Datasets:
Tasks:
Text Generation
Modalities:
Text
Sub-tasks:
language-modeling
Languages:
English
Size:
100K - 1M
License:
(* ========================================================================= *) | |
(* Impossibility of Eulerian path for bridges of Koenigsberg. *) | |
(* ========================================================================= *) | |
let edges = new_definition | |
`edges(E:E->bool,V:V->bool,Ter:E->V->bool) = E`;; | |
let vertices = new_definition | |
`vertices(E:E->bool,V:V->bool,Ter:E->V->bool) = V`;; | |
let termini = new_definition | |
`termini(E:E->bool,V:V->bool,Ter:E->V->bool) = Ter`;; | |
(* ------------------------------------------------------------------------- *) | |
(* Definition of an undirected graph. *) | |
(* ------------------------------------------------------------------------- *) | |
let graph = new_definition | |
`graph G <=> | |
!e. e IN edges(G) | |
==> ?a b. a IN vertices(G) /\ b IN vertices(G) /\ | |
termini G e = {a,b}`;; | |
let TERMINI_IN_VERTICES = prove | |
(`!G e v. graph G /\ e IN edges(G) /\ v IN termini G e ==> v IN vertices G`, | |
REWRITE_TAC[graph; EXTENSION; IN_INSERT; NOT_IN_EMPTY] THEN | |
MESON_TAC[]);; | |
(* ------------------------------------------------------------------------- *) | |
(* Connection in a graph. *) | |
(* ------------------------------------------------------------------------- *) | |
let connects = new_definition | |
`connects G e (a,b) <=> termini G e = {a,b}`;; | |
(* ------------------------------------------------------------------------- *) | |
(* Delete an edge in a graph. *) | |
(* ------------------------------------------------------------------------- *) | |
let delete_edge = new_definition | |
`delete_edge e (E,V,Ter) = (E DELETE e,V,Ter)`;; | |
let DELETE_EDGE_CLAUSES = prove | |
(`(!G. edges(delete_edge e G) = (edges G) DELETE e) /\ | |
(!G. vertices(delete_edge e G) = vertices G) /\ | |
(!G. termini(delete_edge e G) = termini G)`, | |
REWRITE_TAC[FORALL_PAIR_THM; delete_edge; edges; vertices; termini]);; | |
let GRAPH_DELETE_EDGE = prove | |
(`!G e. graph G ==> graph(delete_edge e G)`, | |
REWRITE_TAC[graph; DELETE_EDGE_CLAUSES; IN_DELETE] THEN MESON_TAC[]);; | |
(* ------------------------------------------------------------------------- *) | |
(* Local finiteness: set of edges with given endpoint is finite. *) | |
(* ------------------------------------------------------------------------- *) | |
let locally_finite = new_definition | |
`locally_finite G <=> | |
!v. v IN vertices(G) ==> FINITE {e | e IN edges G /\ v IN termini G e}`;; | |
(* ------------------------------------------------------------------------- *) | |
(* Degree of a vertex. *) | |
(* ------------------------------------------------------------------------- *) | |
let localdegree = new_definition | |
`localdegree G v e = | |
if termini G e = {v} then 2 | |
else if v IN termini G e then 1 | |
else 0`;; | |
let degree = new_definition | |
`degree G v = nsum {e | e IN edges G /\ v IN termini G e} (localdegree G v)`;; | |
let DEGREE_DELETE_EDGE = prove | |
(`!G e:E v:V. | |
graph G /\ locally_finite G /\ e IN edges(G) | |
==> degree G v = | |
if termini G e = {v} then degree (delete_edge e G) v + 2 | |
else if v IN termini G e then degree (delete_edge e G) v + 1 | |
else degree (delete_edge e G) v`, | |
REPEAT STRIP_TAC THEN | |
REWRITE_TAC[degree; DELETE_EDGE_CLAUSES; IN_DELETE] THEN | |
SUBGOAL_THEN | |
`{e:E | e IN edges G /\ (v:V) IN termini G e} = | |
if v IN termini G e | |
then e INSERT {e' | (e' IN edges G /\ ~(e' = e)) /\ v IN termini G e'} | |
else {e' | (e' IN edges G /\ ~(e' = e)) /\ v IN termini G e'}` | |
SUBST1_TAC THENL | |
[REWRITE_TAC[EXTENSION] THEN GEN_TAC THEN COND_CASES_TAC THEN | |
ASM_REWRITE_TAC[IN_ELIM_THM; IN_INSERT] THEN | |
ASM_MESON_TAC[]; | |
ALL_TAC] THEN | |
ASM_CASES_TAC `(v:V) IN termini G (e:E)` THEN ASM_REWRITE_TAC[] THENL | |
[ALL_TAC; | |
COND_CASES_TAC THENL [ASM_MESON_TAC[IN_SING; EXTENSION]; ALL_TAC] THEN | |
MATCH_MP_TAC NSUM_EQ THEN REWRITE_TAC[IN_ELIM_THM; localdegree] THEN | |
REWRITE_TAC[DELETE_EDGE_CLAUSES]] THEN | |
SUBGOAL_THEN | |
`FINITE {e':E | (e' IN edges G /\ ~(e' = e)) /\ (v:V) IN termini G e'}` | |
(fun th -> SIMP_TAC[NSUM_CLAUSES; th]) | |
THENL | |
[MATCH_MP_TAC FINITE_SUBSET THEN | |
EXISTS_TAC `{e:E | e IN edges G /\ (v:V) IN termini G e}` THEN | |
SIMP_TAC[IN_ELIM_THM; SUBSET] THEN | |
ASM_MESON_TAC[locally_finite; TERMINI_IN_VERTICES]; | |
ALL_TAC] THEN | |
REWRITE_TAC[IN_ELIM_THM] THEN ASM_REWRITE_TAC[localdegree] THEN | |
SUBGOAL_THEN | |
`nsum {e':E | (e' IN edges G /\ ~(e' = e)) /\ (v:V) IN termini G e'} | |
(localdegree (delete_edge e G) v) = | |
nsum {e' | (e' IN edges G /\ ~(e' = e)) /\ v IN termini G e'} | |
(localdegree G v)` | |
SUBST1_TAC THENL | |
[ALL_TAC; COND_CASES_TAC THEN ASM_REWRITE_TAC[] THEN ARITH_TAC] THEN | |
MATCH_MP_TAC NSUM_EQ THEN SIMP_TAC[localdegree; DELETE_EDGE_CLAUSES]);; | |
(* ------------------------------------------------------------------------- *) | |
(* Definition of Eulerian path. *) | |
(* ------------------------------------------------------------------------- *) | |
let eulerian_RULES,eulerian_INDUCT,eulerian_CASES = new_inductive_definition | |
`(!G a. a IN vertices G /\ edges G = {} ==> eulerian G [] (a,a)) /\ | |
(!G a b c e es. e IN edges(G) /\ connects G e (a,b) /\ | |
eulerian (delete_edge e G) es (b,c) | |
==> eulerian G (CONS e es) (a,c))`;; | |
let EULERIAN_FINITE = prove | |
(`!G es ab. eulerian G es ab ==> FINITE (edges G)`, | |
MATCH_MP_TAC eulerian_INDUCT THEN | |
SIMP_TAC[DELETE_EDGE_CLAUSES; FINITE_DELETE; FINITE_RULES]);; | |
(* ------------------------------------------------------------------------- *) | |
(* The main result. *) | |
(* ------------------------------------------------------------------------- *) | |
let EULERIAN_ODD_LEMMA = prove | |
(`!G:(E->bool)#(V->bool)#(E->V->bool) es ab. | |
eulerian G es ab | |
==> graph G | |
==> FINITE(edges G) /\ | |
!v. v IN vertices G | |
==> (ODD(degree G v) <=> | |
~(FST ab = SND ab) /\ (v = FST ab \/ v = SND ab))`, | |
MATCH_MP_TAC eulerian_INDUCT THEN CONJ_TAC THENL | |
[SIMP_TAC[degree; NOT_IN_EMPTY; SET_RULE `{x | F} = {}`] THEN | |
SIMP_TAC[NSUM_CLAUSES; FINITE_RULES; ARITH]; | |
ALL_TAC] THEN | |
SIMP_TAC[GRAPH_DELETE_EDGE; FINITE_DELETE; DELETE_EDGE_CLAUSES] THEN | |
REPEAT GEN_TAC THEN | |
DISCH_THEN(fun th -> DISCH_TAC THEN MP_TAC th) THEN | |
ASM_SIMP_TAC[GRAPH_DELETE_EDGE] THEN STRIP_TAC THEN | |
X_GEN_TAC `v:V` THEN DISCH_TAC THEN | |
MP_TAC(ISPECL [`G:(E->bool)#(V->bool)#(E->V->bool)`; `e:E`; `v:V`] | |
DEGREE_DELETE_EDGE) THEN | |
ANTS_TAC THENL | |
[ASM_REWRITE_TAC[locally_finite] THEN GEN_TAC THEN DISCH_TAC THEN | |
MATCH_MP_TAC FINITE_SUBSET THEN | |
EXISTS_TAC `edges(G:(E->bool)#(V->bool)#(E->V->bool))` THEN | |
ASM_SIMP_TAC[SUBSET; IN_ELIM_THM]; | |
ALL_TAC] THEN | |
DISCH_THEN SUBST1_TAC THEN | |
MP_TAC(ISPECL [`G:(E->bool)#(V->bool)#(E->V->bool)`; `e:E`] | |
TERMINI_IN_VERTICES) THEN | |
ASM_REWRITE_TAC[] THEN | |
FIRST_X_ASSUM(MP_TAC o GEN_REWRITE_RULE I [connects]) THEN | |
DISCH_THEN SUBST1_TAC THEN REWRITE_TAC[IN_INSERT; NOT_IN_EMPTY] THEN | |
ASM_CASES_TAC `b:V = a` THEN ASM_REWRITE_TAC[] THENL | |
[REWRITE_TAC[SET_RULE `{a,a} = {v} <=> v = a`] THEN | |
COND_CASES_TAC THEN ASM_SIMP_TAC[ODD_ADD; ARITH]; | |
ALL_TAC] THEN | |
ASM_REWRITE_TAC[SET_RULE `{a,b} = {v} <=> a = b /\ a = v`] THEN | |
COND_CASES_TAC THEN ASM_SIMP_TAC[ODD_ADD; ARITH] THEN ASM_MESON_TAC[]);; | |
let EULERIAN_ODD = prove | |
(`!G es a b. | |
graph G /\ eulerian G es (a,b) | |
==> !v. v IN vertices G | |
==> (ODD(degree G v) <=> ~(a = b) /\ (v = a \/ v = b))`, | |
REPEAT GEN_TAC THEN DISCH_THEN(CONJUNCTS_THEN2 ASSUME_TAC MP_TAC) THEN | |
DISCH_THEN(MP_TAC o MATCH_MP EULERIAN_ODD_LEMMA) THEN | |
ASM_SIMP_TAC[FST; SND]);; | |
(* ------------------------------------------------------------------------- *) | |
(* Now the actual Koenigsberg configuration. *) | |
(* ------------------------------------------------------------------------- *) | |
let KOENIGSBERG = prove | |
(`!G. vertices(G) = {0,1,2,3} /\ | |
edges(G) = {10,20,30,40,50,60,70} /\ | |
termini G (10) = {0,1} /\ | |
termini G (20) = {0,2} /\ | |
termini G (30) = {0,3} /\ | |
termini G (40) = {1,2} /\ | |
termini G (50) = {1,2} /\ | |
termini G (60) = {2,3} /\ | |
termini G (70) = {2,3} | |
==> ~(?es a b. eulerian G es (a,b))`, | |
GEN_TAC THEN STRIP_TAC THEN | |
MP_TAC(ISPEC `G:(num->bool)#(num->bool)#(num->num->bool)` EULERIAN_ODD) THEN | |
REWRITE_TAC[NOT_EXISTS_THM] THEN | |
REPEAT(MATCH_MP_TAC MONO_FORALL THEN GEN_TAC) THEN | |
DISCH_THEN(fun th -> DISCH_TAC THEN MP_TAC th) THEN ANTS_TAC THENL | |
[ASM_REWRITE_TAC[graph] THEN GEN_TAC THEN | |
REWRITE_TAC[IN_INSERT; NOT_IN_EMPTY] THEN STRIP_TAC THEN | |
ASM_REWRITE_TAC[SET_RULE | |
`{a,b} = {x,y} <=> a = x /\ b = y \/ a = y /\ b = x`] THEN | |
MESON_TAC[]; | |
ALL_TAC] THEN | |
ASM_REWRITE_TAC[IN_INSERT; NOT_IN_EMPTY] THEN | |
SIMP_TAC[TAUT `a \/ b ==> c <=> (a ==> c) /\ (b ==> c)`] THEN | |
ASM_REWRITE_TAC[degree; edges] THEN | |
SIMP_TAC[TAUT `a IN s /\ k IN t <=> ~(a IN s ==> ~(k IN t))`] THEN | |
ASM_REWRITE_TAC[IN_INSERT; NOT_IN_EMPTY] THEN | |
SIMP_TAC[TAUT `a \/ b ==> c <=> (a ==> c) /\ (b ==> c)`] THEN | |
ASM_REWRITE_TAC[IN_INSERT; NOT_IN_EMPTY; ARITH] THEN | |
REWRITE_TAC[DE_MORGAN_THM] THEN | |
REWRITE_TAC[SET_RULE `{x | x = a \/ P(x)} = a INSERT {x | P(x)}`] THEN | |
REWRITE_TAC[SET_RULE `{x | x = a} = {a}`] THEN | |
SIMP_TAC[NSUM_CLAUSES; FINITE_INSERT; FINITE_EMPTY] THEN | |
REWRITE_TAC[IN_INSERT; NOT_IN_EMPTY; ARITH] THEN | |
ASM_REWRITE_TAC[localdegree; IN_INSERT; NOT_IN_EMPTY; ARITH] THEN | |
REWRITE_TAC[SET_RULE `{a,b} = {x} <=> x = a /\ a = b`] THEN | |
DISCH_THEN(fun th -> | |
MP_TAC(SPEC `0` th) THEN MP_TAC(SPEC `1` th) THEN | |
MP_TAC(SPEC `2` th) THEN MP_TAC(SPEC `3` th)) THEN | |
REWRITE_TAC[ARITH] THEN ARITH_TAC);; | |
(****** | |
Maybe for completeness I should show the contrary: existence of Eulerian | |
circuit/walk if we do have the right properties, assuming the graph is | |
connected; cf: | |
http://math.arizona.edu/~lagatta/class/fa05/m105/graphtheorynotes.pdf | |
*****) | |