Datasets:

Modalities:
Text
Languages:
English
Libraries:
Datasets
License:
proof-pile / formal /hol /100 /konigsberg.ml
Zhangir Azerbayev
squashed?
4365a98
raw
history blame
10.3 kB
(* ========================================================================= *)
(* Impossibility of Eulerian path for bridges of Koenigsberg. *)
(* ========================================================================= *)
let edges = new_definition
`edges(E:E->bool,V:V->bool,Ter:E->V->bool) = E`;;
let vertices = new_definition
`vertices(E:E->bool,V:V->bool,Ter:E->V->bool) = V`;;
let termini = new_definition
`termini(E:E->bool,V:V->bool,Ter:E->V->bool) = Ter`;;
(* ------------------------------------------------------------------------- *)
(* Definition of an undirected graph. *)
(* ------------------------------------------------------------------------- *)
let graph = new_definition
`graph G <=>
!e. e IN edges(G)
==> ?a b. a IN vertices(G) /\ b IN vertices(G) /\
termini G e = {a,b}`;;
let TERMINI_IN_VERTICES = prove
(`!G e v. graph G /\ e IN edges(G) /\ v IN termini G e ==> v IN vertices G`,
REWRITE_TAC[graph; EXTENSION; IN_INSERT; NOT_IN_EMPTY] THEN
MESON_TAC[]);;
(* ------------------------------------------------------------------------- *)
(* Connection in a graph. *)
(* ------------------------------------------------------------------------- *)
let connects = new_definition
`connects G e (a,b) <=> termini G e = {a,b}`;;
(* ------------------------------------------------------------------------- *)
(* Delete an edge in a graph. *)
(* ------------------------------------------------------------------------- *)
let delete_edge = new_definition
`delete_edge e (E,V,Ter) = (E DELETE e,V,Ter)`;;
let DELETE_EDGE_CLAUSES = prove
(`(!G. edges(delete_edge e G) = (edges G) DELETE e) /\
(!G. vertices(delete_edge e G) = vertices G) /\
(!G. termini(delete_edge e G) = termini G)`,
REWRITE_TAC[FORALL_PAIR_THM; delete_edge; edges; vertices; termini]);;
let GRAPH_DELETE_EDGE = prove
(`!G e. graph G ==> graph(delete_edge e G)`,
REWRITE_TAC[graph; DELETE_EDGE_CLAUSES; IN_DELETE] THEN MESON_TAC[]);;
(* ------------------------------------------------------------------------- *)
(* Local finiteness: set of edges with given endpoint is finite. *)
(* ------------------------------------------------------------------------- *)
let locally_finite = new_definition
`locally_finite G <=>
!v. v IN vertices(G) ==> FINITE {e | e IN edges G /\ v IN termini G e}`;;
(* ------------------------------------------------------------------------- *)
(* Degree of a vertex. *)
(* ------------------------------------------------------------------------- *)
let localdegree = new_definition
`localdegree G v e =
if termini G e = {v} then 2
else if v IN termini G e then 1
else 0`;;
let degree = new_definition
`degree G v = nsum {e | e IN edges G /\ v IN termini G e} (localdegree G v)`;;
let DEGREE_DELETE_EDGE = prove
(`!G e:E v:V.
graph G /\ locally_finite G /\ e IN edges(G)
==> degree G v =
if termini G e = {v} then degree (delete_edge e G) v + 2
else if v IN termini G e then degree (delete_edge e G) v + 1
else degree (delete_edge e G) v`,
REPEAT STRIP_TAC THEN
REWRITE_TAC[degree; DELETE_EDGE_CLAUSES; IN_DELETE] THEN
SUBGOAL_THEN
`{e:E | e IN edges G /\ (v:V) IN termini G e} =
if v IN termini G e
then e INSERT {e' | (e' IN edges G /\ ~(e' = e)) /\ v IN termini G e'}
else {e' | (e' IN edges G /\ ~(e' = e)) /\ v IN termini G e'}`
SUBST1_TAC THENL
[REWRITE_TAC[EXTENSION] THEN GEN_TAC THEN COND_CASES_TAC THEN
ASM_REWRITE_TAC[IN_ELIM_THM; IN_INSERT] THEN
ASM_MESON_TAC[];
ALL_TAC] THEN
ASM_CASES_TAC `(v:V) IN termini G (e:E)` THEN ASM_REWRITE_TAC[] THENL
[ALL_TAC;
COND_CASES_TAC THENL [ASM_MESON_TAC[IN_SING; EXTENSION]; ALL_TAC] THEN
MATCH_MP_TAC NSUM_EQ THEN REWRITE_TAC[IN_ELIM_THM; localdegree] THEN
REWRITE_TAC[DELETE_EDGE_CLAUSES]] THEN
SUBGOAL_THEN
`FINITE {e':E | (e' IN edges G /\ ~(e' = e)) /\ (v:V) IN termini G e'}`
(fun th -> SIMP_TAC[NSUM_CLAUSES; th])
THENL
[MATCH_MP_TAC FINITE_SUBSET THEN
EXISTS_TAC `{e:E | e IN edges G /\ (v:V) IN termini G e}` THEN
SIMP_TAC[IN_ELIM_THM; SUBSET] THEN
ASM_MESON_TAC[locally_finite; TERMINI_IN_VERTICES];
ALL_TAC] THEN
REWRITE_TAC[IN_ELIM_THM] THEN ASM_REWRITE_TAC[localdegree] THEN
SUBGOAL_THEN
`nsum {e':E | (e' IN edges G /\ ~(e' = e)) /\ (v:V) IN termini G e'}
(localdegree (delete_edge e G) v) =
nsum {e' | (e' IN edges G /\ ~(e' = e)) /\ v IN termini G e'}
(localdegree G v)`
SUBST1_TAC THENL
[ALL_TAC; COND_CASES_TAC THEN ASM_REWRITE_TAC[] THEN ARITH_TAC] THEN
MATCH_MP_TAC NSUM_EQ THEN SIMP_TAC[localdegree; DELETE_EDGE_CLAUSES]);;
(* ------------------------------------------------------------------------- *)
(* Definition of Eulerian path. *)
(* ------------------------------------------------------------------------- *)
let eulerian_RULES,eulerian_INDUCT,eulerian_CASES = new_inductive_definition
`(!G a. a IN vertices G /\ edges G = {} ==> eulerian G [] (a,a)) /\
(!G a b c e es. e IN edges(G) /\ connects G e (a,b) /\
eulerian (delete_edge e G) es (b,c)
==> eulerian G (CONS e es) (a,c))`;;
let EULERIAN_FINITE = prove
(`!G es ab. eulerian G es ab ==> FINITE (edges G)`,
MATCH_MP_TAC eulerian_INDUCT THEN
SIMP_TAC[DELETE_EDGE_CLAUSES; FINITE_DELETE; FINITE_RULES]);;
(* ------------------------------------------------------------------------- *)
(* The main result. *)
(* ------------------------------------------------------------------------- *)
let EULERIAN_ODD_LEMMA = prove
(`!G:(E->bool)#(V->bool)#(E->V->bool) es ab.
eulerian G es ab
==> graph G
==> FINITE(edges G) /\
!v. v IN vertices G
==> (ODD(degree G v) <=>
~(FST ab = SND ab) /\ (v = FST ab \/ v = SND ab))`,
MATCH_MP_TAC eulerian_INDUCT THEN CONJ_TAC THENL
[SIMP_TAC[degree; NOT_IN_EMPTY; SET_RULE `{x | F} = {}`] THEN
SIMP_TAC[NSUM_CLAUSES; FINITE_RULES; ARITH];
ALL_TAC] THEN
SIMP_TAC[GRAPH_DELETE_EDGE; FINITE_DELETE; DELETE_EDGE_CLAUSES] THEN
REPEAT GEN_TAC THEN
DISCH_THEN(fun th -> DISCH_TAC THEN MP_TAC th) THEN
ASM_SIMP_TAC[GRAPH_DELETE_EDGE] THEN STRIP_TAC THEN
X_GEN_TAC `v:V` THEN DISCH_TAC THEN
MP_TAC(ISPECL [`G:(E->bool)#(V->bool)#(E->V->bool)`; `e:E`; `v:V`]
DEGREE_DELETE_EDGE) THEN
ANTS_TAC THENL
[ASM_REWRITE_TAC[locally_finite] THEN GEN_TAC THEN DISCH_TAC THEN
MATCH_MP_TAC FINITE_SUBSET THEN
EXISTS_TAC `edges(G:(E->bool)#(V->bool)#(E->V->bool))` THEN
ASM_SIMP_TAC[SUBSET; IN_ELIM_THM];
ALL_TAC] THEN
DISCH_THEN SUBST1_TAC THEN
MP_TAC(ISPECL [`G:(E->bool)#(V->bool)#(E->V->bool)`; `e:E`]
TERMINI_IN_VERTICES) THEN
ASM_REWRITE_TAC[] THEN
FIRST_X_ASSUM(MP_TAC o GEN_REWRITE_RULE I [connects]) THEN
DISCH_THEN SUBST1_TAC THEN REWRITE_TAC[IN_INSERT; NOT_IN_EMPTY] THEN
ASM_CASES_TAC `b:V = a` THEN ASM_REWRITE_TAC[] THENL
[REWRITE_TAC[SET_RULE `{a,a} = {v} <=> v = a`] THEN
COND_CASES_TAC THEN ASM_SIMP_TAC[ODD_ADD; ARITH];
ALL_TAC] THEN
ASM_REWRITE_TAC[SET_RULE `{a,b} = {v} <=> a = b /\ a = v`] THEN
COND_CASES_TAC THEN ASM_SIMP_TAC[ODD_ADD; ARITH] THEN ASM_MESON_TAC[]);;
let EULERIAN_ODD = prove
(`!G es a b.
graph G /\ eulerian G es (a,b)
==> !v. v IN vertices G
==> (ODD(degree G v) <=> ~(a = b) /\ (v = a \/ v = b))`,
REPEAT GEN_TAC THEN DISCH_THEN(CONJUNCTS_THEN2 ASSUME_TAC MP_TAC) THEN
DISCH_THEN(MP_TAC o MATCH_MP EULERIAN_ODD_LEMMA) THEN
ASM_SIMP_TAC[FST; SND]);;
(* ------------------------------------------------------------------------- *)
(* Now the actual Koenigsberg configuration. *)
(* ------------------------------------------------------------------------- *)
let KOENIGSBERG = prove
(`!G. vertices(G) = {0,1,2,3} /\
edges(G) = {10,20,30,40,50,60,70} /\
termini G (10) = {0,1} /\
termini G (20) = {0,2} /\
termini G (30) = {0,3} /\
termini G (40) = {1,2} /\
termini G (50) = {1,2} /\
termini G (60) = {2,3} /\
termini G (70) = {2,3}
==> ~(?es a b. eulerian G es (a,b))`,
GEN_TAC THEN STRIP_TAC THEN
MP_TAC(ISPEC `G:(num->bool)#(num->bool)#(num->num->bool)` EULERIAN_ODD) THEN
REWRITE_TAC[NOT_EXISTS_THM] THEN
REPEAT(MATCH_MP_TAC MONO_FORALL THEN GEN_TAC) THEN
DISCH_THEN(fun th -> DISCH_TAC THEN MP_TAC th) THEN ANTS_TAC THENL
[ASM_REWRITE_TAC[graph] THEN GEN_TAC THEN
REWRITE_TAC[IN_INSERT; NOT_IN_EMPTY] THEN STRIP_TAC THEN
ASM_REWRITE_TAC[SET_RULE
`{a,b} = {x,y} <=> a = x /\ b = y \/ a = y /\ b = x`] THEN
MESON_TAC[];
ALL_TAC] THEN
ASM_REWRITE_TAC[IN_INSERT; NOT_IN_EMPTY] THEN
SIMP_TAC[TAUT `a \/ b ==> c <=> (a ==> c) /\ (b ==> c)`] THEN
ASM_REWRITE_TAC[degree; edges] THEN
SIMP_TAC[TAUT `a IN s /\ k IN t <=> ~(a IN s ==> ~(k IN t))`] THEN
ASM_REWRITE_TAC[IN_INSERT; NOT_IN_EMPTY] THEN
SIMP_TAC[TAUT `a \/ b ==> c <=> (a ==> c) /\ (b ==> c)`] THEN
ASM_REWRITE_TAC[IN_INSERT; NOT_IN_EMPTY; ARITH] THEN
REWRITE_TAC[DE_MORGAN_THM] THEN
REWRITE_TAC[SET_RULE `{x | x = a \/ P(x)} = a INSERT {x | P(x)}`] THEN
REWRITE_TAC[SET_RULE `{x | x = a} = {a}`] THEN
SIMP_TAC[NSUM_CLAUSES; FINITE_INSERT; FINITE_EMPTY] THEN
REWRITE_TAC[IN_INSERT; NOT_IN_EMPTY; ARITH] THEN
ASM_REWRITE_TAC[localdegree; IN_INSERT; NOT_IN_EMPTY; ARITH] THEN
REWRITE_TAC[SET_RULE `{a,b} = {x} <=> x = a /\ a = b`] THEN
DISCH_THEN(fun th ->
MP_TAC(SPEC `0` th) THEN MP_TAC(SPEC `1` th) THEN
MP_TAC(SPEC `2` th) THEN MP_TAC(SPEC `3` th)) THEN
REWRITE_TAC[ARITH] THEN ARITH_TAC);;
(******
Maybe for completeness I should show the contrary: existence of Eulerian
circuit/walk if we do have the right properties, assuming the graph is
connected; cf:
http://math.arizona.edu/~lagatta/class/fa05/m105/graphtheorynotes.pdf
*****)