------------------------------------- *) | |
let FVT = new_recursive_definition term_RECURSION | |
`(FVT Z = {}) /\ | |
(FVT (V n) = {n}) /\ | |
(FVT (Suc t) = FVT t) /\ | |
(FVT (s ++ t) = (FVT s) UNION (FVT t)) /\ | |
(FVT (s ** t) = (FVT s) UNION (FVT t))`;; | |
let FV = new_recursive_definition form_RECURSION | |
`(FV False = {}) /\ | |
(FV True = {}) /\ | |
(FV (s === t) = (FVT s) UNION (FVT t)) /\ | |
(FV (s << t) = (FVT s) UNION (FVT t)) /\ | |
(FV (s <<= t) = (FVT s) UNION (FVT t)) /\ | |
(FV (Not p) = FV p) /\ | |
(FV (p && q) = (FV p) UNION (FV q)) /\ | |
(FV (p || q) = (FV p) UNION (FV q)) /\ | |
(FV (p --> q) = (FV p) UNION (FV q)) /\ | |
(FV (p <-> q) = (FV p) UNION (FV q)) /\ | |
(FV (!!x p) = (FV p) DELETE x) /\ | |
(FV (??x p) = (FV p) DELETE x)`;; | |
let FVT_FINITE = prove | |
(`!t. FINITE(FVT t)`, | |
MATCH_MP_TAC term_INDUCT THEN | |
SIMP_TAC[FVT; FINITE_RULES; FINITE_INSERT; FINITE_UNION]);; | |
let FV_FINITE = prove | |
(`!p. FINITE(FV p)`, | |
MATCH_MP_TAC form_INDUCT THEN | |
SIMP_TAC[FV; FVT_FINITE; FINITE_RULES; FINITE_DELETE; FINITE_UNION]);; | |
(* ------------------------------------------------------------------------- *) | |
(* Logical axioms. *) | |
(* ------------------------------------------------------------------------- *) | |
let axiom_RULES,axiom_INDUCT,axiom_CASES = new_inductive_definition | |
`(!p q. axiom(p --> (q --> p))) /\ | |
(!p q r. axiom((p --> q --> r) --> (p --> q) --> (p --> r))) /\ | |
(!p. axiom(((p --> False) --> False) --> p)) /\ | |
(!x p q. axiom((!!x (p --> q)) --> (!!x p) --> (!!x q))) /\ | |
(!x p. ~(x IN FV p) ==> axiom(p --> !!x p)) /\ | |
(!x t. ~(x IN FVT t) ==> axiom(??x (V x === t))) /\ | |
(!t. axiom(t === t)) /\ | |
(!s t. axiom((s === t) --> (Suc s === Suc t))) /\ | |
(!s t u v. axiom(s === t --> u === v --> s ++ u === t ++ v)) /\ | |
(!s t u v. axiom(s === t --> u === v --> s ** u === t ** v)) /\ | |
(!s t u v. axiom(s === t --> u === v --> s === u --> t === v)) /\ | |
(!s t u v. axiom(s === t --> u === v --> s << u --> t << v)) /\ | |
(!s t u v. axiom(s === t --> u === v --> s <<= u --> t <<= v)) /\ | |
(!p q. axiom((p <-> q) --> p --> q)) /\ | |
(!p q. axiom((p <-> q) --> q --> p)) /\ | |
(!p q. axiom((p --> q) --> (q --> p) --> (p <-> q))) /\ | |
axiom(True <-> (False --> False)) /\ | |
(!p. axiom(Not p <-> (p --> False))) /\ | |
(!p q. axiom((p && q) <-> (p --> q --> False) --> False)) /\ | |
(!p q. axiom((p || q) <-> Not(Not p && Not q))) /\ | |
(!x p. axiom((??x p) <-> Not(!!x (Not p))))`;; | |
(* ------------------------------------------------------------------------- *) | |
(* Deducibility from additional set of nonlogical axioms. *) | |
(* ------------------------------------------------------------------------- *) | |
parse_as_infix("|--",(11,"right"));; | |
let proves_RULES,proves_INDUCT,proves_CASES = new_inductive_definition | |
`(!p. axiom p \/ p IN A ==> A |-- p) /\ | |
(!p q. A |-- (p --> q) /\ A |-- p ==> A |-- q) /\ | |
(!p x. A |-- p ==> A |-- (!!x p))`;; | |
(* ------------------------------------------------------------------------- *) | |
(* Some lemmas. *) | |
(* ------------------------------------------------------------------------- *) | |
let TERMVAL_VALUATION = prove | |
(`!t v v'. (!x. x IN FVT(t) ==> (v'(x) = v(x))) | |
==> (termval v' t = termval v t)`, | |
MATCH_MP_TAC term_INDUCT THEN | |
REWRITE_TAC[termval; FVT; IN_INSERT; IN_UNION; NOT_IN_EMPTY] THEN | |
REPEAT STRIP_TAC THEN ASM_MESON_TAC[]);; | |
let HOLDS_VALUATION = prove | |
(`!p v v'. | |
(!x. x IN (FV p) ==> (v'(x) = v(x))) | |
==> (holds v' p <=> holds v p)`, | |
MATCH_MP_TAC form_INDUCT THEN | |
REWRITE_TAC[FV; holds; IN_UNION; IN_DELETE] THEN | |
SIMP_TAC[TERMVAL_VALUATION] THEN | |
REWRITE_TAC[valmod] THEN REPEAT STRIP_TAC THEN | |
AP_TERM_TAC THEN ABS_TAC THEN FIRST_ASSUM MATCH_MP_TAC THEN | |
ASM_SIMP_TAC[]);; | |
let TERMVAL_VALMOD_OTHER = prove | |
(`!v x a t. ~(x IN FVT t) ==> (termval ((x |-> a) v) t = termval v t)`, | |
MESON_TAC[TERMVAL_VALUATION; VALMOD]);; | |
let HOLDS_VALMOD_OTHER = prove | |
(`!v x a p. ~(x IN FV p) ==> (holds ((x |-> a) v) p <=> holds v p)`, | |
MESON_TAC[HOLDS_VALUATION; VALMOD]);; | |
(* ------------------------------------------------------------------------- *) | |
(* Proof of soundness. *) | |
(* ------------------------------------------------------------------------- *) | |
let AXIOMS_TRUE = prove | |
(`!p. axiom p ==> true p`, | |
MATCH_MP_TAC axiom_INDUCT THEN | |
REWRITE_TAC[true_def] THEN REPEAT STRIP_TAC THEN REWRITE_TAC[holds] THENL | |
[CONV_TAC TAUT; | |
CONV_TAC TAUT; | |
SIMP_TAC[]; | |
REWRITE_TAC[RIGHT_IMP_FORALL_THM] THEN REPEAT GEN_TAC THEN | |
MATCH_MP_TAC EQ_IMP THEN | |
MATCH_MP_TAC HOLDS_VALUATION THEN | |
REWRITE_TAC[valmod] THEN GEN_TAC THEN COND_CASES_TAC THEN | |
ASM_MESON_TAC[]; | |
EXISTS_TAC `termval v t` THEN | |
REWRITE_TAC[termval; valmod] THEN | |
MATCH_MP_TAC TERMVAL_VALUATION THEN | |
GEN_TAC THEN REWRITE_TAC[] THEN | |
COND_CASES_TAC THEN ASM_MESON_TAC[]; | |
SIMP_TAC[termval]; | |
SIMP_TAC[termval]; | |
SIMP_TAC[termval]; | |
SIMP_TAC[termval]; | |
SIMP_TAC[termval]; | |
SIMP_TAC[termval]; | |
SIMP_TAC[termval]; | |
SIMP_TAC[termval]; | |
CONV_TAC TAUT; | |
CONV_TAC TAUT; | |
CONV_TAC TAUT; | |
MESON_TAC[]]);; | |
let THEOREMS_TRUE = prove | |
(`!A p. (!q. q IN A ==> true q) /\ A |-- p ==> true p`, | |
GEN_TAC THEN REWRITE_TAC[IMP_CONJ; RIGHT_FORALL_IMP_THM] THEN | |
DISCH_TAC THEN MATCH_MP_TAC proves_INDUCT THEN | |
ASM_SIMP_TAC[TAUT `a \/ b ==> c <=> (a ==> c) /\ (b ==> c)`] THEN | |
REWRITE_TAC[IN; AXIOMS_TRUE] THEN | |
SIMP_TAC[holds; true_def]);; | |
(* ------------------------------------------------------------------------- *) | |
(* Variant variables for use in renaming substitution. *) | |
(* ------------------------------------------------------------------------- *) | |
let MAX_SYM = prove | |
(`!x y. MAX x y = MAX y x`, | |
ARITH_TAC);; | |
let MAX_ASSOC = prove | |
(`!x y z. MAX x (MAX y z) = MAX (MAX x y) z`, | |
ARITH_TAC);; | |
let SETMAX = new_definition | |
`SETMAX s = ITSET MAX s 0`;; | |
let VARIANT = new_definition | |
`VARIANT s = SETMAX s + 1`;; | |
let SETMAX_LEMMA = prove | |
(`(SETMAX {} = 0) /\ | |
(!x s. FINITE s ==> | |
(SETMAX (x INSERT s) = if x IN s then SETMAX s | |
else MAX x (SETMAX s)))`, | |
REWRITE_TAC[SETMAX] THEN MATCH_MP_TAC FINITE_RECURSION THEN | |
REWRITE_TAC[MAX] THEN REPEAT GEN_TAC THEN | |
MAP_EVERY ASM_CASES_TAC | |
[`x:num <= s`; `y:num <= s`; `x:num <= y`; `y <= x`] THEN | |
ASM_REWRITE_TAC[] THEN ASM_MESON_TAC[LE_CASES; LE_TRANS; LE_ANTISYM]);; | |
let SETMAX_MEMBER = prove | |
(`!s. FINITE s ==> !x. x IN s ==> x <= SETMAX s`, | |
MATCH_MP_TAC FINITE_INDUCT_STRONG THEN | |
REWRITE_TAC[NOT_IN_EMPTY; IN_INSERT] THEN | |
REPEAT GEN_TAC THEN STRIP_TAC THEN | |
ASM_SIMP_TAC [SETMAX_LEMMA] THEN | |
ASM_REWRITE_TAC[MAX] THEN | |
REPEAT STRIP_TAC THEN COND_CASES_TAC THEN | |
ASM_REWRITE_TAC[LE_REFL] THEN | |
ASM_MESON_TAC[LE_CASES; LE_TRANS]);; | |
let SETMAX_THM = prove | |
(`(SETMAX {} = 0) /\ | |
(!x s. FINITE s ==> | |
(SETMAX (x INSERT s) = MAX x (SETMAX s)))`, | |
REPEAT STRIP_TAC THEN ASM_SIMP_TAC [SETMAX_LEMMA] THEN | |
COND_CASES_TAC THEN REWRITE_TAC[MAX] THEN | |
COND_CASES_TAC THEN ASM_MESON_TAC[SETMAX_MEMBER]);; | |
let SETMAX_UNION = prove | |
(`!s t. FINITE(s UNION t) | |
==> (SETMAX(s UNION t) = MAX (SETMAX s) (SETMAX t))`, | |
let lemma = prove(`(x INSERT s) UNION t = x INSERT (s UNION t)`,SET_TAC[]) in | |
SUBGOAL_THEN `!t. FINITE(t) ==> !s. FINITE(s) ==> | |
(SETMAX(s UNION t) = MAX (SETMAX s) (SETMAX t))` | |
(fun th -> MESON_TAC[th; FINITE_UNION]) THEN | |
GEN_TAC THEN DISCH_TAC THEN | |
MATCH_MP_TAC FINITE_INDUCT_STRONG THEN | |
REWRITE_TAC[UNION_EMPTY; SETMAX_THM] THEN CONJ_TAC THENL | |
[REWRITE_TAC[MAX; LE_0]; ALL_TAC] THEN | |
REPEAT STRIP_TAC THEN REWRITE_TAC[lemma] THEN | |
ASM_SIMP_TAC [SETMAX_THM; FINITE_UNION] THEN | |
REWRITE_TAC[MAX_ASSOC]);; | |
let VARIANT_FINITE = prove | |
(`!s:num->bool. FINITE(s) ==> ~(VARIANT(s) IN s)`, | |
REWRITE_TAC[VARIANT] THEN | |
MESON_TAC[SETMAX_MEMBER; ARITH_RULE `~(x + 1 <= x)`]);; | |
let VARIANT_THM = prove | |
(`!p. ~(VARIANT(FV p) IN FV(p))`, | |
GEN_TAC THEN MATCH_MP_TAC VARIANT_FINITE THEN REWRITE_TAC[FV_FINITE]);; | |
let NOT_IN_VARIANT = prove | |
(`!s t. FINITE s /\ t SUBSET s ==> ~(VARIANT(s) IN t)`, | |
MESON_TAC[SUBSET; VARIANT_FINITE]);; | |
(* ------------------------------------------------------------------------- *) | |
(* Substitution within terms. *) | |
(* ------------------------------------------------------------------------- *) | |
let termsubst = new_recursive_definition term_RECURSION | |
`(termsubst v Z = Z) /\ | |
(!x. termsubst v (V x) = v(x)) /\ | |
(!t. termsubst v (Suc t) = Suc(termsubst v t)) /\ | |
(!s t. termsubst v (s ++ t) = termsubst v s ++ termsubst v t) /\ | |
(!s t. termsubst v (s ** t) = termsubst v s ** termsubst v t)`;; | |
let TERMVAL_TERMSUBST = prove | |
(`!v i t. termval v (termsubst i t) = termval (termval v o i) t`, | |
GEN_TAC THEN GEN_TAC THEN | |
MATCH_MP_TAC term_INDUCT THEN SIMP_TAC[termval; termsubst; o_THM]);; | |
let TERMSUBST_TERMSUBST = prove | |
(`!i j t. termsubst j (termsubst i t) = termsubst (termsubst j o i) t`, | |
GEN_TAC THEN GEN_TAC THEN | |
MATCH_MP_TAC term_INDUCT THEN SIMP_TAC[termval; termsubst; o_THM]);; | |
let TERMSUBST_TRIV = prove | |
(`!t. termsubst V t = t`, | |
MATCH_MP_TAC term_INDUCT THEN SIMP_TAC[termsubst]);; | |
let TERMSUBST_EQ = prove | |
(`!t v v'. (!x. x IN (FVT t) ==> (v'(x) = v(x))) | |
==> (termsubst v' t = termsubst v t)`, | |
MATCH_MP_TAC term_INDUCT THEN | |
SIMP_TAC[termsubst; FVT; IN_SING; IN_UNION] THEN MESON_TAC[]);; | |
let TERMSUBST_FVT = prove | |
(`!t i. FVT(termsubst i t) = {x | ?y. y IN FVT(t) /\ x IN FVT(i y)}`, | |
REWRITE_TAC[EXTENSION; IN_ELIM_THM] THEN | |
MATCH_MP_TAC term_INDUCT THEN REWRITE_TAC[FVT; termsubst] THEN | |
REWRITE_TAC[IN_UNION; IN_SING; NOT_IN_EMPTY] THEN MESON_TAC[]);; | |
let TERMSUBST_ASSIGN = prove | |
(`!x s t. ~(x IN FVT t) ==> (termsubst (x |=> s) t = t)`, | |
REPEAT STRIP_TAC THEN GEN_REWRITE_TAC RAND_CONV [GSYM TERMSUBST_TRIV] THEN | |
MATCH_MP_TAC TERMSUBST_EQ THEN | |
REWRITE_TAC[ASSIGN] THEN ASM_MESON_TAC[]);; | |
let TERMSUBST_TRIVIAL = prove | |
(`!v t. (!x. x IN FVT t ==> v x = V x) ==> termsubst v t = t`, | |
MESON_TAC[TERMSUBST_EQ; TERMSUBST_TRIV]);; | |
(* ------------------------------------------------------------------------- *) | |
(* Formula substitution --- somewhat less trivial. *) | |
(* ------------------------------------------------------------------------- *) | |
let formsubst = new_recursive_definition form_RECURSION | |
`(formsubst v False = False) /\ | |
(formsubst v True = True) /\ | |
(formsubst v (s === t) = termsubst v s === termsubst v t) /\ | |
(formsubst v (s << t) = termsubst v s << termsubst v t) /\ | |
(formsubst v (s <<= t) = termsubst v s <<= termsubst v t) /\ | |
(formsubst v (Not p) = Not(formsubst v p)) /\ | |
(formsubst v (p && q) = formsubst v p && formsubst v q) /\ | |
(formsubst v (p || q) = formsubst v p || formsubst v q) /\ | |
(formsubst v (p --> q) = formsubst v p --> formsubst v q) /\ | |
(formsubst v (p <-> q) = formsubst v p <-> formsubst v q) /\ | |
(formsubst v (!!x q) = | |
let z = if ?y. y IN FV(!!x q) /\ x IN FVT(v(y)) | |
then VARIANT(FV(formsubst ((x |-> V x) v) q)) else x in | |
!!z (formsubst ((x |-> V(z)) v) q)) /\ | |
(formsubst v (??x q) = | |
let z = if ?y. y IN FV(??x q) /\ x IN FVT(v(y)) | |
then VARIANT(FV(formsubst ((x |-> V x) v) q)) else x in | |
??z (formsubst ((x |-> V(z)) v) q))`;; | |
let FORMSUBST_PROPERTIES = prove | |
(`!p. (!i. FV(formsubst i p) = {x | ?y. y IN FV(p) /\ x IN FVT(i y)}) /\ | |
(!i v. holds v (formsubst i p) = holds (termval v o i) p)`, | |
REWRITE_TAC[EXTENSION; IN_ELIM_THM] THEN | |
MATCH_MP_TAC form_INDUCT THEN | |
REWRITE_TAC[FV; holds; formsubst; TERMSUBST_FVT; IN_ELIM_THM; NOT_IN_EMPTY; | |
IN_UNION; TERMVAL_TERMSUBST] THEN | |
REPEAT(CONJ_TAC THENL [MESON_TAC[];ALL_TAC]) THEN CONJ_TAC THEN | |
(MAP_EVERY X_GEN_TAC [`x:num`; `p:form`] THEN STRIP_TAC THEN | |
REWRITE_TAC[AND_FORALL_THM] THEN X_GEN_TAC `i:num->term` THEN | |
LET_TAC THEN CONV_TAC(TOP_DEPTH_CONV let_CONV) THEN | |
SUBGOAL_THEN `~(?y. y IN (FV(p) DELETE x) /\ z IN FVT(i y))` | |
ASSUME_TAC THENL | |
[EXPAND_TAC "z" THEN COND_CASES_TAC THEN ASM_REWRITE_TAC[] THEN | |
MP_TAC(SPEC `formsubst ((x |-> V x) i) p` VARIANT_THM) THEN | |
ASM_REWRITE_TAC[valmod; IN_DELETE; CONTRAPOS_THM] THEN | |
MATCH_MP_TAC MONO_EXISTS THEN SIMP_TAC[]; | |
ALL_TAC] THEN | |
CONJ_TAC THEN GEN_TAC THEN ASM_REWRITE_TAC[FV; IN_DELETE; holds] THENL | |
[REWRITE_TAC[LEFT_AND_EXISTS_THM; valmod] THEN AP_TERM_TAC THEN | |
ABS_TAC THEN COND_CASES_TAC THEN ASM_MESON_TAC[FVT; IN_SING; IN_DELETE]; | |
AP_TERM_TAC THEN ABS_TAC THEN MATCH_MP_TAC HOLDS_VALUATION THEN | |
GEN_TAC THEN REWRITE_TAC[valmod; o_DEF] THEN COND_CASES_TAC THEN | |
ASM_REWRITE_TAC[termval] THEN DISCH_TAC THEN | |
MATCH_MP_TAC TERMVAL_VALUATION THEN GEN_TAC THEN | |
REWRITE_TAC[] THEN COND_CASES_TAC THEN ASM_MESON_TAC[IN_DELETE]]));; | |
let FORMSUBST_FV = prove | |
(`!p i. FV(formsubst i p) = {x | ?y. y IN FV(p) /\ x IN FVT(i y)}`, | |
REWRITE_TAC[FORMSUBST_PROPERTIES]);; | |
let HOLDS_FORMSUBST = prove | |
(`!p i v. holds v (formsubst i p) <=> holds (termval v o i) p`, | |
REWRITE_TAC[FORMSUBST_PROPERTIES]);; | |
let FORMSUBST_EQ = prove | |
(`!p i j. (!x. x IN FV(p) ==> (i(x) = j(x))) | |
==> (formsubst i p = formsubst j p)`, | |
MATCH_MP_TAC form_INDUCT THEN | |
REWRITE_TAC[FV; formsubst; IN_UNION; IN_DELETE] THEN | |
SIMP_TAC[] THEN REWRITE_TAC[CONJ_ASSOC] THEN | |
GEN_REWRITE_TAC I [GSYM CONJ_ASSOC] THEN CONJ_TAC THENL | |
[MESON_TAC[TERMSUBST_EQ]; ALL_TAC] THEN | |
CONJ_TAC THEN MAP_EVERY X_GEN_TAC [`x:num`; `p:form`] THEN | |
(DISCH_TAC THEN MAP_EVERY X_GEN_TAC [`i:num->term`; `j:num->term`] THEN | |
DISCH_TAC THEN REWRITE_TAC[LET_DEF; LET_END_DEF; form_INJ] THEN | |
MATCH_MP_TAC(TAUT `a /\ (a ==> b) ==> a /\ b`) THEN SIMP_TAC[] THEN | |
CONJ_TAC THENL | |
[ALL_TAC; | |
DISCH_THEN(K ALL_TAC) THEN FIRST_ASSUM MATCH_MP_TAC THEN | |
REWRITE_TAC[valmod] THEN ASM_SIMP_TAC[]] THEN | |
AP_THM_TAC THEN BINOP_TAC THENL | |
[ASM_MESON_TAC[]; | |
AP_TERM_TAC THEN AP_TERM_TAC THEN FIRST_ASSUM MATCH_MP_TAC THEN | |
REWRITE_TAC[valmod] THEN ASM_MESON_TAC[]]));; | |
let FORMSUBST_TRIV = prove | |
(`!p. formsubst V p = p`, | |
MATCH_MP_TAC form_INDUCT THEN | |
SIMP_TAC[formsubst; TERMSUBST_TRIV] THEN | |
REWRITE_TAC[FVT; IN_SING; FV; IN_DELETE] THEN | |
REPEAT STRIP_TAC THEN COND_CASES_TAC THEN | |
ASM_REWRITE_TAC[LET_DEF; LET_END_DEF; VALMOD_REPEAT] THEN | |
ASM_MESON_TAC[]);; | |
let FORMSUBST_TRIVIAL = prove | |
(`!v p. (!x. x IN FV(p) ==> v x = V x) ==> formsubst v p = p`, | |
MESON_TAC[FORMSUBST_EQ; FORMSUBST_TRIV]);; | |
(* ------------------------------------------------------------------------- *) | |
(* Predicate ensuring that a substitution will not cause variable renaming. *) | |
(* ------------------------------------------------------------------------- *) | |
let safe_for = new_definition | |
`safe_for x v <=> !y. x IN FVT(v y) ==> y = x`;; | |
let SAFE_FOR_V = prove | |
(`!x. safe_for x V`, | |
SIMP_TAC[safe_for; FVT; IN_SING]);; | |
let SAFE_FOR_VALMOD = prove | |
(`!v x y t. safe_for x v /\ (x IN FVT t ==> y = x) | |
==> safe_for x ((y |-> t) v)`, | |
REWRITE_TAC[safe_for; VALMOD] THEN MESON_TAC[]);; | |
let SAFE_FOR_ASSIGN = prove | |
(`!x y t. safe_for x (y |=> t) <=> x IN FVT t ==> y = x`, | |
REWRITE_TAC[safe_for; ASSIGN] THEN MESON_TAC[FVT; IN_SING]);; | |
let FORMSUBST_SAFE_FOR = prove | |
(`(!v x p. safe_for x v | |
==> formsubst v (!! x p) = !!x (formsubst ((x |-> V x) v) p)) /\ | |
(!v x p. safe_for x v | |
==> formsubst v (?? x p) = ??x (formsubst ((x |-> V x) v) p))`, | |
REWRITE_TAC[safe_for; formsubst; LET_DEF; LET_END_DEF; FV] THEN | |
REPEAT STRIP_TAC THEN COND_CASES_TAC THEN REWRITE_TAC[] THEN ASM SET_TAC[]);; | |
(* ------------------------------------------------------------------------- *) | |
(* Quasi-substitution. *) | |
(* ------------------------------------------------------------------------- *) | |
let qsubst = new_definition | |
`qsubst (x,t) p = ??x (V x === t && p)`;; | |
let FV_QSUBST = prove | |
(`!x n p. FV(qsubst (x,t) p) = (FV(p) UNION FVT(t)) DELETE x`, | |
REWRITE_TAC[qsubst; FV; FVT] THEN SET_TAC[]);; | |
let HOLDS_QSUBST = prove | |
(`!v t p v. ~(x IN FVT(t)) | |
==> (holds v (qsubst (x,t) p) <=> | |
holds ((x |-> termval v t) v) p)`, | |
REPEAT STRIP_TAC THEN | |
SUBGOAL_THEN `!v z. termval ((x |-> z) v) t = termval v t` ASSUME_TAC THENL | |
[REWRITE_TAC[valmod] THEN ASM_MESON_TAC[TERMVAL_VALUATION]; | |
ASM_REWRITE_TAC[holds; qsubst; termval; VALMOD_BASIC; UNWIND_THM2]]);; | |
(* ------------------------------------------------------------------------- *) | |
(* The numeral mapping. *) | |
(* ------------------------------------------------------------------------- *) | |
let numeral = new_recursive_definition num_RECURSION | |
`(numeral 0 = Z) /\ | |
(!n. numeral (SUC n) = Suc(numeral n))`;; | |
let TERMVAL_NUMERAL = prove | |
(`!v n. termval v (numeral n) = n`, | |
GEN_TAC THEN INDUCT_TAC THEN ASM_REWRITE_TAC[termval;numeral]);; | |
let FVT_NUMERAL = prove | |
(`!n. FVT(numeral n) = {}`, | |
INDUCT_TAC THEN ASM_REWRITE_TAC[FVT; numeral]);; | |
(* ------------------------------------------------------------------------- *) | |
(* Closed-ness. *) | |
(* ------------------------------------------------------------------------- *) | |
let closed = new_definition | |
`closed p <=> (FV p = {})`;; | |