Datasets:

Modalities:
Text
Languages:
English
Libraries:
Datasets
License:
proof-pile / formal /lean /perfectoid /Huber_pair.lean
Zhangir Azerbayev
squashed?
4365a98
raw
history blame
3.67 kB
import for_mathlib.integral_closure
import power_bounded Huber_ring.basic
/-!
# Huber pairs
This short file defines Huber pairs.
A Huber pair consists of a Huber ring and a
so-call ring of integral elements: an integrally closed, power bounded, open subring.
A typical example is ℤ_p ⊆ ℚ_p. (However, this example is hard to use as is,
because our fomalisation uses subrings and Lean's version of ℤ_p is not a subring of ℚ_p.
This could be fixed by using injective ring homomorphisms instead of subrings.)
-/
universes u v
open_locale classical
open power_bounded
-- Notation for the power bounded subring
local postfix `ᵒ` : 66 := power_bounded_subring
set_option old_structure_cmd true
/- An subring of a Huber ring is called a “ring of integral elements”
if it is open, integrally closed, and power bounded. See [Wedhorn, Def 7.14].-/
structure is_ring_of_integral_elements (Rplus : Type u) (R : Type u)
[comm_ring Rplus] [topological_space Rplus] [Huber_ring R] [algebra Rplus R]
extends is_integrally_closed Rplus R, open_embedding (algebra_map R : Rplus → R) : Prop :=
(is_power_bounded : set.range (algebra_map R : Rplus → R) ≤ Rᵒ)
namespace is_ring_of_integral_elements
variables (Rplus : Type u) (R : Type u)
variables [comm_ring Rplus] [topological_space Rplus] [Huber_ring R] [algebra Rplus R]
lemma plus_is_topological_ring (h : is_ring_of_integral_elements Rplus R) :
topological_ring Rplus :=
{ continuous_add :=
begin
rw h.to_open_embedding.to_embedding.to_inducing.continuous_iff,
simp only [function.comp, algebra.map_add],
apply continuous.add,
all_goals { apply h.to_open_embedding.continuous.comp },
{ exact continuous_fst },
{ exact continuous_snd },
end,
continuous_mul :=
begin
rw h.to_open_embedding.to_embedding.to_inducing.continuous_iff,
simp only [function.comp, algebra.map_mul],
apply continuous.mul,
all_goals { apply h.to_open_embedding.continuous.comp },
{ exact continuous_fst },
{ exact continuous_snd },
end,
continuous_neg :=
begin
rw h.to_open_embedding.to_embedding.to_inducing.continuous_iff,
simp only [function.comp, algebra.map_neg],
exact h.to_open_embedding.continuous.neg,
end }
end is_ring_of_integral_elements
/-- A Huber pair consists of a Huber ring and a
so-call ring of integral elements: an integrally closed, power bounded, open subring.
(The name “Huber pair” was introduced by Scholze.
Before that, they were called “affinoid rings”.) See [Wedhorn, Def 7.14].-/
structure Huber_pair :=
(plus : Type) -- change this to (Type u) to enable universes
(carrier : Type)
[ring : comm_ring plus]
[top : topological_space plus]
[Huber : Huber_ring carrier]
[alg : algebra plus carrier]
(intel : is_ring_of_integral_elements plus carrier)
namespace Huber_pair
variable (A : Huber_pair)
/-- The coercion of a Huber pair to a type (the ambient ring).-/
instance : has_coe_to_sort Huber_pair :=
{ S := Type, coe := Huber_pair.carrier }
-- The following notation is very common in the literature.
local postfix `⁺` : 66 := λ A : Huber_pair, A.plus
/-- The Huber ring structure on a Huber pair. -/
instance : Huber_ring A := A.Huber
/-- The ring structure on the ring of integral elements. -/
instance : comm_ring (A⁺) := A.ring
/-- The algebra structure of a Huber pair. -/
instance : algebra (A⁺) A := A.alg
/-- The topology on the ring of integral elements. -/
instance : topological_space (A⁺) := A.top
/-- The ring of integral elements is a topological ring.-/
instance : topological_ring (A⁺) :=
is_ring_of_integral_elements.plus_is_topological_ring _ A A.intel
end Huber_pair