Datasets:
Tasks:
Text Generation
Modalities:
Text
Sub-tasks:
language-modeling
Languages:
English
Size:
100K - 1M
License:
import topology.algebra.ring | |
import ring_theory.subring | |
import tactic.linarith | |
import power_bounded | |
import Huber_ring.basic | |
import for_mathlib.topological_rings | |
/-! | |
A Tate ring is a Huber ring that has a topologically nilpotent unit. | |
Topologically nilpotent units are also called pseudo-uniformizers. | |
-/ | |
universe u | |
variables {R : Type u} [comm_ring R] [topological_space R] | |
open filter function | |
/--A unit of a topological ring is called a pseudo-uniformizer if it is topologically nilpotent.-/ | |
def is_pseudo_uniformizer (ϖ : units R) : Prop := is_topologically_nilpotent (ϖ : R) | |
variable (R) | |
/--A pseudo-uniformizer of a topological ring is a topologially nilpotent unit.-/ | |
def pseudo_uniformizer := {ϖ : units R // is_topologically_nilpotent (ϖ : R)} | |
variable {R} | |
namespace pseudo_uniformizer | |
/-- The coercion from pseudo-uniformizers to the unit group. -/ | |
instance : has_coe (pseudo_uniformizer R) (units R) := ⟨subtype.val⟩ | |
/--The unit underlying a pseudo-uniformizer.-/ | |
abbreviation unit (ϖ : pseudo_uniformizer R) : units R := ϖ | |
/--A pseudo-uniformizer is topologically nilpotent (by definition).-/ | |
lemma is_topologically_nilpotent (ϖ : pseudo_uniformizer R) : | |
is_topologically_nilpotent (ϖ : R) := ϖ.property | |
variables [topological_ring R] | |
/--A pseudo-uniformizer is power bounded.-/ | |
lemma power_bounded (ϖ : pseudo_uniformizer R) : | |
is_power_bounded (ϖ : R) := | |
begin | |
intros U U_nhds, | |
rcases half_nhds U_nhds with ⟨U', ⟨U'_nhds, U'_prod⟩⟩, | |
rcases ϖ.is_topologically_nilpotent U' U'_nhds with ⟨N, H⟩, | |
let V : set R := (λ u, u*ϖ^(N+1)) '' U', | |
have V_nhds : V ∈ (nhds (0 : R)), | |
{ dsimp [V], | |
have inv : left_inverse (λ (u : R), u * (↑ϖ.unit⁻¹)^((N + 1))) (λ (u : R), u * ϖ^(N + 1)) ∧ | |
right_inverse (λ (u : R), u * (↑ϖ.unit⁻¹)^(N + 1)) (λ (u : R), u * ϖ^(N + 1)), | |
by split ; intro ; simp [mul_assoc, (mul_pow _ _ _).symm], | |
erw set.image_eq_preimage_of_inverse inv.1 inv.2, | |
have : tendsto (λ (u : R), u * ↑ϖ.1⁻¹ ^ (N + 1)) (nhds 0) (nhds 0), | |
{ conv {congr, skip, skip, rw ←(zero_mul (↑ϖ.1⁻¹ ^ (N + 1) : R))}, | |
exact tendsto_id.mul tendsto_const_nhds }, | |
exact this U'_nhds }, | |
use [V, V_nhds], | |
rintros _ ⟨u, u_in, rfl⟩ b ⟨n, rfl⟩, | |
rw [mul_assoc, ← pow_add], | |
apply U'_prod _ _ u_in (H _ _), | |
linarith | |
end | |
/-- The coercion from pseudo-uniformizers to the power bounded subring. -/ | |
instance coe_to_power_bounded_subring : has_coe (pseudo_uniformizer R) (power_bounded_subring R) := | |
⟨λ ϖ, ⟨_, ϖ.power_bounded⟩⟩ | |
end pseudo_uniformizer | |
/--A Tate ring is a Huber ring that has a pseudo uniformizer.-/ | |
class Tate_ring (R : Type u) [Huber_ring R] : Prop := | |
(has_pseudo_uniformizer : nonempty (pseudo_uniformizer R)) | |