Datasets:
Tasks:
Text Generation
Modalities:
Text
Sub-tasks:
language-modeling
Languages:
English
Size:
100K - 1M
License:
section \<open>Straight Line Programs\<close> | |
theory Straight_Line_Program | |
imports | |
Floatarith_Expression | |
Deriving.Derive | |
"HOL-Library.Monad_Syntax" | |
"HOL-Library.RBT_Mapping" | |
begin | |
unbundle floatarith_notation | |
derive (linorder) compare_order float | |
derive linorder floatarith | |
subsection \<open>Definition\<close> | |
type_synonym slp = "floatarith list" | |
primrec interpret_slp::"slp \<Rightarrow> real list \<Rightarrow> real list" where | |
"interpret_slp [] = (\<lambda>xs. xs)" | |
| "interpret_slp (ea # eas) = (\<lambda>xs. interpret_slp eas (interpret_floatarith ea xs#xs))" | |
subsection \<open>Reification as straight line program (with common subexpression elimination)\<close> | |
definition "slp_index vs i = (length vs - Suc i)" | |
definition "slp_index_lookup vs M a = slp_index vs (the (Mapping.lookup M a))" | |
definition | |
"slp_of_fa_bin Binop a b M slp M2 slp2 = | |
(case Mapping.lookup M (Binop a b) of | |
Some i \<Rightarrow> (Mapping.update (Binop a b) (length slp) M, slp@[Var (slp_index slp i)]) | |
| None \<Rightarrow> (Mapping.update (Binop a b) (length slp2) M2, | |
slp2@[Binop (Var (slp_index_lookup slp2 M2 a)) (Var (slp_index_lookup slp2 M2 b))]))" | |
definition | |
"slp_of_fa_un Unop a M slp M1 slp1 = | |
(case Mapping.lookup M (Unop a) of | |
Some i \<Rightarrow> (Mapping.update (Unop a) (length slp) M, slp@[Var (slp_index slp i)]) | |
| None \<Rightarrow> (Mapping.update (Unop a) (length slp1) M1, | |
slp1@[Unop (Var (slp_index_lookup slp1 M1 a))]))" | |
definition | |
"slp_of_fa_cnst Const Const' M vs = | |
(Mapping.update Const (length vs) M, | |
vs @ [case Mapping.lookup M Const of Some i \<Rightarrow> Var (slp_index vs i) | None \<Rightarrow> Const'])" | |
fun slp_of_fa :: "floatarith \<Rightarrow> (floatarith, nat) mapping \<Rightarrow> floatarith list \<Rightarrow> | |
((floatarith, nat) mapping \<times> floatarith list)" where | |
"slp_of_fa (Add a b) M slp = | |
(let (M1, slp1) = slp_of_fa a M slp; (M2, slp2) = slp_of_fa b M1 slp1 in | |
slp_of_fa_bin Add a b M slp M2 slp2)" | |
| "slp_of_fa (Mult a b) M slp = | |
(let (M1, slp1) = slp_of_fa a M slp; (M2, slp2) = slp_of_fa b M1 slp1 in | |
slp_of_fa_bin Mult a b M slp M2 slp2)" | |
| "slp_of_fa (Min a b) M slp = | |
(let (M1, slp1) = slp_of_fa a M slp; (M2, slp2) = slp_of_fa b M1 slp1 in | |
slp_of_fa_bin Min a b M slp M2 slp2)" | |
| "slp_of_fa (Max a b) M slp = | |
(let (M1, slp1) = slp_of_fa a M slp; (M2, slp2) = slp_of_fa b M1 slp1 in | |
slp_of_fa_bin Max a b M slp M2 slp2)" | |
| "slp_of_fa (Powr a b) M slp = | |
(let (M1, slp1) = slp_of_fa a M slp; (M2, slp2) = slp_of_fa b M1 slp1 in | |
slp_of_fa_bin Powr a b M slp M2 slp2)" | |
| "slp_of_fa (Inverse a) M slp = | |
(let (M1, slp1) = slp_of_fa a M slp in slp_of_fa_un Inverse a M slp M1 slp1)" | |
| "slp_of_fa (Cos a) M slp = | |
(let (M1, slp1) = slp_of_fa a M slp in slp_of_fa_un Cos a M slp M1 slp1)" | |
| "slp_of_fa (Arctan a) M slp = | |
(let (M1, slp1) = slp_of_fa a M slp in slp_of_fa_un Arctan a M slp M1 slp1)" | |
| "slp_of_fa (Abs a) M slp = | |
(let (M1, slp1) = slp_of_fa a M slp in slp_of_fa_un Abs a M slp M1 slp1)" | |
| "slp_of_fa (Sqrt a) M slp = | |
(let (M1, slp1) = slp_of_fa a M slp in slp_of_fa_un Sqrt a M slp M1 slp1)" | |
| "slp_of_fa (Exp a) M slp = | |
(let (M1, slp1) = slp_of_fa a M slp in slp_of_fa_un Exp a M slp M1 slp1)" | |
| "slp_of_fa (Ln a) M slp = | |
(let (M1, slp1) = slp_of_fa a M slp in slp_of_fa_un Ln a M slp M1 slp1)" | |
| "slp_of_fa (Minus a) M slp = | |
(let (M1, slp1) = slp_of_fa a M slp in slp_of_fa_un Minus a M slp M1 slp1)" | |
| "slp_of_fa (Floor a) M slp = | |
(let (M1, slp1) = slp_of_fa a M slp in slp_of_fa_un Floor a M slp M1 slp1)" | |
| "slp_of_fa (Power a n) M slp = | |
(let (M1, slp1) = slp_of_fa a M slp in slp_of_fa_un (\<lambda>a. Power a n) a M slp M1 slp1)" | |
| "slp_of_fa Pi M slp = slp_of_fa_cnst Pi Pi M slp" | |
| "slp_of_fa (Var v) M slp = slp_of_fa_cnst (Var v) (Var (v + length slp)) M slp" | |
| "slp_of_fa (Num n) M slp = slp_of_fa_cnst (Num n) (Num n) M slp" | |
lemma interpret_slp_snoc[simp]: | |
"interpret_slp (slp @ [fa]) xs = interpret_floatarith fa (interpret_slp slp xs)#interpret_slp slp xs" | |
by (induction slp arbitrary: fa xs) auto | |
lemma | |
binop_slp_of_fa_induction_step: | |
assumes | |
Binop_IH1: | |
"\<And>M slp M' slp'. slp_of_fa fa1 M slp = (M', slp') \<Longrightarrow> | |
(\<And>f. f \<in> Mapping.keys M \<Longrightarrow> subterms f \<subseteq> Mapping.keys M) \<Longrightarrow> | |
(\<And>f. f \<in> Mapping.keys M \<Longrightarrow> the (Mapping.lookup M f) < length slp) \<Longrightarrow> | |
(\<And>f. f \<in> Mapping.keys M \<Longrightarrow> interpret_slp slp xs ! slp_index_lookup slp M f = interpret_floatarith f xs) \<Longrightarrow> | |
subterms fa1 \<subseteq> Mapping.keys M' \<and> | |
Mapping.keys M \<subseteq> Mapping.keys M' \<and> | |
(\<forall>f\<in>Mapping.keys M'. subterms f \<subseteq> Mapping.keys M' \<and> | |
the (Mapping.lookup M' f) < length slp' \<and> | |
interpret_slp slp' xs ! slp_index_lookup slp' M' f = interpret_floatarith f xs)" | |
and | |
Binop_IH2: | |
"\<And>M slp M' slp'. slp_of_fa fa2 M slp = (M', slp') \<Longrightarrow> | |
(\<And>f. f \<in> Mapping.keys M \<Longrightarrow> subterms f \<subseteq> Mapping.keys M) \<Longrightarrow> | |
(\<And>f. f \<in> Mapping.keys M \<Longrightarrow> the (Mapping.lookup M f) < length slp) \<Longrightarrow> | |
(\<And>f. f \<in> Mapping.keys M \<Longrightarrow> interpret_slp slp xs ! slp_index_lookup slp M f = interpret_floatarith f xs) \<Longrightarrow> | |
subterms fa2 \<subseteq> Mapping.keys M' \<and> | |
Mapping.keys M \<subseteq> Mapping.keys M' \<and> | |
(\<forall>f\<in>Mapping.keys M'. subterms f \<subseteq> Mapping.keys M' \<and> | |
the (Mapping.lookup M' f) < length slp' \<and> | |
interpret_slp slp' xs ! slp_index_lookup slp' M' f = interpret_floatarith f xs)" | |
and Binop_prems: | |
"(case slp_of_fa fa1 M slp of | |
(M1, slp1) \<Rightarrow> | |
case slp_of_fa fa2 M1 slp1 of (x, xa) \<Rightarrow> slp_of_fa_bin Binop fa1 fa2 M slp x xa) = (M', slp')" | |
"\<And>f. f \<in> Mapping.keys M \<Longrightarrow> subterms f \<subseteq> Mapping.keys M" | |
"\<And>f. f \<in> Mapping.keys M \<Longrightarrow> the (Mapping.lookup M f) < length slp" | |
"\<And>f. f \<in> Mapping.keys M \<Longrightarrow> interpret_slp slp xs ! slp_index_lookup slp M f = interpret_floatarith f xs" | |
assumes subterms_Binop[simp]: | |
"\<And>a b. subterms (Binop a b) = insert (Binop a b) (subterms a \<union> subterms b)" | |
assumes interpret_Binop[simp]: | |
"\<And>a b xs. interpret_floatarith (Binop a b) xs = binop (interpret_floatarith a xs) (interpret_floatarith b xs)" | |
shows "insert (Binop fa1 fa2) (subterms fa1 \<union> subterms fa2) \<subseteq> Mapping.keys M' \<and> | |
Mapping.keys M \<subseteq> Mapping.keys M' \<and> | |
(\<forall>f\<in>Mapping.keys M'. subterms f \<subseteq> Mapping.keys M' \<and> | |
the (Mapping.lookup M' f) < length slp' \<and> | |
interpret_slp slp' xs ! slp_index_lookup slp' M' f = interpret_floatarith f xs)" | |
proof - | |
from Binop_prems | |
obtain M1 slp1 M2 slp2 where *: | |
"slp_of_fa fa1 M slp = (M1, slp1)" | |
"slp_of_fa fa2 M1 slp1 = (M2, slp2)" | |
"slp_of_fa_bin Binop fa1 fa2 M slp M2 slp2 = (M', slp')" | |
by (auto split: prod.splits) | |
from Binop_IH1[OF *(1) Binop_prems(2) Binop_prems(3) Binop_prems(4), simplified] | |
have IH1: | |
"f \<in> subterms fa1 \<Longrightarrow> f \<in> Mapping.keys M1" | |
"f \<in> Mapping.keys M \<Longrightarrow> f \<in> Mapping.keys M1" | |
"f \<in> Mapping.keys M1 \<Longrightarrow> subterms f \<subseteq> Mapping.keys M1" | |
"f \<in> Mapping.keys M1 \<Longrightarrow> the (Mapping.lookup M1 f) < length slp1" | |
"f \<in> Mapping.keys M1 \<Longrightarrow> interpret_slp slp1 xs ! slp_index_lookup slp1 M1 f = interpret_floatarith f xs" | |
for f | |
by (auto simp: subset_iff) | |
from Binop_IH2[OF *(2) IH1(3) IH1(4) IH1(5)] | |
have IH2: | |
"f \<in> subterms fa2 \<Longrightarrow> f \<in> Mapping.keys M2" | |
"f \<in> Mapping.keys M1 \<Longrightarrow> f \<in> Mapping.keys M2" | |
"f \<in> Mapping.keys M2 \<Longrightarrow> subterms f \<subseteq> Mapping.keys M2" | |
"f \<in> Mapping.keys M2 \<Longrightarrow> the (Mapping.lookup M2 f) < length slp2" | |
"f \<in> Mapping.keys M2 \<Longrightarrow> interpret_slp slp2 xs ! slp_index_lookup slp2 M2 f = interpret_floatarith f xs" | |
for f | |
by (auto simp: subset_iff) | |
show ?thesis | |
proof (cases "Mapping.lookup M (Binop fa1 fa2)") | |
case None | |
then have M': "M' = Mapping.update (Binop fa1 fa2) (length slp2) M2" | |
and slp': "slp' = slp2 @ [Binop (Var (slp_index_lookup slp2 M2 fa1)) (Var (slp_index_lookup slp2 M2 fa2))]" | |
using * | |
by (auto simp: slp_of_fa_bin_def) | |
have "Mapping.keys M \<subseteq> Mapping.keys M'" | |
using IH1 IH2 | |
by (auto simp: M') | |
have "Binop fa1 fa2 \<in> Mapping.keys M'" | |
using M' by auto | |
have M'_0: "Mapping.lookup M' (Binop fa1 fa2) = Some (length slp2)" | |
by (auto simp: M' lookup_update) | |
have fa1: "fa1 \<in> Mapping.keys M2" and fa2: "fa2 \<in> Mapping.keys M2" | |
by (force intro: IH2 IH1)+ | |
have rew: "binop (interpret_slp slp2 xs ! slp_index_lookup slp2 M2 fa1) (interpret_slp slp2 xs ! slp_index_lookup slp2 M2 fa2) = | |
binop (interpret_floatarith fa1 xs) (interpret_floatarith fa2 xs)" | |
by (auto simp: IH2 fa1) | |
show ?thesis | |
apply (auto ) | |
subgoal by fact | |
subgoal | |
unfolding M' | |
apply (simp add: ) | |
apply (rule disjI2) | |
apply (rule IH2(2)) | |
apply (rule IH1) apply simp | |
done | |
subgoal | |
unfolding M' | |
apply (simp add: ) | |
apply (rule disjI2) | |
apply (rule IH2) | |
by simp | |
subgoal | |
unfolding M' | |
apply simp | |
apply (rule disjI2) | |
apply (rule IH2(2)) | |
apply (rule IH1(2)) | |
by simp | |
subgoal | |
unfolding M' | |
apply auto | |
apply (simp add: IH1(1) IH2(2)) | |
apply (simp add: IH1(2) IH2(1)) | |
using IH2(3) | |
by auto | |
subgoal for f | |
unfolding M' slp' | |
apply simp | |
apply (auto simp add: lookup_update' rew lookup_map_values slp_index_lookup_def slp_index_def) | |
by (simp add: IH2(4) less_Suc_eq) | |
subgoal for f | |
unfolding M' slp' | |
apply simp | |
apply (subst rew) | |
apply (auto simp add: fa1 lookup_update' rew lookup_map_values slp_index_lookup_def slp_index_def) | |
apply (auto simp add: nth_Cons fa1 lookup_update' rew lookup_map_values slp_index_lookup_def slp_index_def | |
split: nat.splits) | |
using IH2(4) apply fastforce | |
by (metis IH2(4) IH2(5) Suc_diff_Suc Suc_inject slp_index_def slp_index_lookup_def) | |
done | |
next | |
case (Some C) | |
then have M': "M' = Mapping.update (Binop fa1 fa2) (length slp) M" | |
and slp': "slp' = slp @ [Var (slp_index slp C)]" | |
and Binop_keys: "(Binop fa1 fa2) \<in> Mapping.keys M" | |
using * | |
by (auto simp: slp_of_fa_bin_def keys_dom_lookup) | |
have "subterms (Binop fa1 fa2) \<subseteq> Mapping.keys M'" | |
using Binop_keys assms(4) | |
by (force simp: M') | |
moreover | |
have "Mapping.keys M \<subseteq> Mapping.keys M'" | |
using Binop_keys | |
by (auto simp add: M') | |
moreover have "f\<in>Mapping.keys M' \<Longrightarrow> interpret_slp slp' xs ! slp_index_lookup slp' M' f = | |
interpret_floatarith f xs" for f | |
apply (auto simp add: M' lookup_map_values lookup_update' slp' Binop_prems slp_index_def | |
slp_index_lookup_def) | |
apply (metis Binop_keys Some assms(6) interpret_Binop option.sel slp_index_def slp_index_lookup_def) | |
apply (metis Binop_keys Some assms(6) interpret_Binop option.sel slp_index_def slp_index_lookup_def) | |
apply (metis assms(6) slp_index_def slp_index_lookup_def) | |
done | |
moreover have "f\<in>Mapping.keys M' \<Longrightarrow> subterms f \<subseteq> Mapping.keys M'" for f | |
using Binop_keys Some assms(4,6) | |
by (auto simp add: M' lookup_map_values) | |
moreover have "f\<in>Mapping.keys M' \<Longrightarrow> the (Mapping.lookup M' f) < length slp'" for f | |
using Binop_keys Some assms(5,7) IH1 IH2 | |
by (auto simp add: M' lookup_map_values lookup_update' Binop_prems slp' less_SucI) | |
ultimately | |
show ?thesis | |
by auto | |
qed | |
qed | |
lemma | |
unop_slp_of_fa_induction_step: | |
assumes | |
Unop_IH1: | |
"\<And>M slp M' slp'. slp_of_fa fa1 M slp = (M', slp') \<Longrightarrow> | |
(\<And>f. f \<in> Mapping.keys M \<Longrightarrow> subterms f \<subseteq> Mapping.keys M) \<Longrightarrow> | |
(\<And>f. f \<in> Mapping.keys M \<Longrightarrow> the (Mapping.lookup M f) < length slp) \<Longrightarrow> | |
(\<And>f. f \<in> Mapping.keys M \<Longrightarrow> interpret_slp slp xs ! slp_index_lookup slp M f = interpret_floatarith f xs) \<Longrightarrow> | |
subterms fa1 \<subseteq> Mapping.keys M' \<and> | |
Mapping.keys M \<subseteq> Mapping.keys M' \<and> | |
(\<forall>f\<in>Mapping.keys M'. subterms f \<subseteq> Mapping.keys M' \<and> | |
the (Mapping.lookup M' f) < length slp' \<and> | |
interpret_slp slp' xs ! slp_index_lookup slp' M' f = interpret_floatarith f xs)" | |
and Unop_prems: | |
"(case slp_of_fa fa1 M slp of (M1, slp1) \<Rightarrow> slp_of_fa_un Unop fa1 M slp M1 slp1) = (M', slp')" | |
"\<And>f. f \<in> Mapping.keys M \<Longrightarrow> subterms f \<subseteq> Mapping.keys M" | |
"\<And>f. f \<in> Mapping.keys M \<Longrightarrow> the (Mapping.lookup M f) < length slp" | |
"\<And>f. f \<in> Mapping.keys M \<Longrightarrow> interpret_slp slp xs ! slp_index_lookup slp M f = interpret_floatarith f xs" | |
assumes subterms_Unop[simp]: | |
"\<And>a b. subterms (Unop a) = insert (Unop a) (subterms a)" | |
assumes interpret_Unop[simp]: | |
"\<And>a b xs. interpret_floatarith (Unop a) xs = unop (interpret_floatarith a xs)" | |
shows "insert (Unop fa1) (subterms fa1) \<subseteq> Mapping.keys M' \<and> | |
Mapping.keys M \<subseteq> Mapping.keys M' \<and> | |
(\<forall>f\<in>Mapping.keys M'. subterms f \<subseteq> Mapping.keys M' \<and> | |
the (Mapping.lookup M' f) < length slp' \<and> | |
interpret_slp slp' xs ! slp_index_lookup slp' M' f = interpret_floatarith f xs)" | |
proof - | |
from Unop_prems | |
obtain M1 slp1 where *: | |
"slp_of_fa fa1 M slp = (M1, slp1)" | |
"slp_of_fa_un Unop fa1 M slp M1 slp1 = (M', slp')" | |
by (auto split: prod.splits) | |
from Unop_IH1[OF *(1) Unop_prems(2) Unop_prems(3) Unop_prems(4), simplified] | |
have IH1: | |
"f \<in> subterms fa1 \<Longrightarrow> f \<in> Mapping.keys M1" | |
"f \<in> Mapping.keys M \<Longrightarrow> f \<in> Mapping.keys M1" | |
"f \<in> Mapping.keys M1 \<Longrightarrow> subterms f \<subseteq> Mapping.keys M1" | |
"f \<in> Mapping.keys M1 \<Longrightarrow> the (Mapping.lookup M1 f) < length slp1" | |
"f \<in> Mapping.keys M1 \<Longrightarrow> interpret_slp slp1 xs ! slp_index_lookup slp1 M1 f = interpret_floatarith f xs" | |
for f | |
by (auto simp: subset_iff) | |
show ?thesis | |
proof (cases "Mapping.lookup M (Unop fa1)") | |
case None | |
then have M': "M' = Mapping.update (Unop fa1) (length slp1) M1 " | |
and slp': "slp' = slp1 @ [Unop (Var (slp_index_lookup slp1 M1 fa1))]" | |
using * | |
by (auto simp: slp_of_fa_un_def) | |
have "Mapping.keys M \<subseteq> Mapping.keys M'" | |
using IH1 | |
by (auto simp: M') | |
have "Unop fa1 \<in> Mapping.keys M'" | |
using M' by auto | |
have fa1: "fa1 \<in> Mapping.keys M1" | |
by (force intro: IH1)+ | |
have rew: "interpret_slp slp1 xs ! slp_index_lookup slp1 M1 fa1 = interpret_floatarith fa1 xs" | |
by (auto simp: IH1 fa1) | |
show ?thesis | |
apply (auto ) | |
subgoal by fact | |
subgoal | |
unfolding M' | |
apply (simp add: ) | |
apply (rule disjI2) | |
apply (rule IH1) apply simp | |
done | |
subgoal | |
unfolding M' | |
apply (simp add: ) | |
apply (rule disjI2) | |
by (rule IH1) simp | |
subgoal | |
using IH1(3) M' \<open>\<And>x. x \<in> subterms fa1 \<Longrightarrow> x \<in> Mapping.keys M'\<close> by fastforce | |
subgoal for f | |
unfolding M' slp' | |
apply simp | |
apply (auto simp add: lookup_update' rew lookup_map_values) | |
by (simp add: IH1(4) less_SucI) | |
subgoal for f | |
unfolding M' slp' | |
apply simp | |
apply (subst rew) | |
apply (auto simp add: fa1 lookup_update' rew lookup_map_values slp_index_lookup_def slp_index_def) | |
apply (auto simp add: nth_Cons fa1 lookup_update' rew lookup_map_values slp_index_lookup_def slp_index_def | |
split: nat.splits) | |
using IH1(4) apply fastforce | |
by (metis IH1(4) IH1(5) Suc_diff_Suc Suc_inject slp_index_def slp_index_lookup_def) | |
done | |
next | |
case (Some C) | |
then have M': "M' = Mapping.update (Unop fa1) (length slp) M" | |
and slp': "slp' = slp @ [Var (slp_index slp C)]" | |
and Unop_keys: "(Unop fa1) \<in> Mapping.keys M" | |
using * | |
by (auto simp: slp_of_fa_un_def keys_dom_lookup) | |
have "subterms (Unop fa1) \<subseteq> Mapping.keys M'" | |
using Unop_keys assms(3) | |
by (force simp: M') | |
moreover | |
have "Mapping.keys M \<subseteq> Mapping.keys M'" | |
using Unop_keys assms(5) | |
by (force simp: M' IH1) | |
moreover have "f\<in>Mapping.keys M' \<Longrightarrow> interpret_slp slp' xs ! slp_index_lookup slp' M' f = | |
interpret_floatarith f xs" for f | |
apply (auto simp add: M' lookup_map_values lookup_update' slp' Unop_prems slp_index_def slp_index_lookup_def) | |
apply (metis Unop_keys Some assms(5) interpret_Unop option.sel slp_index_def slp_index_lookup_def) | |
apply (metis Unop_keys Some assms(5) interpret_Unop option.sel slp_index_def slp_index_lookup_def) | |
apply (metis assms(5) slp_index_def slp_index_lookup_def) | |
done | |
moreover have "f\<in>Mapping.keys M' \<Longrightarrow> subterms f \<subseteq> Mapping.keys M'" for f | |
using Unop_keys Some assms(3,5) | |
by (auto simp add: M' lookup_map_values) | |
moreover have "f\<in>Mapping.keys M' \<Longrightarrow> the (Mapping.lookup M' f) < length slp'" for f | |
by (auto simp add: M' lookup_map_values lookup_update' slp' Unop_prems IH1 less_SucI) | |
ultimately | |
show ?thesis | |
by auto | |
qed | |
qed | |
lemma | |
cnst_slp_of_fa_induction_step: | |
assumes *: | |
"slp_of_fa_cnst Unop Unop' M slp = (M', slp')" | |
"\<And>f. f \<in> Mapping.keys M \<Longrightarrow> subterms f \<subseteq> Mapping.keys M" | |
"\<And>f. f \<in> Mapping.keys M \<Longrightarrow> the (Mapping.lookup M f) < length slp" | |
"\<And>f. f \<in> Mapping.keys M \<Longrightarrow> interpret_slp slp xs ! slp_index_lookup slp M f = interpret_floatarith f xs" | |
assumes subterms_Unop[simp]: | |
"\<And>a b. subterms (Unop) = {Unop}" | |
assumes interpret_Unop[simp]: | |
"interpret_floatarith Unop xs = unop xs" | |
"interpret_floatarith Unop' (interpret_slp slp xs) = unop xs" | |
assumes ui: "unop (interpret_slp slp xs) = unop xs" | |
shows "{Unop} \<subseteq> Mapping.keys M' \<and> | |
Mapping.keys M \<subseteq> Mapping.keys M' \<and> | |
(\<forall>f\<in>Mapping.keys M'. subterms f \<subseteq> Mapping.keys M' \<and> | |
the (Mapping.lookup M' f) < length slp' \<and> | |
interpret_slp slp' xs ! slp_index_lookup slp' M' f = interpret_floatarith f xs)" | |
proof - | |
show ?thesis | |
proof (cases "Mapping.lookup M Unop") | |
case None | |
then have M': "M' = Mapping.update Unop (length slp) M" | |
and slp': "slp' = slp @ [Unop']" | |
using * | |
by (auto simp: slp_of_fa_cnst_def) | |
have "Mapping.keys M \<subseteq> Mapping.keys M'" | |
by (auto simp: M') | |
have "Unop \<in> Mapping.keys M'" | |
using M' by auto | |
show ?thesis | |
apply (auto ) | |
subgoal by fact | |
subgoal | |
unfolding M' | |
apply (simp add: ) | |
done | |
subgoal | |
unfolding M' | |
apply (simp add: ) | |
using assms by auto | |
subgoal | |
unfolding M' slp' | |
apply simp | |
apply (auto simp add: lookup_update' ui lookup_map_values) | |
using interpret_Unop apply auto[1] | |
by (simp add: assms(3) less_Suc_eq) | |
subgoal for f | |
unfolding M' slp' | |
apply simp | |
apply (auto simp add: lookup_update' ui lookup_map_values slp_index_lookup_def slp_index_def) | |
using interpret_Unop apply auto[1] | |
apply (auto simp: nth_Cons split: nat.splits) | |
using assms(3) leD apply blast | |
by (metis Suc_diff_Suc Suc_inject assms(3) assms(4) slp_index_def slp_index_lookup_def) | |
done | |
next | |
case (Some C) | |
then have M': "M' = Mapping.update Unop (length slp) M" | |
and slp': "slp' = slp @ [Var (slp_index slp C)]" | |
and Unop_keys: "(Unop) \<in> Mapping.keys M" | |
using * | |
by (auto simp: slp_of_fa_cnst_def keys_dom_lookup) | |
have "subterms (Unop) \<subseteq> Mapping.keys M'" | |
using Unop_keys | |
by (fastforce simp: M') | |
moreover | |
have "Mapping.keys M \<subseteq> Mapping.keys M'" | |
using Unop_keys assms(5) | |
by (force simp: M') | |
moreover have "f\<in>Mapping.keys M' \<Longrightarrow> interpret_slp slp' xs ! slp_index_lookup slp' M' f = interpret_floatarith f xs" for f | |
apply (auto simp add: M' lookup_map_values lookup_update' slp' slp_index_lookup_def slp_index_def) | |
apply (metis Some Unop_keys assms(4) interpret_Unop option.sel slp_index_def slp_index_lookup_def) | |
apply (metis Some Unop_keys assms(4) interpret_Unop option.sel slp_index_def slp_index_lookup_def) | |
by (metis Suc_diff_Suc assms(3) assms(4) nth_Cons_Suc slp_index_def slp_index_lookup_def) | |
moreover have "f\<in>Mapping.keys M' \<Longrightarrow> subterms f \<subseteq> Mapping.keys M'" for f | |
using assms by (auto simp add: M' lookup_map_values lookup_update' slp') | |
moreover have "f\<in>Mapping.keys M' \<Longrightarrow> the (Mapping.lookup M' f) < length slp'" for f | |
using assms | |
by (auto simp add: M' lookup_map_values lookup_update' slp' less_SucI) | |
ultimately | |
show ?thesis | |
by auto | |
qed | |
qed | |
lemma interpret_slp_nth: | |
"n \<ge> length slp \<Longrightarrow> interpret_slp slp xs ! n = xs ! (n - length slp)" | |
by (induction slp arbitrary: xs n) auto | |
theorem | |
interpret_slp_of_fa: | |
assumes "slp_of_fa fa M slp = (M', slp')" | |
assumes "\<And>f. f \<in> Mapping.keys M \<Longrightarrow> subterms f \<subseteq> Mapping.keys M" | |
assumes "\<And>f. f \<in> Mapping.keys M \<Longrightarrow> (the (Mapping.lookup M f)) < length slp" | |
assumes "\<And>f. f \<in> Mapping.keys M \<Longrightarrow> interpret_slp slp xs ! slp_index_lookup slp M f = interpret_floatarith f xs" | |
shows "subterms fa \<subseteq> Mapping.keys M' \<and> Mapping.keys M \<subseteq> Mapping.keys M' \<and> | |
(\<forall>f \<in> Mapping.keys M'. | |
subterms f \<subseteq> Mapping.keys M' \<and> | |
the (Mapping.lookup M' f) < length slp' \<and> | |
(interpret_slp slp' xs ! slp_index_lookup slp' M' f = interpret_floatarith f xs))" | |
using assms | |
proof (induction fa arbitrary: M' slp' M slp) | |
case *: (Add fa1 fa2) | |
show ?case | |
unfolding subterms.simps | |
by (rule binop_slp_of_fa_induction_step[OF | |
*[unfolded subterms.simps slp_of_fa.simps Let_def]]) auto | |
next | |
case *: (Mult fa1 fa2) | |
show ?case | |
unfolding subterms.simps | |
by (rule binop_slp_of_fa_induction_step[OF | |
*[unfolded subterms.simps slp_of_fa.simps Let_def]]) auto | |
next | |
case *: (Min fa1 fa2) | |
show ?case | |
unfolding subterms.simps | |
by (rule binop_slp_of_fa_induction_step[OF | |
*[unfolded subterms.simps slp_of_fa.simps Let_def]]) auto | |
next | |
case *: (Max fa1 fa2) | |
show ?case | |
unfolding subterms.simps | |
by (rule binop_slp_of_fa_induction_step[OF | |
*[unfolded subterms.simps slp_of_fa.simps Let_def]]) auto | |
next | |
case *: (Powr fa1 fa2) | |
show ?case | |
unfolding subterms.simps | |
by (rule binop_slp_of_fa_induction_step[OF | |
*[unfolded subterms.simps slp_of_fa.simps Let_def]]) auto | |
next | |
case *: (Minus fa1) | |
show ?case | |
unfolding subterms.simps | |
by (rule unop_slp_of_fa_induction_step[OF | |
*[unfolded subterms.simps slp_of_fa.simps Let_def]]) auto | |
next | |
case *: (Inverse fa1) | |
show ?case | |
unfolding subterms.simps | |
by (rule unop_slp_of_fa_induction_step[OF | |
*[unfolded subterms.simps slp_of_fa.simps Let_def]]) auto | |
next | |
case *: (Arctan fa1) | |
show ?case | |
unfolding subterms.simps | |
by (rule unop_slp_of_fa_induction_step[OF | |
*[unfolded subterms.simps slp_of_fa.simps Let_def]]) auto | |
next | |
case *: (Floor fa1) | |
show ?case | |
unfolding subterms.simps | |
by (rule unop_slp_of_fa_induction_step[OF | |
*[unfolded subterms.simps slp_of_fa.simps Let_def]]) auto | |
next | |
case *: (Cos fa1) | |
show ?case | |
unfolding subterms.simps | |
by (rule unop_slp_of_fa_induction_step[OF | |
*[unfolded subterms.simps slp_of_fa.simps Let_def]]) auto | |
next | |
case *: (Ln fa1) | |
show ?case | |
unfolding subterms.simps | |
by (rule unop_slp_of_fa_induction_step[OF | |
*[unfolded subterms.simps slp_of_fa.simps Let_def]]) auto | |
next | |
case *: (Power fa1) | |
show ?case | |
unfolding subterms.simps | |
by (rule unop_slp_of_fa_induction_step[OF | |
*[unfolded subterms.simps slp_of_fa.simps Let_def]]) auto | |
next | |
case *: (Abs fa1) | |
show ?case | |
unfolding subterms.simps | |
by (rule unop_slp_of_fa_induction_step[OF | |
*[unfolded subterms.simps slp_of_fa.simps Let_def]]) auto | |
next | |
case *: (Sqrt fa1) | |
show ?case | |
unfolding subterms.simps | |
by (rule unop_slp_of_fa_induction_step[OF | |
*[unfolded subterms.simps slp_of_fa.simps Let_def]]) auto | |
next | |
case *: (Exp fa1) | |
show ?case | |
unfolding subterms.simps | |
by (rule unop_slp_of_fa_induction_step[OF | |
*[unfolded subterms.simps slp_of_fa.simps Let_def]]) auto | |
next | |
case *: Pi | |
show ?case | |
unfolding subterms.simps | |
by (rule cnst_slp_of_fa_induction_step[OF | |
*[unfolded subterms.simps slp_of_fa.simps Let_def]]) auto | |
next | |
case *: Num | |
show ?case | |
unfolding subterms.simps | |
by (rule cnst_slp_of_fa_induction_step[OF | |
*[unfolded subterms.simps slp_of_fa.simps Let_def]]) auto | |
next | |
case *: (Var n) | |
show ?case | |
unfolding subterms.simps | |
by (rule cnst_slp_of_fa_induction_step[OF | |
*[unfolded subterms.simps slp_of_fa.simps Let_def]]) | |
(auto simp: interpret_slp_nth) | |
qed | |
primrec slp_of_fas' where | |
"slp_of_fas' [] M slp = (M, slp)" | |
| "slp_of_fas' (fa#fas) M slp = (let (M, slp) = slp_of_fa fa M slp in slp_of_fas' fas M slp)" | |
theorem | |
interpret_slp_of_fas': | |
assumes "slp_of_fas' fas M slp = (M', slp')" | |
assumes "\<And>f. f \<in> Mapping.keys M \<Longrightarrow> subterms f \<subseteq> Mapping.keys M" | |
assumes "\<And>f. f \<in> Mapping.keys M \<Longrightarrow> the (Mapping.lookup M f) < length slp" | |
assumes "\<And>f. f \<in> Mapping.keys M \<Longrightarrow> interpret_slp slp xs ! slp_index_lookup slp M f = interpret_floatarith f xs" | |
shows "\<Union>(subterms ` set fas) \<subseteq> Mapping.keys M' \<and> Mapping.keys M \<subseteq> Mapping.keys M' \<and> | |
(\<forall>f \<in> Mapping.keys M'. subterms f \<subseteq> Mapping.keys M' \<and> | |
(the (Mapping.lookup M' f) < length slp') \<and> | |
(interpret_slp slp' xs ! slp_index_lookup slp' M' f = interpret_floatarith f xs))" | |
using assms | |
proof (induction fas arbitrary: M slp) | |
case Nil then show ?case | |
by auto | |
next | |
case (Cons fa fas) | |
from \<open>slp_of_fas' (fa # fas) M slp = (M', slp')\<close> | |
obtain M1 slp1 where | |
fa: "slp_of_fa fa M slp = (M1, slp1)" | |
and fas: "slp_of_fas' fas M1 slp1 = (M', slp')" | |
by (auto split: prod.splits) | |
have "subterms fa \<subseteq> Mapping.keys M1 \<and> | |
Mapping.keys M \<subseteq> Mapping.keys M1 \<and> | |
(\<forall>f\<in>Mapping.keys M1. subterms f \<subseteq> Mapping.keys M1 \<and> | |
the (Mapping.lookup M1 f) < length slp1 \<and> | |
interpret_slp slp1 xs ! slp_index_lookup slp1 M1 f= interpret_floatarith f xs)" | |
apply (rule interpret_slp_of_fa[OF fa, of xs]) | |
using Cons.prems | |
by (auto split: prod.splits simp: trans_less_add2) | |
moreover | |
then have "(\<Union>a\<in>set fas. subterms a) \<subseteq> Mapping.keys M' \<and> | |
Mapping.keys M1 \<subseteq> Mapping.keys M' \<and> | |
(\<forall>f\<in>Mapping.keys M'. subterms f \<subseteq> Mapping.keys M' \<and> | |
the (Mapping.lookup M' f) < length slp' \<and> | |
interpret_slp slp' xs ! slp_index_lookup slp' M' f = interpret_floatarith f xs)" | |
using Cons.prems | |
by (intro Cons.IH[OF fas]) | |
(auto split: prod.splits simp: trans_less_add2) | |
ultimately | |
show ?case | |
by auto | |
qed | |
definition "slp_of_fas fas = | |
(let | |
(M, slp) = slp_of_fas' fas Mapping.empty []; | |
fasi = map (the o Mapping.lookup M) fas; | |
fasi' = map (\<lambda>(a, b). Var (length slp + a - Suc b)) (zip [0..<length fasi] (rev fasi)) | |
in slp @ fasi')" | |
lemma length_interpret_slp[simp]: | |
"length (interpret_slp slp xs) = length slp + length xs" | |
by (induct slp arbitrary: xs) auto | |
lemma length_interpret_floatariths[simp]: | |
"length (interpret_floatariths slp xs) = length slp" | |
by (induct slp arbitrary: xs) auto | |
lemma interpret_slp_append[simp]: | |
"interpret_slp (slp1 @ slp2) xs = | |
interpret_slp slp2 (interpret_slp slp1 xs)" | |
by (induction slp1 arbitrary: slp2 xs) auto | |
lemma "interpret_slp (map Var [a + 0, b + 1, c + 2, d + 3]) xs = | |
(rev (map (\<lambda>(i, e). xs ! (e - i)) (zip [0..<4] [a + 0, b + 1, c + 2, d + 3])))@xs" | |
by (auto simp: numeral_eq_Suc) | |
lemma aC_eq_aa: "xs @ y # zs = (xs @ [y]) @ zs" | |
by simp | |
lemma | |
interpret_slp_map_Var: | |
assumes "\<And>i. i < length is \<Longrightarrow> is ! i \<ge> i" | |
assumes "\<And>i. i < length is \<Longrightarrow> (is ! i - i) < length xs" | |
shows "interpret_slp (map Var is) xs = | |
(rev (map (\<lambda>(i, e). xs ! (e - i)) (zip [0..<length is] is))) | |
@ | |
xs" | |
using assms | |
proof (induction "is" arbitrary: xs) | |
case Nil | |
then show ?case by simp | |
next | |
case (Cons a "is") | |
show ?case | |
unfolding interpret_slp.simps list.map | |
apply (subst Cons.IH) | |
subgoal using Cons.prems by force | |
subgoal using Cons.prems by force | |
subgoal | |
apply (subst aC_eq_aa) | |
apply (subst rev.simps(2)[symmetric]) | |
apply (rule arg_cong[where f="\<lambda>a. a @ xs"]) | |
apply (rule arg_cong[where f="rev"]) | |
unfolding interpret_floatarith.simps | |
apply auto | |
apply (rule nth_equalityI) | |
apply force | |
apply auto | |
using Cons.prems | |
apply (auto simp: nth_append nth_Cons split: nat.splits) | |
subgoal | |
by (metis Suc_leI le_imp_less_Suc not_le old.nat.simps(5)) | |
subgoal | |
by (simp add: minus_nat.simps(2)) | |
subgoal | |
by (metis Suc_lessI minus_nat.simps(2) old.nat.simps(5)) | |
done | |
done | |
qed | |
theorem slp_of_fas: | |
"take (length fas) (interpret_slp (slp_of_fas fas) xs) = interpret_floatariths fas xs" | |
proof - | |
obtain M slp where Mslp: | |
"slp_of_fas' fas Mapping.empty [] = (M, slp)" | |
using old.prod.exhaust by blast | |
have M: "\<Union>(subterms ` (set fas)) \<subseteq> Mapping.keys M \<and> | |
Mapping.keys (Mapping.empty::(floatarith, nat) mapping) \<subseteq> Mapping.keys M \<and> | |
(\<forall>f\<in>Mapping.keys M. | |
subterms f \<subseteq> Mapping.keys M \<and> | |
the (Mapping.lookup M f) < length slp \<and> | |
interpret_slp slp xs ! slp_index_lookup slp M f = | |
interpret_floatarith f xs)" | |
by (rule interpret_slp_of_fas'[OF Mslp]) auto | |
have map_eq: | |
"map (\<lambda>(a, b). Var (length slp + a - Suc b)) (zip [0..<length fas] (rev (map ((\<lambda>x. the o (Mapping.lookup x)) M) fas))) | |
= map Var (map (\<lambda>(a, b). (length slp + a - Suc b)) (zip [0..<length fas] (rev (map (the \<circ> Mapping.lookup M) fas))))" | |
unfolding split_beta' | |
by (simp add: split_beta') | |
have "take (length fas) | |
(interpret_slp | |
(slp @ | |
map (\<lambda>(a, b). Var (length slp + a - Suc b)) (zip [0..<length fas] (rev (map (((\<lambda>x. the o (Mapping.lookup x))) M) fas)))) | |
xs) = | |
interpret_floatariths fas xs" | |
apply simp | |
unfolding map_eq | |
apply (subst interpret_slp_map_Var) | |
apply (auto simp: rev_nth) | |
subgoal premises prems for i | |
proof - | |
from prems have " (length fas - Suc i) < length fas" using prems by auto | |
then have "fas ! (length fas - Suc i) \<in> set fas" | |
by simp | |
also have "\<dots> \<subseteq> Mapping.keys M" | |
using M by force | |
finally have "fas ! (length fas - Suc i) \<in> Mapping.keys M" . | |
with M | |
show ?thesis | |
by auto | |
qed | |
subgoal premises prems for i | |
proof - | |
from prems have " (length fas - Suc i) < length fas" using prems by auto | |
then have "fas ! (length fas - Suc i) \<in> set fas" | |
by simp | |
also have "\<dots> \<subseteq> Mapping.keys M" | |
using M by force | |
finally have "fas ! (length fas - Suc i) \<in> Mapping.keys M" . | |
with M | |
show ?thesis | |
by auto | |
qed | |
subgoal | |
apply (rule nth_equalityI, auto) | |
subgoal premises prems for i | |
proof - | |
from prems have "fas ! i \<in> set fas" | |
by simp | |
also have "\<dots> \<subseteq> Mapping.keys M" | |
using M by force | |
finally have "fas ! i \<in> Mapping.keys M" . | |
from M[THEN conjunct2, THEN conjunct2, rule_format, OF this] | |
show ?thesis | |
using prems | |
by (auto simp: rev_nth interpret_floatariths_nth slp_index_lookup_def slp_index_def) | |
qed | |
done | |
done | |
then show ?thesis | |
by (auto simp: slp_of_fas_def Let_def Mslp) | |
qed | |
subsection \<open>better code equations for construction of large programs\<close> | |
definition "slp_indexl slpl i = slpl - Suc i" | |
definition "slp_indexl_lookup vsl M a = slp_indexl vsl (the (Mapping.lookup M a))" | |
definition | |
"slp_of_fa_rev_bin Binop a b M slp slpl M2 slp2 slpl2 = | |
(case Mapping.lookup M (Binop a b) of | |
Some i \<Rightarrow> (Mapping.update (Binop a b) (slpl) M, Var (slp_indexl slpl i)#slp, Suc slpl) | |
| None \<Rightarrow> (Mapping.update (Binop a b) (slpl2) M2, | |
Binop (Var (slp_indexl_lookup slpl2 M2 a)) (Var (slp_indexl_lookup slpl2 M2 b))#slp2, | |
Suc slpl2))" | |
definition | |
"slp_of_fa_rev_un Unop a M slp slpl M1 slp1 slpl1 = | |
(case Mapping.lookup M (Unop a) of | |
Some i \<Rightarrow> (Mapping.update (Unop a) (slpl) M, Var (slp_indexl slpl i)#slp, Suc slpl) | |
| None \<Rightarrow> (Mapping.update (Unop a) (slpl1) M1, | |
Unop (Var (slp_indexl_lookup slpl1 M1 a))#slp1, Suc slpl1))" | |
definition | |
"slp_of_fa_rev_cnst Const Const' M vs vsl = | |
(Mapping.update Const vsl M, | |
(case Mapping.lookup M Const of Some i \<Rightarrow> Var (slp_indexl vsl i) | None \<Rightarrow> Const')#vs, Suc vsl)" | |
fun slp_of_fa_rev :: "floatarith \<Rightarrow> (floatarith, nat) mapping \<Rightarrow> floatarith list \<Rightarrow> nat \<Rightarrow> | |
((floatarith, nat) mapping \<times> floatarith list \<times> nat)" where | |
"slp_of_fa_rev (Add a b) M slp slpl = | |
(let (M1, slp1, slpl1) = slp_of_fa_rev a M slp slpl; (M2, slp2, slpl2) = slp_of_fa_rev b M1 slp1 slpl1 in | |
slp_of_fa_rev_bin Add a b M slp slpl M2 slp2 slpl2)" | |
| "slp_of_fa_rev (Mult a b) M slp slpl = | |
(let (M1, slp1, slpl1) = slp_of_fa_rev a M slp slpl; (M2, slp2, slpl2) = slp_of_fa_rev b M1 slp1 slpl1 in | |
slp_of_fa_rev_bin Mult a b M slp slpl M2 slp2 slpl2)" | |
| "slp_of_fa_rev (Min a b) M slp slpl = | |
(let (M1, slp1, slpl1) = slp_of_fa_rev a M slp slpl; (M2, slp2, slpl2) = slp_of_fa_rev b M1 slp1 slpl1 in | |
slp_of_fa_rev_bin Min a b M slp slpl M2 slp2 slpl2)" | |
| "slp_of_fa_rev (Max a b) M slp slpl = | |
(let (M1, slp1, slpl1) = slp_of_fa_rev a M slp slpl; (M2, slp2, slpl2) = slp_of_fa_rev b M1 slp1 slpl1 in | |
slp_of_fa_rev_bin Max a b M slp slpl M2 slp2 slpl2)" | |
| "slp_of_fa_rev (Powr a b) M slp slpl = | |
(let (M1, slp1, slpl1) = slp_of_fa_rev a M slp slpl; (M2, slp2, slpl2) = slp_of_fa_rev b M1 slp1 slpl1 in | |
slp_of_fa_rev_bin Powr a b M slp slpl M2 slp2 slpl2)" | |
| "slp_of_fa_rev (Inverse a) M slp slpl = | |
(let (M1, slp1, slpl1) = slp_of_fa_rev a M slp slpl in slp_of_fa_rev_un Inverse a M slp slpl M1 slp1 slpl1)" | |
| "slp_of_fa_rev (Cos a) M slp slpl = | |
(let (M1, slp1, slpl1) = slp_of_fa_rev a M slp slpl in slp_of_fa_rev_un Cos a M slp slpl M1 slp1 slpl1)" | |
| "slp_of_fa_rev (Arctan a) M slp slpl = | |
(let (M1, slp1, slpl1) = slp_of_fa_rev a M slp slpl in slp_of_fa_rev_un Arctan a M slp slpl M1 slp1 slpl1)" | |
| "slp_of_fa_rev (Abs a) M slp slpl = | |
(let (M1, slp1, slpl1) = slp_of_fa_rev a M slp slpl in slp_of_fa_rev_un Abs a M slp slpl M1 slp1 slpl1)" | |
| "slp_of_fa_rev (Sqrt a) M slp slpl = | |
(let (M1, slp1, slpl1) = slp_of_fa_rev a M slp slpl in slp_of_fa_rev_un Sqrt a M slp slpl M1 slp1 slpl1)" | |
| "slp_of_fa_rev (Exp a) M slp slpl = | |
(let (M1, slp1, slpl1) = slp_of_fa_rev a M slp slpl in slp_of_fa_rev_un Exp a M slp slpl M1 slp1 slpl1)" | |
| "slp_of_fa_rev (Ln a) M slp slpl = | |
(let (M1, slp1, slpl1) = slp_of_fa_rev a M slp slpl in slp_of_fa_rev_un Ln a M slp slpl M1 slp1 slpl1)" | |
| "slp_of_fa_rev (Minus a) M slp slpl = | |
(let (M1, slp1, slpl1) = slp_of_fa_rev a M slp slpl in slp_of_fa_rev_un Minus a M slp slpl M1 slp1 slpl1)" | |
| "slp_of_fa_rev (Floor a) M slp slpl = | |
(let (M1, slp1, slpl1) = slp_of_fa_rev a M slp slpl in slp_of_fa_rev_un Floor a M slp slpl M1 slp1 slpl1)" | |
| "slp_of_fa_rev (Power a n) M slp slpl = | |
(let (M1, slp1, slpl1) = slp_of_fa_rev a M slp slpl in slp_of_fa_rev_un (\<lambda>a. Power a n) a M slp slpl M1 slp1 slpl1)" | |
| "slp_of_fa_rev Pi M slp slpl = slp_of_fa_rev_cnst Pi Pi M slp slpl" | |
| "slp_of_fa_rev (Var v) M slp slpl = slp_of_fa_rev_cnst (Var v) (Var (v + slpl)) M slp slpl" | |
| "slp_of_fa_rev (Num n) M slp slpl = slp_of_fa_rev_cnst (Num n) (Num n) M slp slpl" | |
lemma slp_indexl_length[simp]: "slp_indexl (length xs) i = slp_index xs i" | |
by (auto simp: slp_index_def slp_indexl_def) | |
lemma slp_indexl_lookup_length[simp]: "slp_indexl_lookup (length xs) i = slp_index_lookup xs i" | |
by (auto simp: slp_index_lookup_def slp_indexl_lookup_def) | |
lemma slp_index_rev[simp]: "slp_index (rev xs) i = slp_index xs i" | |
by (auto simp: slp_index_def slp_indexl_def) | |
lemma slp_index_lookup_rev[simp]: "slp_index_lookup (rev xs) i = slp_index_lookup xs i" | |
by (auto simp: slp_index_lookup_def slp_indexl_lookup_def) | |
lemma slp_of_fa_bin_slp_of_fa_rev_bin: | |
"slp_of_fa_rev_bin Binop a b M slp (length slp) M2 slp2 (length slp2) = | |
(let (M, slp') = slp_of_fa_bin Binop a b M (rev slp) M2 (rev slp2) in (M, rev slp', length slp'))" | |
by (auto simp: slp_of_fa_rev_bin_def slp_of_fa_bin_def | |
split: prod.splits option.splits) | |
lemma slp_of_fa_un_slp_of_fa_rev_un: | |
"slp_of_fa_rev_un Binop a M slp (length slp) M2 slp2 (length slp2) = | |
(let (M, slp') = slp_of_fa_un Binop a M (rev slp) M2 (rev slp2) in (M, rev slp', length slp'))" | |
by (auto simp: slp_of_fa_rev_un_def slp_of_fa_un_def split: prod.splits option.splits) | |
lemma slp_of_fa_cnst_slp_of_fa_rev_cnst: | |
"slp_of_fa_rev_cnst Cnst Cnst' M slp (length slp) = | |
(let (M, slp') = slp_of_fa_cnst Cnst Cnst' M (rev slp) in (M, rev slp', length slp'))" | |
by (auto simp: slp_of_fa_rev_cnst_def slp_of_fa_cnst_def | |
split: prod.splits option.splits) | |
lemma slp_of_fa_rev: | |
"slp_of_fa_rev fa M slp (length slp) = (let (M, slp') = slp_of_fa fa M (rev slp) in (M, rev slp', length slp'))" | |
proof (induction fa arbitrary: M slp) | |
case (Add fa1 fa2) | |
then show ?case | |
by (auto split: prod.splits simp: Let_def | |
slp_of_fa_cnst_slp_of_fa_rev_cnst slp_of_fa_bin_slp_of_fa_rev_bin slp_of_fa_un_slp_of_fa_rev_un) | |
(metis (no_types, lifting) Pair_inject length_rev prod.simps(2) rev_rev_ident slp_of_fa_bin_slp_of_fa_rev_bin) | |
next | |
case (Minus fa) | |
then show ?case | |
by (auto split: prod.splits simp: Let_def | |
slp_of_fa_cnst_slp_of_fa_rev_cnst slp_of_fa_bin_slp_of_fa_rev_bin slp_of_fa_un_slp_of_fa_rev_un) | |
(metis (mono_tags, lifting) length_rev prod.simps(2) rev_swap slp_of_fa_un_slp_of_fa_rev_un) | |
next | |
case (Mult fa1 fa2) | |
then show ?case | |
by (auto split: prod.splits simp: Let_def | |
slp_of_fa_cnst_slp_of_fa_rev_cnst slp_of_fa_bin_slp_of_fa_rev_bin slp_of_fa_un_slp_of_fa_rev_un) | |
(metis (no_types, lifting) Pair_inject length_rev prod.simps(2) rev_rev_ident slp_of_fa_bin_slp_of_fa_rev_bin) | |
next | |
case (Inverse fa) | |
then show ?case | |
by (auto split: prod.splits simp: Let_def | |
slp_of_fa_cnst_slp_of_fa_rev_cnst slp_of_fa_bin_slp_of_fa_rev_bin slp_of_fa_un_slp_of_fa_rev_un) | |
(metis (mono_tags, lifting) length_rev prod.simps(2) rev_swap slp_of_fa_un_slp_of_fa_rev_un) | |
next | |
case (Cos fa) | |
then show ?case | |
by (auto split: prod.splits simp: Let_def | |
slp_of_fa_cnst_slp_of_fa_rev_cnst slp_of_fa_bin_slp_of_fa_rev_bin slp_of_fa_un_slp_of_fa_rev_un) | |
(metis (mono_tags, lifting) length_rev prod.simps(2) rev_swap slp_of_fa_un_slp_of_fa_rev_un) | |
next | |
case (Arctan fa) | |
then show ?case | |
by (auto split: prod.splits simp: Let_def | |
slp_of_fa_cnst_slp_of_fa_rev_cnst slp_of_fa_bin_slp_of_fa_rev_bin slp_of_fa_un_slp_of_fa_rev_un) | |
(metis (mono_tags, lifting) length_rev prod.simps(2) rev_swap slp_of_fa_un_slp_of_fa_rev_un) | |
next | |
case (Abs fa) | |
then show ?case | |
by (auto split: prod.splits simp: Let_def | |
slp_of_fa_cnst_slp_of_fa_rev_cnst slp_of_fa_bin_slp_of_fa_rev_bin slp_of_fa_un_slp_of_fa_rev_un) | |
(metis (mono_tags, lifting) length_rev prod.simps(2) rev_swap slp_of_fa_un_slp_of_fa_rev_un) | |
next | |
case (Max fa1 fa2) | |
then show ?case | |
by (auto split: prod.splits simp: Let_def | |
slp_of_fa_cnst_slp_of_fa_rev_cnst slp_of_fa_bin_slp_of_fa_rev_bin slp_of_fa_un_slp_of_fa_rev_un) | |
(metis (no_types, lifting) Pair_inject length_rev prod.simps(2) rev_rev_ident slp_of_fa_bin_slp_of_fa_rev_bin) | |
next | |
case (Min fa1 fa2) | |
then show ?case | |
by (auto split: prod.splits simp: Let_def | |
slp_of_fa_cnst_slp_of_fa_rev_cnst slp_of_fa_bin_slp_of_fa_rev_bin slp_of_fa_un_slp_of_fa_rev_un) | |
(metis (no_types, lifting) Pair_inject length_rev prod.simps(2) rev_rev_ident slp_of_fa_bin_slp_of_fa_rev_bin) | |
next | |
case Pi | |
then show ?case | |
by (auto split: prod.splits simp: Let_def | |
slp_of_fa_cnst_slp_of_fa_rev_cnst slp_of_fa_bin_slp_of_fa_rev_bin slp_of_fa_un_slp_of_fa_rev_un) | |
next | |
case (Sqrt fa) | |
then show ?case | |
by (auto split: prod.splits simp: Let_def | |
slp_of_fa_cnst_slp_of_fa_rev_cnst slp_of_fa_bin_slp_of_fa_rev_bin slp_of_fa_un_slp_of_fa_rev_un) | |
(metis (mono_tags, lifting) length_rev prod.simps(2) rev_swap slp_of_fa_un_slp_of_fa_rev_un) | |
next | |
case (Exp fa) | |
then show ?case | |
by (auto split: prod.splits simp: Let_def | |
slp_of_fa_cnst_slp_of_fa_rev_cnst slp_of_fa_bin_slp_of_fa_rev_bin slp_of_fa_un_slp_of_fa_rev_un) | |
(metis (mono_tags, lifting) length_rev prod.simps(2) rev_swap slp_of_fa_un_slp_of_fa_rev_un) | |
next | |
case (Powr fa1 fa2) | |
then show ?case | |
by (auto split: prod.splits simp: Let_def | |
slp_of_fa_cnst_slp_of_fa_rev_cnst slp_of_fa_bin_slp_of_fa_rev_bin slp_of_fa_un_slp_of_fa_rev_un) | |
(metis (no_types, lifting) Pair_inject length_rev prod.simps(2) rev_rev_ident slp_of_fa_bin_slp_of_fa_rev_bin) | |
next | |
case (Ln fa) | |
then show ?case | |
by (auto split: prod.splits simp: Let_def | |
slp_of_fa_cnst_slp_of_fa_rev_cnst slp_of_fa_bin_slp_of_fa_rev_bin slp_of_fa_un_slp_of_fa_rev_un) | |
(metis (mono_tags, lifting) length_rev prod.simps(2) rev_swap slp_of_fa_un_slp_of_fa_rev_un) | |
next | |
case (Power fa x2a) | |
then show ?case | |
by (auto split: prod.splits simp: Let_def | |
slp_of_fa_cnst_slp_of_fa_rev_cnst slp_of_fa_bin_slp_of_fa_rev_bin slp_of_fa_un_slp_of_fa_rev_un) | |
(metis (mono_tags, lifting) length_rev prod.simps(2) rev_swap slp_of_fa_un_slp_of_fa_rev_un) | |
next | |
case (Floor fa) | |
then show ?case | |
by (auto split: prod.splits simp: Let_def | |
slp_of_fa_cnst_slp_of_fa_rev_cnst slp_of_fa_bin_slp_of_fa_rev_bin slp_of_fa_un_slp_of_fa_rev_un) | |
(metis (mono_tags, lifting) length_rev prod.simps(2) rev_swap slp_of_fa_un_slp_of_fa_rev_un) | |
next | |
case (Var x) | |
then show ?case | |
by (auto split: prod.splits simp: Let_def | |
slp_of_fa_cnst_slp_of_fa_rev_cnst slp_of_fa_bin_slp_of_fa_rev_bin slp_of_fa_un_slp_of_fa_rev_un) | |
next | |
case (Num x) | |
then show ?case | |
by (auto split: prod.splits simp: Let_def | |
slp_of_fa_cnst_slp_of_fa_rev_cnst slp_of_fa_bin_slp_of_fa_rev_bin slp_of_fa_un_slp_of_fa_rev_un) | |
qed | |
lemma slp_of_fa_code[code]: | |
"slp_of_fa fa M slp = (let (M, slp', _) = slp_of_fa_rev fa M (rev slp) (length slp) in (M, rev slp'))" | |
using slp_of_fa_rev[of fa M "rev slp"] | |
by (auto split: prod.splits) | |
definition "norm2_slp n = slp_of_fas [floatarith.Inverse (norm2\<^sub>e n)]" | |
unbundle no_floatarith_notation | |
end | |